
Re-using Auxiliary Variables for
MaxSAT Preprocessing

Jeremias Berg and Paul Saikko and Matti Järvisalo
HIIT, Department of Computer Science, University of Helsinki, Finland

Abstract—Solvers for the maximum satisfiability (MaxSAT)
problem—a well-known optimization variant of Boolean satis-
fiability (SAT)—are finding an increasing number of applica-
tions. Preprocessing has proven an integral part of the SAT-
based approach to efficiently solving various types of real-world
problem instances. It was recently shown that SAT preprocessing
for MaxSAT becomes more effective by re-using the auxiliary
variables introduced in the preprocessing phase directly in the
SAT solver within a core-based hybrid MaxSAT solver. We take
this idea of re-using auxiliary variables further by identifying
them among variables already present in the input MaxSAT in-
stance. Such variables can be re-used already in the preprocessing
step, avoiding the introduction of multiple layers of new auxiliary
variables in the process. Empirical results show that by detecting
auxiliary variables in the input MaxSAT instances can lead to
modest additional runtime improvements when applied before
preprocessing. Furthermore, we show that by re-using auxiliary
variables not only within preprocessing but also as assumptions
within the SAT solver of the MaxHS MaxSAT algorithm can alone
lead to performance improvements similar to those observed by
applying SAT-based preprocessing.

I. INTRODUCTION

Maximum satisfiability (MaxSAT) [1], [2], [3] is a
well-known optimization variant of the archetypical NP-
complete problem of Boolean satisfiability (SAT). Build-
ing on the extraordinary success of SAT solvers, exact
solvers for MaxSAT—and, especially, its weighted partial
generalization—are finding an increasing number of applica-
tions, ranging e.g. from hardware design debugging and model-
based diagnosis to bioinformatics and data analysis [4], [5],
[6], [7], [8], [9], [10], [11]. This is brought on by recent
improvements in MaxSAT solving techniques [12], [13], [14],
[15], [2], [16], [3], [17], [18].

Recently it was shown [19] that SAT-based preprocess-
ing [20], [21] for MaxSAT [22] can be made more effective
by explicitly re-using the auxiliary variables introduced in the
preprocessing phase directly as the assumption variables the
SAT solver within a core-based hybrid MaxSAT solver [23],
[14], [15]. In this work, we take this idea of re-using aux-
iliary variables further. Our idea is to automatically detect
(group detect) auxiliary variables among the variables already
present in the input MaxSAT instance. Such detected auxiliary
variables can be used already within the preprocessing step.
This avoids introducing layers of new auxiliary variables in
the preprocessing and the solving steps. A key motivation
for group detection comes from the fact that such auxiliary
variables arise naturally when encoding more complex finite-
domain soft constraints into MaxSAT via the so-called Group
MaxSAT framework [24], [25].

We observe that group detection can be achieved by simple

pattern matching, and show that this often identifies re-usable
auxiliary variables in the weighted partial MaxSAT benchmark
sets of the most recent 2014 MaxSAT Evaluation. We also
detail why variable re-use via group detection can be beneficial
in particular in conjunction with the MaxHS solver. We show
that group detection applied before SAT-based preprocessing
can bring modest runtime improvements to state-of-the-art
MaxSAT solvers.

An additional benefit of group detection is that the detected
auxiliary variables can be explicitly re-used as assumptions
throughout the whole MaxSAT solving process—not only
within SAT-based preprocessing for MaxSAT, but also in
the SAT solver within SAT-based MaxSAT algorithms—by
explicitly informing the MaxSAT solver of these variables.
Using a recently proposed generalization of MaxHS for this
purpose [19], we show that this results in overall improve-
ments over MaxHS on weighted partial 2014 MaxSAT Eval-
uation benchmarks. Furthermore, surprisingly, explicitly re-
using group detected variables alone results in similar overall
improvements as applying SAT-based preprocessing together
with variable re-use of the auxiliary variables necessary for
the preprocessing phase.

The rest of the paper is organized as follows. We start
with necessary preliminaries on MaxSAT and the group and
labelled extensions of MaxSAT (Section II) and SAT-based
preprocessing for labelled MaxSAT (Section III). We then de-
tail the proposed approach to re-using variables present in the
input MaxSAT instances via what we call group detection (Sec-
tion IV). After this, we explain why group detection could be
beneficial to apply in conjunction with a recently proposed
labelled lifting of the MaxHS approach (Section V). Before
concluding, we present results of an empirical evaluation on
the effects of integrating group detection into the MaxSAT
solving process (Section VI).

II. MAXSAT, GROUPS, AND LABELS

For a Boolean variable x, there are two literals, x and ¬x.
A clause is a disjunction (∨) of literals. A truth assignment
is a function from Boolean variables to {0, 1}. A clause C
is satisfied by a truth assignment τ (τ(C) = 1) if τ(x) = 1
for a literal x in C, or τ(x) = 0 for a literal ¬x in C. A set
F = {C1, . . . , Cm} of clauses, or equivalently, the conjunctive
normal form (CNF) formula

∧m
i=1 Ci, is satisfiable if there is

an assignment τ satisfying all clauses in F (τ(F) = 1), and
unsatisfiable (τ(F) = 0 for any assignment τ) otherwise. The
Boolean satisfiability problem (SAT) is to decide whether a
given CNF formula is satisfiable.

An instance F = (Fh, Fs, c) of the weighted partial
MaxSAT problem consists of a set Fh of hard clauses, a set

Fs of soft clauses, and a function c : Fs → N that associates a
non-negative cost (weight) with each of the soft clauses. Any
truth assignment τ that satisfies Fh is a solution to F . The cost
of a solution τ to F is COST(F, τ) =

∑
C∈Fs

(1−τ(C))·c(C),
i.e., the sum of the costs of the soft clauses not satisfied by
τ . A solution τ is (globally) optimal for F if COST(F, τ) ≤
COST(F, τ ′) holds for any solution τ ′ to F . Given a weighted
partial MaxSAT instance F , the weighted partial MaxSAT
problem asks to find an optimal solution to F . From here
on, we refer to weighted partial MaxSAT instances simply as
MaxSAT instances. A MaxSAT instance with c(C) = 1 for all
soft clauses C is often called unweighted.

An unsatisfiable core of a MaxSAT instance F =
(Fh, Fs, c) is a subset F ′

s ⊆ Fs such that Fh ∪ F ′
s is

unsatisfiable. An unsatisfiable core F ′
s is minimal (an MUS) if

Fh ∪ F ′′
s ∈ SAT for all F ′′

s ⊂ F ′
s.

Group MaxSAT [24], [25] extends MaxSAT by allow-
ing weights on (soft) groups of clauses. An instance F =
(Fh,Gs, c) of weighted group MaxSAT consists of a set Fh of
hard clauses, a set Gs of soft groups of clauses, and function
c : Gs → N that associates a a non-negative cost with each
group in Gs. Each group G ∈ Gs is a set of clauses. A truth
assignment τ satisfies G iff τ satisfies every clause in G. The
Group MaxSAT problem asks to find an assignment τ that
satisfies Fh and maximizes the sum of the costs of the groups
satisfied by τ .

The framework of labelled CNFs (LCNFs) [26], [22]
allows for generalizing MaxSAT and Group MaxSAT into
maximum satisfiability of LCNF, as well as for lifting SAT
preprocessing techniques to MaxSAT. Assume a countable set
Lbl of labels. A labelled clause CL consists of a clause C and
a (possibly empty) set L ⊆ Lbl of labels. An LCNF formula
Φ is a set of labelled clauses. We use Cl(Φ) and Lbls(Φ)
to denote the set of clauses and labels of Φ, respectively.
An LCNF formula is satisfiable iff Cl(Φ) (which is a CNF
formula) is satisfiable.

Given an LCNF formula Φ and a subset of its labels M ⊆
Lbls(Φ), the subformula Φ|M of Φ induced by M is the LCNF
formula {CL ∈ Φ : L ⊆ M}, i.e., the subformula obtained
by removing from Φ all labelled clauses with at least one
label not in M . An unsatisfiable core of an unsatisfiable LCNF
formula Φ is a label-set L ⊆ Lbls(Φ) such that the formula
Φ|L is unsatisfiable. An unsatisfiable core L is a LMUS iff
the formula Φ|L′ is satisfiable for all L′ ⊂ L. A minimal
correction subset (LMCS) for Φ is a label-set R ⊆ Lbls(Φ)
such that (i) the formula Φ|Lbls(Φ)\R is satisfiable, and (ii) the
formula Φ|Lbls(Φ)\R′ is unsatisfiable for all R′ ⊂ R.

An instance of the weighted LCNF-MaxSAT problem con-
sists of an LCNF formula Φ, with a positive weight wi

associated with each label in Lbls(Φ). The cost of a label-
set L ⊆ Lbls(Φ) is the sum of the weights of labels in L.
Given a weighted LCNF-MaxSAT instance Φ such that Φ|∅ is
satisfiable, any assignment τ that satisfies Φ|∅ is a solution
to the MaxSAT problem of LCNF formulas. A solution τ
is optimal if it satisfies Φ|Lbls(Φ)\R for some minimum-cost
LMCS R of Φ. The cost of τ is the cost of R. Similarly
to MaxSAT, we will from here on refer to weighted LCNF-
MaxSAT instances as LCNF-MaxSAT instances.

A MaxSAT instance F = (Fh, Fs, c) can be viewed as a

LCNF-MaxSAT instance ΦF by introducing (i) for each hard
clause C ∈ Fh the labelled clause C∅, and (ii) for each soft
clause C ∈ Fs the labelled clause C{lC}, where lC is a distinct
label for C with weight c(C). It is easy to see that any optimal
solution to ΦF is an optimal solution to F , and vice versa.

An LCNF-MaxSAT instance Φ can be viewed as a
MaxSAT instance FΦ [22] by associating with each label
li ∈ Lbls(Φ) a distinct variable ai, and introducing (i) for each
labelled clause CL ∈ Φ a hard clause C∨

∨
li∈L ai, and (ii) for

each li ∈ Lbls(Φ), a soft clause (¬ai) with cost c(ai) = wi,
where wi is the weight of the label li. We call this the direct
encoding. Notice that converting a MaxSAT instance to LCNF
and then back to MaxSAT using the direct encoding introduces
new variables and clauses to the formula, as exemplified next.

Example 1: Consider the (unweighted) MaxSAT instance
Fex = (Fh, Fs) with Fh = {(x ∨ z), (¬z), (y ∨ z)} and
Fs = {(¬x), (¬y,∨¬z), (z∨y), (¬z∨y)}. We will use Fex as
a running example in this paper. The assignment τ for which
τ(x) = τ(y) = 1 and τ(z) = 0 is an optimal solution to
Fex of cost 1. The set {(¬x)} is an example of a minimal
unsatisfiable core of Fex. The LCNF-MaxSAT instance ΦFex

corresponding to Fex is

ΦFex
= {(x ∨ z)∅, (¬z)∅, (y ∨ z)∅, (¬x){l1},

(¬y,∨¬z){l2}, (z ∨ y){l3}, (¬z ∨ y){l4}}.

Now Cl(ΦFex) = Fh ∪ Fs and Lbls(ΦFex) = {l1, l2, l3, l4}.
The label-set L = {l1} is a minimal unsatisfiable core of ΦFex

as
ΦFex |L = {(x ∨ z)∅, (¬z)∅, (y ∨ z)∅, (¬x){l1}}

is unsatisfiable. L is also a minimal correction subset to ΦFex

as

ΦFex |Lbls(ΦFex)\L = {(x ∨ z)∅, (¬z)∅, (y ∨ z)∅, (¬y,∨¬z){l2},
(z ∨ y){l3}, (¬z ∨ y){l4}},

is a LCNF formula satisfied by τ . As such τ is also an optimal
solution to the LCNF-MaxSAT instance ΦFex

. Converting ΦFex

back to a MaxSAT instance using the direct encoding results
in the instance F ′ = (F ′

h, F
′
s), where

F ′
h = {(x ∨ z), (¬z), (y ∨ z), (¬x ∨ a1), (¬y,∨¬z ∨ a2),

(z ∨ y ∨ a3), (¬z ∨ y ∨ a4)} and
F ′
s = {(¬a1), (¬a2), (¬a3), (¬a4)}.

III. SAT PREPROCESSING FOR MAXSAT VIA LCNFS

Preprocessing has proven an integral part of the SAT-based
approach to efficiently solving various types of real-world
problem instances. However, to date there is only little work
on the effects of preprocessing for MaxSAT, and the benefits
of applying SAT-based preprocessing for MaxSAT still remain
somewhat unclear. In fact, as shown in [22], many of the com-
monly used SAT preprocessing techniques, including bounded
variable elimination (BVE) [20], self-subsuming resolution
(SSR), or even subsumption elimination (SE), cannot be used
directly on MaxSAT instances. As a remedy to this problem,
in [22] liftings of VE, SSR, and SE to LCNF formulas were
proposed. Essentially, the techniques can be applied on LCNFs
by taking into account the natural restrictions implied by the
SAT-level techniques on the label-sets of labelled clauses.

• LCNF-lifting of the resolution rule: The resolvent of
two labelled clauses (x ∨ A)L1 and (¬x ∨ B)L2 is
(x ∨A)L1 ./x (¬x ∨B)L2 = (A ∨B)L1∪L2 .

• LCNF-lifting of BVE: Let Φx and Φ¬x, resp., denote
the sets of labelled clauses CL that contain the literal x
and the literal ¬x, resp. The LCNF-level BVE allows
for replacing Φx∪Φ¬x with Φx ./x Φ¬x = {AL1 ./x
BL2 | A ∈ Φx, B ∈ Φ¬x, A ∨ B not tautological} as
long as the resulting formula does not contain more
clauses than the original formula.

• LCNF-lifting of SE: A labelled clause AL1 subsumes
BL2 if A ⊆ B and L1 ⊆ L2. LCNF-level SE removes
subsumed clauses until fixpoint.

• LCNF-lifting of SSR:
Given labelled clauses (l ∨ A)L1 and (¬l ∨ B)L2 , if
AL1 subsumes BL2 , replace (¬l ∨B)L2 with BL2

Example 2: Eliminating z from ΦFex gives the formula

Φ1
Fex

= {(x)∅, (y)∅, (y){l3}, (x ∨ y){l3}, (¬y ∨ x){l2},

(x ∨ y){l4}, (y){l4}, (y){l3,l4}, (¬x){l1}}.

Applying labelled SE on Φ1
Fex

results in the formula

Φ2
Fex

= {(x)∅, (y)∅, (¬x){l1}}.

Eliminating x from Φ2
Fex

results in the formula

pre(ΦFex) = {(){l1}, (y)∅}.
The label-set {l1} is an LMCS of both ΦFex and pre(ΦFex).
Notice that the optimal costs of both formulas are the same.

Based on the fact that blocked clause elimination [27],
[21] (BCE) does not affect the set of MUSes of any CNF
formula [28], BCE is sound for MaxSAT. However, we note
that in combination with LCNF-level variable elimination,
self-subsuming resolution, and subsumption elimination, it is
simpler to consider a straightforward lifting of blocked clause
elimination1 to LCNFs: a labelled clause CL is blocked in an
LCNF formula Φ if C is blocked in the CNF formula Cl(Φ).
The soundness of BCE for LCNFs follows from the soundness
of BCE for MaxSAT.

Here it is important to notice that, due to the resolution rule
for LCNFs, bounded variable elimination can cause an increase
in the size of the label-sets of the resulting labelled clauses.
In particular, consider the encoding of MaxSAT as LCNF-
MaxSAT. Even though each labelled clause corresponding to
a soft clause in the original MaxSAT instance will have a
singleton label-set, after LCNF-level preprocessing some of
the clauses can have label-sets with more than one label.
Direct encoding of the preprocessed weighted LCNF-MaxSAT
instance as a MaxSAT instance will then add multiple new
variables, corresponding to the labels of the labelled clauses,
to the resulting soft clauses.

Integration of SAT-based preprocessing into the MaxSAT
solving process is outlined in Figure 1, given a weighted partial
MaxSAT instance F = (Fh, Fs, c) as input.

For the solving (Step 3), any MaxSAT solver can be used
by converting the LCNF back to standard MaxSAT.

1More generally, any monotone clause elimination procedure [28].

IV. RE-USING AUXILIARY VARIABLES

Both the assumptions used in MaxSAT solving and the
labels which enable SAT-based preprocessing require us to add
a layer of new auxiliary variables to the working formula. In
this work, we build on the idea of re-using the labels introduced
in the SAT-based preprocessing step. We propose to identify
variables in the input MaxSAT instance which could be re-used
as labels in the preprocessing step.

A. Group Detecting Auxiliary Variables

Assume that we are given a weighted partial MaxSAT
instance F = (Fh, Fs, c) as input. We observe that MaxSAT
instances may already contain variables that can be directly
re-used as labels during preprocessing and as assumptions by
a SAT solver. These variables can be easily identified from the
instances by pattern matching. Especially, when viewing F as
an LCNF-MaxSAT instance, this allows us to avoid introducing
distinct labels for those clauses which contain variables that
can be re-used as labels. In this work, we use the following
simple scheme to identify such variables. Assume that F
contains a literal2 l that fulfills the following conditions.

(i) (¬l) ∈ Fs.

(ii) ¬l /∈ C for any clause C ∈ (Fh ∪ Fs) \ {(¬l)}.
(iii) l /∈ C for any soft clause C ∈ Fs.

In words, we know that such a literal l only appears in the hard
clauses of F and the literal ¬l appears in a single soft unit
clause in F . We note that such literals can be easily detected,
and call this identification task group detection.

Example 3: Consider again the MaxSAT instance Fex

from Example 1. In this instance, the literal x satisfies the
conditions of group detection and as such can be re-used as
a label when converting Fex to an LCNF-MaxSAT instance.
This results in the formula

Φg
Fex

= {(z){x}, (¬z)∅, (y ∨ z)∅, (¬y,∨¬z){l1},
(z ∨ y){l2}, (¬z ∨ y){l3}}.

For concrete motivation for group detection, consider an
arbitrary finite-domain constraint C, and let cnf(C) =

∧k
i=1 Ci

2Note here that a literal can be either a variable or its negation.

1) View F = (Fh, Fs, c) as the LCNF-MaxSAT
instance ΦF as follows.
• For each C ∈ Fh, introduce a labelled

clause C∅.
• For each C ∈ Fs, introduce a labelled

clause C{lC} where lC is a distinct label
for C with weight c(C).

2) Apply the LCNF-liftings of BCE, VE, SSR, and
SE on ΦF to obtain the preprocessed LCNF
pre(ΦF).

3) Solve pre(ΦF).

Fig. 1. Integrating SAT preprocessing into MaxSAT solving

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 10 20 30 40 50 60 70 80 90 100

S
o
ft
 C

la
u
s
e
s
 R

e
u
s
e
d
 (

%
)

Instances (%)

Industrial
Crafted

Fig. 2. Labels detected in the weighted partial benchmarks from MaxSAT
Evaluation 2014

be a conjunctive normal form encoding of C (i.e., a rep-
resentation of C as a set {C1, . . . , Ck} of clauses). Now
assume that C is a soft constraint, with an associated weight
WC defining the cost of not satisfying C. On the level of
Group MaxSAT, the soft constraint C with weight WC can
be represented as the soft group {C1, . . . , Ck} with weight
WC . For employing a standard MaxSAT solver, a natural way
of encoding such a group-level MaxSAT representation [25] is
to introduce an auxiliary variable aC , and to consider the set
{(C1 ∨ aC), . . . , (Ck ∨ aC)} of hard clauses together with the
soft clause (¬aC) with weight WC .

While the proposed group detection procedure is simple, it
can relatively often detect variables of interest in real MaxSAT
benchmarks. Figure 2 shows the percentages of detected la-
bels out of the number of soft clauses for each instance in
the industrial and crafted weighted partial benchmarks from
MaxSAT Evaluation 2014. The instances within each of the
two categories are sorted by the percentage of detected labels.
On a significant percentage of the instances, group detection
was able to re-use all of the soft clauses in the input instance.
Notice that this is only possible if all of the soft clauses in the
input instances are unit, i.e., only contain a single literal.

B. Group Detected Variables as Labels

Group detection allows for re-using the detected “labelling”
literals as labels when viewing F as an LCNF-MaxSAT in-
stance. Concretely, we propose the computation steps outlined
in Figure 3 as a refinement of the steps outlined in Figure 1.
The essential difference here is that, instead of introducing
a new label for each soft clause in order to apply SAT
preprocessing (as in Figure 1), a new label is only introduced
for soft clauses for which Step 0 identified no re-usable
variables.

The soundness of group detection is formalized as follows.

Proposition 1: Let F = (Fh, Fs, c) be a MaxSAT instance,
ΦF the LCNF-MaxSAT instance obtained from F following
Step 1 in Figure 1, and Φg

F the LCNF-MaxSAT instance
obtained from F following Steps 0-1 in Figure 3. The cost
of the optimal solutions of ΦF and Φg

F are the same.

Proof: (Sketch) We sketch the conversion of a solution τ
of Φg

F to a solution of ΦF . Let R be an LMCS such that τ
satisfies Φg

F |Lbls(Φg
F)\R. Now construct an LMCS R′ of ΦF by

including (i) each of the labels l ∈ R∩Lbls(ΦF), and (ii) for
each label in R ∩ (Lbls(Φg

F) \ Lbls(ΦF)) (i.e., the group-
detected labels), the label of the corresponding soft clause in
ΦF . It is easy to see that R and R′ have the same cost. The fact
that R′ is an LMCS of ΦF follows by considering the cases
(i) and (ii) separately. The less obvious case (ii) follows from
each such label in R being a pure literal in ΦF |Lbls(ΦF)\R′ .

We end this section by noting that there is a connection
between group detection and the preprocessing technique of
labelled BVE. Consider again the MaxSAT instance Fex from
the previous examples. Only eliminating the variable x from
ΦFex , the direct encoding of Fex in LCNF results in the
instance

ΦFex
= {(z){l1}, (¬z)∅, (y ∨ z)∅, (¬y,∨¬z){l2},

(z ∨ y){l3}, (¬z ∨ y){l4}}.

The same LCNF-MaxSAT instance Φg
Fex

(modulo label renam-
ing) can also be obtained by encoding Fex as LCNF with group
detection.

V. MAXHS FOR WEIGHTED LCNFS

In order to more thoroughly evaluate group detection, we
make use of the LCNF-MaxHS algorithm developed in [19].
This allows us to test the impact of group detection without
preprocessing, by re-using detected variables directly within a
MaxSAT solver.

MaxHS ([23], [14], [15]) is a recent algorithm for weighted
partial MaxSAT. It is a hybrid approach that alternates between

0. Apply group detection on F = (Fh, Fs, c).
Assume that group detection is able to identify a
set L of labels associated with a subset F ′

h ⊆ Fh

of hard clauses.
1’. Convert F into an LCNF-MaxSAT instance Φg

F
as follows.
• For each C ∈ F ′

h, where L ⊆ C for some
subset L ⊆ L, introduce the labelled
clause (C \ L)L. For each label l ∈ L,
associate the weight c((¬l)) with l.

• For each C ∈ Fh \ F ′
h, introduce the

labelled clause C∅.
• For each C ∈ Fs that does not contain

any literal in L, introduce the labelled
clause C{lC}, where lC is a distinct label
for C with weight c(C).

2. Apply the labelled liftings of BCE, VE, SSR,
and SE on Φg

F to obtain the preprocessed LCNF
pre(Φg

F).
3. Solve pre(Φg

F).

Fig. 3. Combining group detection, SAT preprocessing, and LCNF-level
MaxSAT solving

a SAT solver to compute unsatisfiable cores, and an integer
programming (IP) solver to compute minimum-cost hitting sets
(MCHS) over the found cores. In short, given a set of cores
K for a formula F , MaxHS will invoke the IP solver to find
a minimum-cost hitting set hs for K, and the SAT solver to
solve the formula Fh∪(Fs\hs). If the formula is unsatisfiable,
a new core κ is derived and added to K and the process is
repeated. Otherwise, hs implicitly hits every core of F with
minimum cost, and the satisfying assignment to Fh∪(Fs \hs)
represents an optimal MaxSAT solution to F .

A. Lifting MaxHS

A lifting of the MaxHS algorithm to LCNFs, LCNF-
MaxHS (Algorithm 1), was proposed in [19]. While LCNF-
MaxHS closely follows the original MaxHS algorithm, it also
makes a critical shift from the clause-centric view (with a
single distinct auxiliary variable for each soft clause) to a label-
centric view in which overlapping label-sets with more than
one label are allowed. In more detail, LCNF-MaxHS maintains
a set L of already identified cores (explicitly maintained on the
LCNF-level as subsets of labels from Lbls(Φ)) and a MCHS
R for L. During each iteration, an IP solver is used to find a
MCHS R of L. A SAT solver is then used to determine the
satisfiability of Φ|Lbls(Φ)\R, the subformula of Φ induced by
Lbls(Φ)\R.3 If satisfiable, an optimal model was produced and
the algorithm terminates. Otherwise, a new core L is obtained
from the SAT solver, L is added to L, and then the next
iteration starts. This generalizes MaxHS to LCNFs while still
maintaining correctness [19].

The motivation for LCNF-MaxHS in [19] was to allow for
clean integration of SAT-based preprocessing for MaxSAT via
LCNFs, and, importantly, to re-use the labels introduced in the
preprocessing step directly auxiliary variables which can be
used as assumptions within MaxHS. This avoids introducing
an additional layer of variables in the SAT solver calls within
MaxHS. This is implemented by the steps outlined in Figure 1.
For Step 3, LCNF-MaxHS can be applied. In turn, LCNF-
MaxHS can be realized by extending an implementation of
the MaxHS algorithm to take as input the MaxSAT instance
created by the direct encoding of pre(ΦF). As proposed
in [19], the SAT solver within MaxHS can be altered to work
directly on the ai variables as the assumptions, without having

3Notice that inducing a subformula by Lbls(Φ) \ R is analogous to
removing all clauses present in the hitting set of the original MaxHS algorithm.

Input: An LCNF-MaxSAT instance Φ
Output: An optimal solution τ for Φ
L ← ∅ // set of found unsat cores of Lbls(Φ)
while true do

R← MINCOSTHITTINGSET(L)
(result, L, τ)← SATSOLVE(Φ|Lbls(Φ)\R)
if result=“satisfiable” then

return τ // solver returned SAT
else
L ← L ∪ {L} // solver returned unsat core of
Lbls(Φ)

end
end

Algorithm 1: LCNF-MaxHS, lifting of MaxHS to LCNFs

to introduce a new layer of auxiliary variables and without
having to explicitly add the soft clauses (¬ai) to the solver.
Step 2 can be implemented using a SAT preprocessor on the
direct encoding of ΦF by restricting the preprocessor from
removing any of the ai variables corresponding to labels.

B. Understanding Group Detection with MaxHS

Eq-seeding was suggested in [14] to improve the effective-
ness of the IP solver used in MaxHS. On the LCNF level,
eq-seeding takes advantage of the fact that LCNF-MaxHS
represents a unit labelled clause (l){ai} as the unit clause
(l) augmented with an auxiliary variable (ai), i.e., the clause
(l ∨ ai). In doing so, an implicit logical equivalence l ↔ ¬ai
is created [14]. These equivalences need not be added to
the SAT solver, but they can sometimes be used to derive
linear constraints which can be added to the hitting set IP
formulation of MaxHS. Let C = (l1 ∨ · · · ∨ ln) be a clause
in F . A suitable linear constraint can be derived if for every
lj ∈ C, either lj or ¬lj is equivalent to an auxiliary variable,
or lj is itself an auxiliary variable. Replacing each li with an
equivalent auxiliary literal gives a linear at-least-one constraint
equivalent to C, which can be added to the hitting set IP used
in solving the minimum-cost hitting set problems encountered
during search.

The next example demonstrates how group detection can
improve the effectiveness of eq-seeding within LCNF-MaxHS.
Encoding a MaxSAT instance F as an LCNF-MaxSAT in-
stance Φg

F with group detection (via Steps 0–1 of Figure 3) can
enable LCNF-MaxHS to derive more linear constraints during
solving compared to the direct encoding (Step 1 in Figure 1)
of F to ΦF .

Example 4: Consider the (unweighted) MaxSAT instance
F ′ = (F ′

h, F
′
s) with

F ′
h ={(g1 ∨ x1), (g1 ∨ x2), (g2 ∨ x3),

(g2 ∨ x4), (¬x1 ∨ ¬x3)} and
F ′
s ={(¬g1), (¬g2)}.

Converting F into an LCNF-MaxSAT instance Φg
F ′ using

group detection results in the LCNF-MaxSAT instance

Φg
F ′ = {(x1){g1}, (x2){g1}, (x3){g2}, (x4){g2}, (¬x1∨¬x3)∅}.

During solving, LCNF-MaxHS will treat these labelled clauses
as the formula

{(g1 ∨ x1), (g1 ∨ x2), (g2 ∨ x3), (g2 ∨ x4), (¬x1 ∨ ¬x3)}

with auxiliary variables g1 and g2. Eq-seeding is able to infer
the constraint g1 + g2 ≥ 1 from the clause (¬x1 ∨ ¬x3) and
the equivalences x1 ↔ ¬g1 and x3 ↔ ¬g2. On the other hand,
a direct encoding of F ′ in LCNF results in the instance

{(g1 ∨ x1)∅, (g1 ∨ x2)∅, (g2 ∨ x3)∅, (g2 ∨ x4)∅,

(¬x1 ∨ ¬x3)∅, (¬g1){l1}, (¬g2){l2}}

which will be treated by LCNF-MaxHS as the formula

{(g1 ∨ x1), (g1 ∨ x2), (g2 ∨ x3), (g2 ∨ x4),

(¬x1 ∨ ¬x3), (¬g1 ∨ l1), (¬g2 ∨ l2)}

with auxiliary variables l1 and l2. Here, eq-seeding will
identify the equivalences g1 ↔ l1 and g2 ↔ l2 but cannot
derive any linear constraints suitable for the hitting set IP.

Furthermore, the possibility of deriving more linear constraints
can in some instances decrease the number of SAT and IP
solver calls required by LCNF-MaxHS.

Example 5: Consider the LCNF-MaxSAT instances ΦFex

and Φg
Fex

from Examples 1 and 3, respectively. Notice that
eq-seeding cannot derive any constraints from ΦFex

. First we
illustrate a possible (worst-case) execution of LCNF-MaxHS
on ΦFex

. Initially, LCNF-MaxHS invokes its SAT solver on the
clauses of ΦFex

. Assume that the SAT solver returns the core
L1 = {l1, l2}. At this point, the set of identified cores only
contains L. Assume that the IP solver returns the minimum-
cost hitting set R = {l2}. Next, LCNF-MaxHS reiterates and
invokes the SAT solver on the clauses of ΦFex |Lbls(Φ)\{l2}. The
formula is still unsatisfiable. Assume that the SAT solver then
returns the core L2 = {l1, l3}. This time, the only minimum-
cost hitting set over the set of all identified cores, {L1, L2},
is {l1}. Finally, LCNF-MaxHS invokes the SAT solver on
the clauses of ΦF |Lbls(Φ)\{l1}. This formula is satisfiable so
the algorithm terminates and returns the satisfying assignment
returned by the SAT solver. In total, two SAT- and IP-solver
calls were needed. In contrast, as the constraint x = 1 can be
derived from Φg

Fex
using eq-seeding, and every unsatisfiable

core of Φg
Fex

has to include x, LCNF-MaxHS is guaranteed
to require only a single SAT and IP solver call when solving
Φg

Fex
.

Group detection allows LCNF-MaxHS to derive more
constraints using eq-seeding also in practice. Figure 4 shows
a comparison between the number of constraints derivable by
eq-seeding with and without group detection from the weighted
partial benchmarks of the MaxSAT Evaluation 2014. While no
further eq-seeding is obtained on the crafted instances, group
detection improves eq-seeding on the industrial instances. A
hypothetical explanation for the behavior on crafted instances
is offered by the number of labels detected with group de-
tection. As seen from Figure 2, on most crafted instances
group detection detects either all soft clauses or no soft

 1

 10

 100

 1000

 1 10 100 1000

W
it
h
 G

ro
u
p
 D

e
te

c
ti
o
n

Without Group Detection

Industrial
Crafted

Fig. 4. Comparison of the number of linear constraints derivable by
equivalence seeding with and without group detection on the weighted partial
benchmarks from MaxSAT Evaluation 2014

clauses. In fact, we observed a clear correlation between no
soft clauses detected and no extra constraints derived by eq-
seeding: whenever no soft clauses are detected, the LCNF-
MaxSAT instances created with and without group detection
are the same. For some intuition of the correlation between all
soft clauses detected and no extra constraints derived, assume
a MaxSAT instance F in which all soft clauses can be group
detected. Let Φg

F and ΦF the LCNF-MaxSAT instances created
from F with and without group detection, respectively, and
C a linear constraint derivable by eq-seeding from Φg

F but
not from ΦF . As discussed earlier, the fact that every soft
clause was detected in F means that all soft clauses of F
are unit soft clauses of form (¬li), where li is a label of Φg

F

and (¬li){ai} is a labelled clause of ΦF . The fact that C was
derivable from Φg

F but not from ΦF suggests that there exists
some set of labelled clauses of form (xi)

{li} and (
∨

i xi)
∅ in

Φg
F . Then, the clauses (xi)

{li} ∈ Φg
F correspond to clauses

(xi ∨ li)∅ ∈ ΦF , explaining why C cannot be derived from Φ.
Such clauses, even though theoretically possible, would seem
to only add unnecessary complexity to MaxSAT encodings
arising from the real world. In such cases one could in the
encoding substitute the (li)’s with the xi variables in F .

VI. EXPERIMENTS

We overview results from an empirical evaluation, with the
aim of understanding the possible benefits of applying group
detection in the MaxSAT solving process.

In the evaluation, we used the 410 instances from the
weighted partial industrial category of MaxSAT Evaluation
2014 (http://www.maxsat.udl.cat/14/). The experiments were
run on 2.53-GHz Intel Xeon quad-core machines with 32-GB
RAM and Ubuntu Linux 12.04. A per-instance timeout of 1 h
and memory limit of 30 GB were enforced. As the MaxSAT
solvers, we used Eva [29], an award-winning core-based
MaxSAT solver from the industrial weighted partial track of
the 2014 MaxSAT Evaluation; and our own re-implementation
of MaxHS that also enables the lifting of MaxHS to weighted
LCNFs (Algorithm 1). This re-implementation includes the
SAT solver tweaks and disjoint phase of [23], the non-
optimal hitting set computations of [15], as well as the
core minimization and eq-seeding techniques of [14]. Min-
iSAT 2.2.0 [30] is used as the underlying SAT solver, and
IBM CPLEX 12.6.0 [31] is used to solve the minimum-cost
hitting set IPs. For realizing LCNF-MaxHS, we extended our
MaxHS implementation to take as input a list of variables
suitable for use as assumptions. As the SAT preprocessor,
we used Coprocessor 2.0 [32]. Its file parser was modified
to automatically detect literals that can be re-used as labels, to
add new auxiliary variables (labels) to the other soft clauses,
and then using its whitelisting feature to forbid removal of
all occurrences of every variable that represents a label during
preprocessing.

We report on using the following preprocessing+solver
combinations.

Eva: the Eva solver.

Eva-pre: Eva solver with preprocessing, using the direct
encoding after preprocessing.

 1

 10

 100

 1000

 1 10 100 1000

E
v
a

-G
-p

re

Eva

 1

 10

 100

 1000

 1 10 100 1000

E
v
a

-G
-p

re

Eva-pre

Fig. 5. Running times: Eva v Eva-G-pre (left); Eva-pre v Eva-G-pre (right).

Eva-G-pre: Eva solver, with group detection. Detected vari-
ables are re-used in preprocessing as labels. The direct encod-
ing is used after preprocessing.

MHS2.5: MaxHS version 2.5 by the original MaxHS authors
(http://www.maxhs.org/).

MHS: our re-implementation of MaxHS.

MHS-pre: MHS with preprocessing, using the direct encoding
after preprocessing.

MHS-G-pre: MHS-pre, with group detection. Detected vari-
ables are re-used in preprocessing as labels. The direct encod-
ing is used after preprocessing.

LMHS-G: MHS with group detection (i.e., LCNF-MaxHS
with group detection). Detected variables are re-used as as-
sumptions in the solver.

LMHS-pre: MHS with preprocessing, re-using auxiliary vari-
ables from preprocessing as assumptions in the solver.

LMHS-G-pre: MHS with group detection and preprocessing.
Group detected variables are re-used as labels in preprocessing.
Auxiliary variables from preprocessing are re-used as assump-
tions in the solver.

Result for Eva are shown in Figure 5. While no substan-
tial differences in overall performance are observed, Eva-G-
pre solves a majority of the instances faster than Eva, and
timeouts on one less instance. Comparing Eva-G-pre to Eva-
pre, i.e., looking at the additional effect of group detection in
conjunction with preprocessing, we observe again that Eva-
G-pre solves most instances slightly faster than Eva-pre, and
Eva-pre timeouts on two more instances.

Results for variants of MHS are presented in Figures 6
and 7. We note that our MaxHS re-implementation is com-
petitive with MaxHS 2.5. Second, we observe that employing
SAT preprocessing in combination with plain MHS without re-
using labels from the preprocessing step (MHS-pre) improves
performance. Adding group detection (MHS-G-pre) improves
further on MHS-pre. Perhaps the most interesting observation
is that LMHS-G, i.e., applying group detection solely (i.e.,
without preprocessing) in conjunction with LCNF-MaxHS, is
surprisingly effective; see also Figure 7. In more detail, first
note that the MHS solver in Figure 6 could equivalently be
viewed as LMHS without preprocessing or group detection,
that is, Steps 1 and 3 of the computation outlined in Figure 1.
As such, comparing the performance of MHS and LMHS-G
gives an indication of the effect group detection alone has on

MaxSAT solving. We see that group detection (LMHS-G) per-
forms noticeably better than MHS, solving 16 instances more.
One possible explanation for this performance—as discussed
earlier—is eq-seeding; eq-seeding within LMHS-G was indeed
able to derive more linear constraints than MHS on every
single one of the instances that were solvable by LMHS-G but
not MHS. Furthermore, on 92% of all benchmarks we observed
that if LMHS-G solved the instance quicker than MHS, then
it also needed fewer UNSAT cores. This further suggests that
the reason for the difference in performance between MHS and
LMHS-G is linked to the quality of the hitting sets returned
by the IP solver. The connection between group detection and
preprocessing is less clear. Comparing LMHS-G and LMHS-
pre we surprisingly observe a similar level of performance,
suggesting that group detection and preprocessing have similar
effects on MaxSAT solving—although, a slight further perfor-
mance increase is observed when combining the two (LMHS-
G-pre).

VII. CONCLUSIONS

We proposed automatically detecting auxiliary variables
from input MaxSAT instances that can be re-used in the
SAT-based preprocessing step before MaxSAT solving. This
further avoids adding unnecessary layers of auxiliary vari-
ables throughout the MaxSAT solving process both in pre-
processing and also within the SAT-solver used in MaxSAT
solvers. We empirically showed that such auxiliary variables
can indeed be detected in real MaxSAT benchmarks, and
that re-using these variables as assumptions gives—somewhat
surprisingly—similar improvements on its own as applying
SAT preprocessing on industrial weighted partial MaxSAT
instances in terms of solving efficiency. As future work, we aim
at studying ways of detecting and soundly exploiting auxiliary
variables arising from clausal encodings of more complex soft
constraints.

ACKNOWLEDGEMENTS

Work presented in this paper was funded by Academy of
Finland, grants 251170 Centre of Excellence in Computational
Inference Research, 276412, and 284591; Research Funds of
the University of Helsinki; and the Emil Aaltonen Foundation.

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 260 270 280 290 300 310 320 330

T
im

e
o
u
t
(s

)

Instances solved

MHS2.5
MHS-pre

MHS
MHS-G-pre
LMHS-pre

LMHS-G
LMHS-G-pre

Fig. 6. Comparison of the different MaxHS variants

 1

 10

 100

 1000

 1 10 100 1000

L
M

H
S

-G

LMHS

 1

 10

 100

 1000

 1 10 100 1000

L
M

H
S

-G

LMHS-pre

 1

 10

 100

 1000

 1 10 100 1000

L
M

H
S

-G
-p

re

LMHS-pre

Fig. 7. Effect of group detection on runtimes: LMHS v LMHS-G (left); LMHS-G v LMHS-pre (middle); LMHS-pre v LMHS-G-Pre (right).

REFERENCES

[1] C. Li and F. Manyà, “MaxSAT, hard and soft constraints,” in Handbook
of Satisfiability. IOS Press, 2009, pp. 613–631.

[2] A. Morgado, F. Heras, M. Liffiton, J. Planes, and J. Marques-Silva,
“Iterative and core-guided MaxSAT solving: A survey and assessment,”
Constraints, vol. 18, no. 4, pp. 478–534, 2013.

[3] C. Ansótegui, M. Bonet, and J. Levy, “SAT-based MaxSAT algorithms,”
Artificial Intelligence, vol. 196, pp. 77–105, 2013.

[4] M. Jose and R. Majumdar, “Cause clue clauses: error localization using
maximum satisfiability,” in Proc. PLDI. ACM, 2011, pp. 437–446.

[5] C. Zhu, G. Weissenbacher, and S. Malik, “Post-silicon fault localisa-
tion using maximum satisfiability and backbones,” in Proc. FMCAD.
FMCAD Inc., 2011, pp. 63–66.

[6] J. Guerra and I. Lynce, “Reasoning over biological networks using
maximum satisfiability,” in Proc. CP, ser. Lecture Notes in Computer
Science, vol. 7514. Springer, 2012, pp. 941–956.

[7] J. Berg, M. Järvisalo, and B. Malone, “Learning optimal bounded
treewidth bayesian networks via maximum satisfiability,” in Proc.
AISTATS, vol. 33. JMLR, 2014, pp. 86–95.

[8] K. Bunte, M. Järvisalo, J. Berg, P. Myllymäki, J. Peltonen, and
S. Kaski, “Optimal neighborhood preserving visualization by maximum
satisfiability,” in Proc. AAAI. AAAI Press, 2014, pp. 1694–1700.

[9] J. Marques-Silva, M. Janota, A. Ignatiev, and A. Morgado, “Efficient
model based diagnosis with maximum satisfiability,” in Proc. IJCAI.
AAAI Press, 2015.

[10] P. Saikko, B. Malone, and M. Järvisalo, “MaxSAT-based cutting planes
for learning graphical models,” in Proc. CPAIOR, ser. Lecture Notes in
Computer Science, vol. 9075. Springer, 2015, pp. 345–354.

[11] J. Berg and M. Järvisalo, “Cost-optimal constrained correlation cluster-
ing via weighted partial maximum satisfiability,” Artificial Intelligence,
2015, in press.

[12] F. Heras, A. Morgado, and J. Marques-Silva, “Core-guided binary
search algorithms for maximum satisfiability,” in Proc. AAAI. AAAI
Press, 2011.

[13] M. Koshimura, T. Zhang, H. Fujita, and R. Hasegawa, “QMaxSAT: A
partial Max-SAT solver,” Journal of Satisfiability, Boolean Modeling
and Computation, vol. 8, no. 1/2, pp. 95–100, 2012.

[14] J. Davies and F. Bacchus, “Exploiting the power of MIP solvers in
MaxSAT,” in Proc. SAT, ser. Lecture Notes in Computer Science, vol.
7962. Springer, 2013, pp. 166–181.

[15] ——, “Postponing optimization to speed up MAXSAT solving,” in
Proc. CP, ser. Lecture Notes in Computer Science, vol. 8124. Springer,
2013, pp. 247–262.

[16] C. Ansótegui and J. Gabàs, “Solving (weighted) partial MaxSAT with
ILP,” in Proc. CPAIOR, ser. Lecture Notes in Computer Science, vol.
7874. Springer, 2013, pp. 403–409.

[17] A. Morgado, C. Dodaro, and J. Marques-Silva, “Core-guided MaxSAT
with soft cardinality constraints,” in Proc. CP, ser. Lecture Notes in
Computer Science, vol. 8656. Springer, 2014, pp. 564–573.

[18] R. Martins, S. Joshi, V. Manquinho, and I. Lynce, “Incremental car-
dinality constraints for MaxSAT,” in Proc. CP, ser. Lecture Notes in
Computer Science, vol. 8656. Springer, 2014, pp. 531–548.

[19] J. Berg, P. Saikko, and M. Järvisalo, “Improving the effectiveness of
SAT-based preprocessing for MaxSAT,” in Proc. IJCAI. AAAI Press,
2015.

[20] N. Eén and A. Biere, “Effective preprocessing in SAT through variable
and clause elimination,” in Proc. SAT, ser. Lecture Notes in Computer
Science, vol. 3569. Springer, 2005, pp. 61–75.

[21] M. Järvisalo, A. Biere, and M. Heule, “Blocked clause elimination,”
in Proc. TACAS, ser. Lecture Notes in Computer Science, vol. 6015.
Springer, 2010, pp. 129–144.

[22] A. Belov, A. Morgado, and J. Marques-Silva, “SAT-based preprocessing
for MaxSAT,” in Proc. LPAR-19, ser. Lecture Notes in Computer
Science, vol. 8312. Springer, 2013, pp. 96–111.

[23] J. Davies and F. Bacchus, “Solving MAXSAT by solving a sequence of
simpler SAT instances,” in Proc. CP, ser. Lecture Notes in Computer
Science, vol. 6876. Springer, 2011, pp. 225–239.

[24] J. Argelich and F. Manyà, “Exact Max-SAT solvers for over-constrained
problems,” Journal of Heuristics, vol. 12, no. 4-5, pp. 375–392, 2006.

[25] F. Heras, A. Morgado, and J. Marques-Silva, “MaxSAT-based encodings
for Group MaxSAT,” AI Communications, vol. 28, no. 2, pp. 195–214,
2015.

[26] A. Belov and J. Marques-Silva, “Generalizing redundancy in propo-
sitional logic: Foundations and hitting sets duality,” CoRR, vol.
abs/1207.1257, 2012.

[27] O. Kullmann, “On a generalization of extended resolution,” Discrete
Applied Mathematics, vol. 96-97, pp. 149–176, 1999.

[28] A. Belov, M. Järvisalo, and J. Marques-Silva, “Formula preprocessing
in MUS extraction,” in Proc. TACAS, ser. Lecture Notes in Computer
Science, vol. 7795. Springer, 2013, pp. 108–123.

[29] N. Narodytska and F. Bacchus, “Maximum satisfiability using core-
guided MaxSAT resolution,” in Proc. AAAI. AAAI Press, 2014, pp.
2717–2723.

[30] N. Eén and N. Sörensson, “An extensible SAT-solver,” in Proc. SAT,
ser. Lecture Notes in Computer Science, vol. 2919. Springer, 2003,
pp. 502–518.

[31] IBM, “CPLEX Optimizer,” 2015, http://www-
01.ibm.com/software/commerce/optimization/cplex-optimizer/.

[32] N. Manthey, “Coprocessor 2.0 - A flexible CNF simplifier,” in
Proc. SAT, ser. Lecture Notes in Computer Science, vol. 7317.
Springer, 2012, pp. 436–441.

