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Abstract. Maximum satisfiability (MaxSAT) is today a competitive approach to
tackling NP-hard optimization problems in a variety of AI and industrial domains.
A great majority of the modern state-of-the-art MaxSAT solvers are core-guided,
relying on a SAT solver to iteratively extract unsatisfiable cores of the soft clauses
in the working formula and ruling out the found cores via adding cardinality con-
straints into the working formula until a solution is found. In this work we propose
weight-aware core extraction (WCE) as a refinement to the current common ap-
proach of core-guided solvers. WCE integrates knowledge of soft clause weights
into the core extraction process, and allows for delaying the addition of cardinal-
ity constraints into the working formula. We show that WCE noticeably improves
in practice the performance of PMRES, one of the recent core-guided MaxSAT
algorithms using soft cardinality constraints, and explain how the approach can
be integrated into other core-guided algorithms.

1 Introduction

Several recent breakthroughs in algorithmic techniques for the constraint optimization
paradigm of maximum satisfiability (MaxSAT) are making MaxSAT today a compet-
itive approach to tackling NP-hard optimization problems in a variety of AI and in-
dustrial domains, from planning, debugging, and diagnosis to machine learning and
systems biology, see e.g. [8, 14, 34, 17, 13, 11, 25]

A great majority of the most successful MaxSAT solvers today are based on the
so-called core-guided MaxSAT solving paradigm, see e.g. [16, 29, 4, 31, 12, 30]. Such
solvers iteratively use Boolean satisfiability (SAT) solvers for finding unsatisfiable cores,
i.e., sets of soft clauses that together with the hard clauses are unsatisfiable, of the in-
put MaxSAT instance. After finding a new core, the core is essentially compiled into
the MaxSAT instance via adding a cardinality constraint enforcing that one of the soft
clauses in the core cannot be satisfied. An in-built property of core-guided solvers is
hence that the MaxSAT instance grows at each iteration due to compiling a new core
into the instance. This can lead to the instance becoming bloated, as many, possibly
large, cores are compiled, intuitively making the job of the SAT solver increasingly dif-
ficult. One way of improving core-guided solvers is to develop more efficient ways of
compiling the cores, decreasing the blow-up of the instance. Most recently, progress in
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core-guided solvers has been made by developing new ways of compiling the cores via
soft cardinality constraints [31, 30, 12].

In this work we propose weight-aware core extraction (WCE) as a technique that
refines the process of how cores are extracted and when they are compiled into the
working formula during core-guided MaxSAT search. WCE integrates knowledge of
soft clause weights into the core extraction process, and allows for delaying the addi-
tion of cardinality constraints into the working formula by enabling the extraction of
more cores between compilation steps, thereby also intuitively making the job of the
core extractor (SAT solver) easier. In this paper we explain in detail how a specific
implementation of clause cloning allows integrating WCE into PMRES, the first al-
gorithm making use of soft cardinality constraints [31]. We also show empirically that
WCE noticeably improves the performance of PMRES in practice on standard weighted
partial MaxSAT benchmarks from the most recent MaxSAT solver evaluation. Going
beyond PMRES, we also explain how ideas behind WCE can be integrated into other
core-guided algorithms employing soft cardinality constraints, and to what extent the
presented ideas can be used in some of the other MaxSAT approaches utilizing SAT
solvers for core extraction.

In terms of related work, ideas underlying WCE have been previously applied for
computing lower bounds for MaxSAT instances [18, 20–23]. Specifically, the lower
bounds are applied in the context of core-guided MaxSAT solving before the actual
search in [18]. Furthermore, WCE also bears some resemblance with the (weaker) ap-
proaches to obtaining bounds during branch-and-bound search for MaxSAT based on
detecting unsatisfiable cores by e.g. unit propagation [20–23].

The rest of the paper is organized as follows. After necessary background on MaxSAT
(Section 2) and a detailed description of the PMRES algorithm (Section 3), we present
our main contributions, weight-aware core extraction in the context of PMRES (Sec-
tion 4). We then present empirical results on the speed-ups obtained via WCE on PM-
RES (Section 5), and further, explain how and to what extent the presented technique
can be integrated into other SAT-based MaxSAT algorithms (Section 6).

2 Maximum Satisfiability

For background on weighted partial maximum satisfiability (MaxSAT in short), recall
that for a Boolean variable x, there are two literals, the positive x and the negative ¬x.
A clause is a disjunction (∨) of literals, and a CNF formula a conjunction (∧) of clauses.
When convenient, we treat a clause as a set of literals and a CNF formula as a set of
clauses. We assume familiarity with other logical connectives and denote by CNF(φ)
a set of clauses logically equivalent to the formula φ; we can assume without loss of
generality that the size of CNF(φ) is linear in the size of φ [33].

A MaxSAT instance consists of a set of hard clauses Fh, a set of soft clauses Fs, and
a function w : Fs → N that associates a positive integral cost to each of the soft clauses.
We extend w to a set S ⊆ Fs of soft clauses by w(S) =

∑
C∈S w(C). Further, let

wmin
S = minC∈S{w(C)}, i.e., the smallest weight among the clauses in S. Ifw(C) = 1

for all C ∈ Fs, the instance is unweighted.



A truth assignment τ is a function from Boolean variables to true (1) and false (0).
A clause C is satisfied by τ if τ(l) = 1 for a positive or τ(l) = 0 for a negative literal
l ∈ C. A CNF formula is satisfied by τ if τ satisfies all clauses in the formula. If some
τ satisfies a CNF formula, the formula is satisfiable, and otherwise unsatisfiable. An
assignment τ is a solution to a MaxSAT instance F = (Fh, Fs, w) if τ satisfies Fh. We
denote the set of soft clauses not satisfied by τ by Fτ̄ , i.e., Fτ̄ = {C ∈ Fs | τ(C) = 0}.
The cost of τ is w(Fτ̄ ). A solution τ is optimal (for F ) if w(Fτ̄ ) ≤ w(Fτ̄ ′) for every
solution τ ′ to F . We denote the cost of optimal solutions to F by COST(F ). Without
loss of generality, we will assume that a MaxSAT instance always has a solution, i.e.,
that Fh is satisfiable.

A central concept in modern SAT-based MaxSAT algorithms is that of (unsatisfi-
able) cores. For a MaxSAT instance F = (Fh, Fs, w), a subset S ⊆ Fs of soft clauses
is an unsatisfiable core of F iff Fh ∪ S is unsatisfiable. An unsatisfiable core S is mini-
mal (an MUS) of F iff Fh ∪ S′ is satisfiable for all S′ ⊂ S.

3 The PMRES Algorithm

In order to explain weight-aware core extraction, we will use the PMRES algorithm [31].
Figure 1 gives PMRES in pseudo-code. When invoked on a MaxSAT instance (Fh, Fs, w)
PMRES works by iteratively calling a SAT solver (line 4) on a working formula, ini-
tialized to Fh ∪ Fs, i.e., considering all hard and soft clauses of the input formula as
a SAT instance (line 2). If the working formula is satisfiable (line 5), PMRES returns
the satisfying assignment reported by the SAT solver, which is guaranteed to be an
optimal solution to the MaxSAT instance [31]. Otherwise the SAT solver returns an
unsatisfiable core κ of the working formula. PMRES then proceeds by removing all of
the soft clauses in the core from the working formula and cloning a subset of them;

1 PMRES(Fh, Fs, w):
2 (Fwh , F

w
s )← (Fh, Fs)

3 while true do
4 (result, κ, τ)← SATSOLVE(Fwh ∪ Fws )
5 if result=”satisfiable” then return τ ;
6 else
7 R← ∅
8 wmin

κ ← min{w(C) | C ∈ κ}
9 for Ci ∈ κ do

10 Fws .remove(Ci)

11 if w(Ci) > wmin
κ then

12 Fws .add(CL(Ci))
13 w(CL(Ci))← w(Ci)−wmin

κ

14 Fwh ← Fwh .add((Ci ∨ ri))
15 R.add(ri)
16 RELAX(wmin

κ ,R)

1 RELAX(wmin
κ ,R):

2 n← |R|
3 Fwh .add((r1 ∨ . . . ∨ rn))
4 for i=1. . . n-1 do
5 Fwh .add(CNF(di ↔ (ri+1∨di+1)))
6 Fws .add((¬ri ∨ ¬di))
7 w((¬ri ∨ ¬di))← wmin

κ

Fig. 1: The PMRES algorithm.



clause cloning is a common way of extending MaxSAT algorithms from unweighted to
weighted MaxSAT [3, 6, 30, 31, 12], and works as follows. First the minimum-weight
wmin
κ of clauses in the core κ is determined (line 8). Then each clause in core is re-

moved (line 10), and a soft clone CL(C) of each clause C ∈ κ with w(C) > wmin
κ is

introduced to the working formula and given the weight w(C)− wmin
κ (lines 11-13).

After clause cloning, PMRES extends each C ∈ κ by a fresh relaxation variable
r and adds the extended clause C ∨ r as hard to the working formula (line 14). The
intuition here is that setting r = 1 allows for the corresponding soft clause to be left
unsatisfied, while setting r = 0 forces the corresponding clause to be satisfied. Fi-
nally, PMRES relaxes the found core by adding a soft cardinality constraint over the
introduced r variables via the function RELAX(wmin

κ ,R) (line 16). The added car-
dinality constraint is encoded as hard and soft clauses using additional new variables
d1, . . . , d|κ|−1, and essentially enforces that either exactly one of the introduced re-
laxation variables is set to true, or some soft clause corresponding to (ri → ¬di) is
falsified (lines 2–7 of RELAX). In order to see this, notice first that the hard clause
(r1 ∨ . . . ∨ r|κ|) forces at least one relaxation variable to be set to true, Assume then
that two variables rk and rt for some k < t are both set to true. Then the hard clauses
of form di ↔ (ri+1 ∨ di+1) imply that dj is set to true for all j < t. Specifically
the variable dk is set to true, and the soft clause encoding (rk → ¬dk) will become
falsified.

We end this section by discussing two improvements that have been proposed for
PMRES and other similar core-guided MaxSAT algorithms; the so-called stratification
and hardening rules [26, 4, 5]. Assume that PMRES in invoked on a MaxSAT instance
F = (Fh, Fs, w). The stratification rule aims at prioritizing the extraction of cores κ
for which wmin

κ is large. Since the sum of the minimum weights of the extracted cores
is a lower bound on the optimal cost of the MaxSAT instance, the goal in extracting
cores with large minimum weights is to decrease the total number of iterations required
for termination. More precisely, PMRES extended with stratification maintains a bound
wmax, initialized by a heuristic. During solving, PMRES does not invoke the SAT solver
on Fwh ∪Fws , i.e., all of the clauses of the working formula, but rather, only on a subset
of them consisting of all hard clauses and the soft clauses with weight greater than
wmax. Whenever this subset of the working formula is satisfiable, the algorithm checks
if the SAT solver was invoked on the whole working formula, i.e., whether wmax = 1.
If that is the case, the algorithm terminates. Otherwise the value of wmax is decreased
heuristically, and the search continues. Several different strategies for updating wmax

have been proposed [4, 5]. A fairly simple one is to initialize wmax to the maximum
weight of the soft clauses, i.e., wmax = max{w(C) | C ∈ Fs} and update it by
decreasing it to the highest weight of soft clauses that is lower than the current value of
wmax.1

The hardening rule attempts to further exploit information that can be obtained
from the satisfying assignments obtained during solving in conjunction with stratifica-
tion. For some intuition, notice that all subsets of the working formula that PMRES

1 In our implementation used in the experiments of this work, we use the slightly more so-
phisticated diversity heuristic [5] which attempts to balance the number of new soft clauses
introduced and the amount that wmax is decreased.



with stratification invokes the SAT solver on, always include Fh. Hence whenever the
SAT solver returns satisfiable, the returned assignment τ is a solution to the MaxSAT
instance, and as such an upper bound on the optimal cost of the instance. The harden-
ing rule exploits this fact by noting that any solution τ2 that does not satisfy a clause
C ∈ Fws with w(C) > w(Fτ̄ ) will have w(Fτ̄2) > w(Fτ̄ ) and as such can not be an
optimal solution to F . Hence all such soft clauses have to be satisfied by any optimal
solution to F and can therefore be hardened, i.e., turned into hard clauses.

Even though the presentation here is specific to PMRES, the stratification and hard-
ening rules can be used in conjunction with several different core-guided MaxSAT al-
gorithms. This is also the case for weight-aware core extraction presented next.

4 Weight-Aware Core Extraction for PMRES

We now describe weight-aware core extraction (WCE), a generic technique designed to
improve performance of PMRES and other similar MaxSAT algorithms. WCE delays
the addition of cardinality constraints to the working formula with the aim of extracting
more valid cores (or “core mining”) from the working instance before adding more
constraints to the formula.

Clause Cloning through Assumptions (without Cloning) WCE requires clause cloning
to be implemented in a specific way through assumptions which essentially avoid ac-
tual clause cloning (copying) altogether. A similar approach to clause cloning is taken
in [1]. For more details, we first need to overview how core extraction is usually imple-
mented in SAT-based MaxSAT solving. Several modern SAT solvers allow querying for
the satisfiability of a CNF formula under a set of assumptions, represented as a partial
assignment of the variables in the formula. Whenever the formula is unsatisfiable un-
der those assumptions, the SAT solver returns some subset of the assumptions that are
required in the proof of unsatisfiability. Notice that not only are unsatisfiable formulas
unsatisfiable under all assumptions, but a satisfiable formula may also be unsatisfiable
under some assumptions. For example, consider the CNF formula F = {(x∨y), (¬x)}.
Although the formula is satisfiable, it is unsatisfiable when assuming x = 1 or y = 0.

Core-guided MaxSAT solvers make use of the assumptions interface in SAT solvers
by extending each soft clause C ∈ Fs with a fresh assumption variable A(C) and
sending the extended clause C ∨ A(C) to the SAT solver. During each SAT solver call,
all assumption variables are assumed false, thus reducing all extended clausesC∨A(C)
to C. Whenever the working formula is unsatisfiable, the SAT solver will return the
extracted core κ in terms of the subset of assumption variables corresponding to the
clauses in κ. Importantly for the PMRES algorithm, this means that each clause Ci ∈
κ is already extended with the variable A(Ci) and that variable can be reused as the
relaxation variable ri that would otherwise be introduced on lines 15-16 in the algorithm
described in Figure 1. Notice that whenever the SAT solver is invoked without assuming
the value of A(Ci) and the variable only appears in the extended clauseCi∨A(Ci), it can
be set to true by the SAT solver, thereby satisfying the extended clause and effectively
removing the clause from the formula. The same argument does not hold as soon as
other constraints involving A(Ci) are added to the formula.



With this, clause cloning through assumption variables is implemented as follows.
Assume that a clause C ∈ κ extended with the assumption variable A(C) needs to be
cloned, i.e., it is a member of some extracted core κ andw(C) > wmin

κ . A simple way of
improving on the naive description of clause cloning in Section 3 is to introduce a new
soft clause C ′ = (¬A(C)) with weight w(C ′) = w(Ci)−wmin

κ . The correctness of this
follows by noting that the extended clause (C∨A(C)) will be hard in all subsequent SAT
solver calls. Thus satisfying C ′ forces the clause C to be satisfied as well, achieving the
same effect as cloning the whole C. To further improve on this, notice that as C ′ would
be added as a soft clause, it would also be extended with an assumption variable and the
extended clause C ′ ∨ A(C ′) would be sent to the SAT solver. This creates the logical
chain ¬A(C ′) → ¬A(C) → C. The basic form of clause cloning would then assume
the variable A(C ′) to false in subsequent SAT solver calls, thus forcing C as well. To
refine this, note that the same affect is achieved by simply assuming the value of A(C) to
false instead, thus removing the need of introducing the clause C ′ at all. In more detail,
when a core κ is extracted, the minimum weight wmin

κ is computed. Then the weight
of each clause C ∈ κ is decreased by wmin

κ . In subsequent SAT calls, the assumption
variable of each clause C with weight w(C) > 0 is assumed false, essentially treating
that clause as soft. All other clauses are treated as hard. Refining clause cloning in this
way blurs the line between hard and soft clauses. When discussing PMRES with clause
cloning implemented through assumptions we say that a clause C is soft as long as the
internal SAT solver is invoked assuming A(C) = 0, i.e, as long as w(C) > 0. When
w(C) drops to 0, the extended clause (C∨A(C)) becomes hard. Notice that in order for
w(C) to become 0, the clauseC has appeared in at least one core. Hence we have added
a cardinality constraint over A(C) so not assuming the value of it does not remove the
clause C from the formula.

Except for removing the need of introducing clones to the formula, implementing
clause cloning through assumptions also results in tighter cardinality constraints, as
illustrated by the following example.

Example 1. Let F = (Fh, Fs, w) be a MaxSAT instance Fh = {(x∨y), (y∨z)}, Fs =
{C1 = (¬x), C2 = (¬y), C3 = (¬z)}, and w(C1) = 1 and w(C2) = w(C3) = 2.
Assume that we invoke the basic version of PMRES, i.e., the algorithm in Figure 1, on F
and that it first extracts the core {C1, C2}. After relaxing the core the working instance
(Fwh , F

w
s , w) consists of Fwh = Fh ∧ (C1 ∨ r1) ∧ (C2 ∨ r2) ∧ CNF(r1 + r2 = 1)h,

Fws = CL(C2) ∧ C3 ∧ CNF(r1 + r2 = 1)s with w(CL(C2)) = 1, w(C3) = 2. Here
we use CNF(r1 + r2 = 1)h and CNF(r1 + r2 = 1)s to denote the hard and soft
clauses, respectively, introduced in the RELAX subroutine. If PMRES next extracts and
relaxes the core {CL(C2), C3}, the final working formula will have the hard clauses
Fwh = Fh ∧ (C1 ∨ r1) ∧ (C2 ∨ r2) ∧ (CL(C2) ∨ r3) ∧ (C3 ∨ r4) ∧ CNF(r1 + r2 =
1)h ∧ CNF(r3 + r4 = 1)h and the soft clauses Fws = CL(C3) ∧ CNF(r1 + r2 =
1)s ∧ CNF(r3 + r4 = 1)s. This instance is satisfiable by setting r2 = r3 = 1 and
r1 = r4 = 0. In total there are 4 different ways of satisfying the added cardinality
constraints. A similar argument holds even if we use the assumption variables of soft
clauses in cores when encoding the cardinality constraints and introduce the negations
of those variables as soft clauses when performing clause cloning.



If we instead use assumptions to implement clause cloning, the final working for-
mula will have the hard clauses Fwh = Fh∧(C1∨A(C1))∧(C2∨A(C2))∧CNF(A(C1)+
A(C2) = 1)h ∧ CNF(A(C2) + A(C3) = 1)h and the soft clauses Fws = C3 ∧
CNF(A(C1) + A(C2) = 1)s ∧ CNF(A(C2) + A(C3) = 1)s with w(C1) = w(C2) = 0
and w(C3) = 1. As w(C3) > 0, the final SAT call will be made assuming A(C3) = 0.
Under the assumption, there is only a single way of satisfying the added cardinality
constraints. Even disregarding the assumptions, there are only 2 ways of satisfying the
added cardinality constraints with one of them resulting in the rest of the instance be-
coming satisfiable. �

WCE Having discussed clause cloning in conjunction with WCE, we now turn to de-
scribing WCE in detail. For some intuition, consider the following example.

Example 2. Consider again the MaxSAT instance F from Example 1 and assume that
PMRES with clause cloning implemented through assumptions first extracts {C1, C2}.
The working formula (Fwh , F

w
s , w) will then become Fwh = Fh ∧ (C1 ∨ A(C1)) ∧

CNF(A(C1) + A(C2) = 1)h and Fws = C2 ∧ C3 ∧ CNF(A(C1) + A(C2) = 1)s with
w(C2) = 1, w(C3) = 2. The only core of the instance is {C2, C3}. Notice, however,
that ignoring the added cardinality constraints at this stage and invoking the SAT solver
on the (simpler) subset of the working formula consisting of Fwh = Fh ∧ (C1 ∨ A(C1))
and Fws = C2 ∧ C3 with w(C2) = 1, w(C3) = 2 would result in the exact same core
being extracted. �

The pseudocode of PMRES extended with WCE is shown in Fig. 2. Before invoking its
SAT solver, PMRES with WCE first adds an assumption A(C) = 0 for all soft clauses
C with w(C) > 0 (line 5). Then it invokes the SAT solver on the working formula
with these assumptions. If a core κ is extracted, wmin

κ is computed and the weight of
all clauses in the core decreased by wmin

κ (lines 14 and 16). However, instead of im-
mediately calling RELAX(wmin

κ ,R), the tuple (R, wmin
κ ) is added to the set R (line

18). Then the SAT solver in invoked again with a new set of assumptions. Notice that
at each iteration, the weight of at least one soft clause C is dropped to 0. In subse-
quent SAT solver calls the value of A(C) is not assumed anymore, effectively removing
that clause from the formula until the cardinality constraints are added, which is why
the working formula will eventually become satisfiable. The algorithm then checks if
new cores have been extracted since the last time cardinality constraints were added.
If so, the corresponding cardinality constraints are added to the formula and the loop
iterates (lines 8-11). If there are no new cores, the algorithm terminates and returns the
satisfying truth assignment as an optimal MaxSAT solution (line 7).

Similarly to the stratification rule, all working formulas of PMRES extended with
WCE contain the original hard clauses Fh. As such, whenever the working formula is
satisfiable, the algorithm obtains an upper bound on the cost of the optimal solutions.
The bound might in some cases allow PMRES with WCE to terminate even before all
cardinality constraints have been added to the working formula.

Example 3. Consider the MaxSAT instance F from Examples 1 and 2. Invoke PMRES
with WCE on F and assume that the first core it extracts is again κ1 = {C1, C2}. Now
the addition of cardinality constraints is delayed and the SAT solver is invoked on Fwh =



1 PMRES+WCE(Fh, Fs, w):
2 (Fwh , F

w
s )← (Fh, Fs)

3 R← ∅
4 while true do
5 A ← {A(C) = 0 | Ci ∈ Fws , w(C) > 0}
6 (result, κ, τ)← SATSOLVE(Fwh ∪ Fws ,A)
7 if result=”satisfiable” AND |R| = 0 then return τ ;
8 else if result=”satisfiable” then
9 for (R, wmin

κ ) ∈ R do
10 RELAX(wmin

κ ,R)
11 R← ∅
12 else
13 R← ∅
14 wmin

κ ← min{w(C) | C ∈ κ}
15 for C ∈ κ do
16 w(C)← w(C)− wmin

κ

17 R← R∪ {A(C)}
18 R.add((R, wmin

κ ))

Fig. 2: PMRES+WCE, the PMRES algorithm with WCE. In the pseudocode, the assumption
variable of a soft clause C used in core extraction is given by A(C).

Fh∧(C1∨A(C1)) and Fws = C2∧C3 withw(C1) = 0, w(C2) = 1 andw(C3) = 2. As
w(C1) = 0, the variable A(C1) is not assumed to any value and the clause (C1∨A(C1))
can be satisfied by setting A(C1) = 1. Nevertheless, PMRES+WCE still extracts the
core κ2 = {C2, C3}. On the third iteration the SAT solver is invoked on Fwh = Fh ∧
(C1 ∨ A(C1)∧ (C2 ∨ A(C2)) and Fws = C3 with w(C1) = w(C2) = 0 and w(C3) = 1
assuming A(C3) = 0. This instance is satisfiable. Next the algortihm adds cardinality
constraints to form the same (satisfiable) final working instance as shown in Example 1.
Then it would invoke the SAT solver on that instance, find it satisfiable, and terminate.

However, by investigating the second to last SAT solver call we see that PMRES+WCE
might be able to terminate without adding any cardinality constraints at all. First note
that after extracting the cores κ1 and κ2 we know that COST(F ) ≥ wmin

κ1 + wmin
κ2 =

1 + 1 = 2. Now, the second to last SAT solver call is performed on the clauses
(x ∨ y), (y ∨ z), (¬x ∨ A(C1)), (¬y ∨ A(C2)), (¬z ∨ A(C3)) assuming A(C3) = 0.
The assumption propagates z = 0 which in turn propagates y = 1 and A(C2) = 1. At
this point, all clauses except for (¬x ∨ A(C1)) are already satisfied. If the internal SAT
solver now satisfies the clause by setting x = 0, the cost of the assignment it returns
will be 2, thus proving that COST(F ) ≤ 2 and allowing the algorithm to terminate early.
Although we in general can not guarantee early termination, empirically we found that
it does happen. �

The correctness of WCE is based on the correctness of PMRES. For more intuition, note
that all cores that are extractable by PMRES with WCE are a subset of the cores that
could be extracted by PMRES with clause cloning implemented through assumptions,
and that the final working instance of both algorithms is the same.



Related Work The method presented in [18] for computing MaxSAT lower bounds is
equivalent to running Algorithm 2 until the working instance becomes satisfiable for
the first time, returning the sum

∑
wmin
κ over all of the cores extracted; already this

lower bounding step is shown in [18] to improve the performance of specific MaxSAT
algorithms compared to starting search with the trivial bound of 0. Alternatively, WCE
can be seen as a more thorough integration of the bound computation and the MaxSAT
algorithm itself by performing the lower bound computation in-between each core com-
pilation step. Computation of lower bounds has also received significant interest in the
context of branch-and-bound MaxSAT solvers [21–23, 20], which rely heavily on good
lower bounds in order to prune the search tree. For example, in [21] the authors propose
a technique in which unit propagation is used to extract several cores of the working
instance in order to compute a lower bound. The main difference to WCE is that WCE
is not limited to cores detectable by unit propagation.

Integrating Stratification and Hardening We end this section by discussing how the
commonly used stratification and hardening rules can be integrated with WCE. There
are two obvious ways of integrating stratification in conjunction with WCE. The first
one is to prefer WCE to stratification: initialize the bound wmax heuristically [5] and
assume the assumption variable A(C) to false only for each of the clauses C with
w(C) ≥ wmax. Then iteratively extract cores over the subset of soft clauses under con-
sideration, delaying the addition of cardinality constraints until the instance becomes
satisfiable. At that point, add the cardinality constraints and continue. Whenever the in-
stance remains satisfiable after the addition of cardinality constraints, harden any pos-
sible clauses and decrease the bound wmax. The algorithm can terminate when no new
cores can be extracted and the SAT solver has been invoked on all soft clauses.

Another, dual way of integrating the two is to prefer stratification to WCE, i.e., to
delay the addition of cardinality constraints untilwmax has been decreased to 1, at which
point all cardinality constraints are added and the boundwmax is reinitialized. However,
the choice between preferring stratification or WCE to the other influences the applica-
bility of the hardening rule and the quality of the satisfiable assignments produced by
WCE and stratification. Preferring WCE to stratification we know that, whenever the
bound wmax needs to be lowered, all clauses C with w(C) ≥ wmax are satisfied, thus
allowing for the hardening of several soft clauses. In contrast, when preferring stratifi-
cation to WCE, sound use of the hardening rule requires considering the delayed soft
cardinality constraints, of which the SAT solver has had no information during search.
The empirical results presented next support this intuition, as preferring WCE to strat-
ification leads to performance boosts within PMRES, while preferring stratification to
WCE actually degrades performance compared to PMRES without using WCE.

5 Experiments

We investigate how WCE affects the performance of the PMRES algorithm in practice.
Since the implementation of PMRES by the original authors—coined Eva500a as it
participated in MaxSAT Evaluation 2014 [9]—is not available in open source, we re-
implemented PMRES on top of the open-source core-guided MaxSAT solver Open-



WBO [29], following the description in the paper introducing the algorithm [31] using
Glucose [10] as the underlying incremental SAT solver.

In the experiments we compare the following MaxSAT algorithms.

– PMRES: our re-implementation of the PMRES algorithm using stratification, im-
plemented using assumption variables on soft clauses, hardening, and clause cloning
implemented through assumptions.

– PMRES+WCE: PMRES extended with WCE, preferring WCE to stratification.
– PMRES+WCE (S/to/WCE): PMRES extended with WCE, preferring stratification

to WCE.
– Eva500a [31]: the closed-source implementation of PMRES that participated, and

won the industrial category of the 2014 MaxSAT Evaluation.

For reference, we also provide a comparison with MSCG15b [30], a closed-source
as the best-performing core-guided MaxSAT solver using soft cardinality constraints in
2016 MaxSAT evaluation. As we will explain later in Section 6, WCE could also be
integrated into MSCG.2 As benchmarks we used the weighted partial industrial (630)
and crafted (331) instances from the 2016 MaxSAT Evaluation [9]. The experiments
were run on 2.83-GHz Intel Xeon E5440 quad-core machines with 32-GB RAM and
Debian GNU/Linux 8 using a per-instance timeout of 3600 seconds.

An overview of the results, comparing the performance of Eva500a and the vari-
ants PMRES, PMRES+WCE, and PMRES+WCE (S/to/WCE) of our implementation,
is provided through Fig. 3, Fig. 4, and Table 1. The “cactus” plot of Figure 3 gives
the number of instances solved (x-axis) by the individual solvers under different per-
instance time limits (y-axis) over all benchmarks. More detailed results are provided
in Table 1, with the industrial and crafted benchmarks separated by domain, showing
the number of instances from each domain, and the number of solved instances and the
cumulative running time used for solving the solved instances for each solver. First,
note that our PMRES re-implementation is competitive in terms of overall performance
with Eva500a; on the industrial instances PMRES solves three more instances overall
and uses cumulatively only 55% of the running time that Eva500a uses on the respec-
tively solved instances. On the crafted instances, PMRES solves two instances less than
Eva500a but still uses noticeably less time over all solved instances.

Turning to the influence of WCE on the performance of PMRES, we observe that
PMRES+WCE (preferring WCE to stratification) has noticeably improved performance
wrt PMRES (and thus also Eva500a), solving 11 more industrial and 3 more crafted in-
stances (14 and 1 more than Eva500a). Notice that of all three solvers, PMRES+WCE
is the best performing on both industrial and crafted benchmarks. Most interestingly,
PMRES+WCE uses at the same time much less time on the solved instances; on the
industrial instances PMRES+WCE uses in total 55% of the time PMRES uses and
30% of the time Eva500a uses, even though PMRES+WCE solves more instances than
PMRES and Eva500a individually. A similar observation can be made of the crafted
instances; PMRES+WCE uses 81% of the time used by PMRES and 59% of the time
used by Eva500a, again solving more instances than either one. The scatter plot of Fig. 4
gives a per-instance running time comparison on a log-log scale of PMRES+WCE

2 Unfortunately, we do not have access to the source code of MSCG.



Table 1: Comparison of Eva500a, PMRES, and PMRES+WCE: number of solved instances (#)
and the cumulative running time used for solving the instances (Σ) for the individual solvers,
divided into the Industrial (top) and Crafted (bottom) benchmarks according to the individual
domains with the number of instances from each domain given in parentheses.

Industrial Domain (#instances) Eva500a PMRES PMRES+WCE
solved time (s) solved time(s) solved time(s)

# Σ # Σ # Σ

abstraction refinement (11) 6 3670 9 2842 10 2147
BTBNSL (60) 9 403 16 6142 19 679
correlation clustering (129) 18 17630 11 4559 19 4499
haplotyping pedigrees (100) 100 7321 100 3409 100 1374
hs-timetabling (14) 1 477 1 1858 1 2596
packup-wpms (99) 99 2981 95 969 94 191
preference planning (29) 29 1416 29 311 29 264
railway transport (11) 2 126 3 603 3 340
relational inference (9) 5 8391 8 1431 8 1360
timetabling (26) 12 1818 12 1846 12 878
upgradeability (100) 100 2996 100 54 100 59
wcsp spot5 dir (21) 14 30 14 13 14 24
wcsp spot5 log (21) 14 61 14 1975 14 17
Total Industrial (630) 409 47319 412 26012 423 14426

Crafted Domain (#instances)
auctions (40) 40 6111 39 2691 38 1759
causal discovery (35) 10 9325 6 1267 6 1357
CSG (10) 7 610 8 1056 8 1370
frb (34) 20 3310 12 4461 17 4041
min-enc (48) 32 198 36 758 36 455
miplib (12) 5 1558 5 247 5 437
ramsey (15) 1 1 3 2282 3 2073
random-net (32) 13 4001 13 1196 13 5
set-covering (45) 9 2069 10 1520 9 155
staff-scheduling (12) 1 0 2 1069 2 1406
wmaxcut (48) 1 44 3 3208 3 2960
Total Crafted (331) 139 27226 137 19756 140 16018

and PMRES, with the ticks below the y = x line representing instances on which
PMRES+WCE is faster that PMRES. The colors of the ticks distinguish between the
benchmark domains listed in Table 1.

Next, we consider the question of the relative influence of preferring stratification
or WCE within PMRES. Here we observe that PMRES+WCE (S/to/WCE)—preferring
stratification over WCE—actually harms the overall performance of PMRES notice-
ably, making it perform worse than Eva500a overall (see Fig. 3). This supports the
earlier discussed intuition that preferring WCE to stratification assures that whenever
the bound wmax needs to be lowered, all clauses C with w(C) ≥ wmax are satisfied,



thus allowing for hardening several soft clauses. In contrast, when preferring stratifi-
cation to WCE, sound use of the hardening rule requires considering the delayed soft
cardinality constraints, of which the SAT solver has had no information during search.

Finally, we consider the relative performance of PMRES+WCE and MSCG15b.
Here we note that this is not a direct comparison of the influence of WCE in the sense
that MSCG15b does not implement the PMRES algorithm of Eva500a, but rather a
different core-guided algorithm using soft cardinality constraints, OLL [2, 30]. As we
will explain later in Section 6, WCE can also be integrated into the OLL algorithm.
However, we could not implement WCE directly to MSCG as MSCG is not available
in open source. Nevertheless, a comparison of the performance of PMRES+WCE and
MSCG15b is provided in Table 2. Overall MSCG15b solves 12 more industrial in-
stances than PMRES+WCE. However, at the same time MSCG used considerably more
time per solved instance; this can be observed by inspecting the total cumulative run-
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Table 2: Comparison of MSCG15b and PMRES+WCE: percentage (%) and number (#) of solved
instances and the cumulative running time used for solving the instances (Σ) for the individual
solvers, divided into Industrial (top) and Crafted (bottom) benchmarks according to the individual
domains with the number of instances from each domain given in parentheses.

Industrial Domain (#instances) MSCG15b PMRES+WCE
solved time (s) solved time (s)

% # Σ % # Σ

abstraction refinement (11) 90.9 10 17096 90.9 10 2147
BTBNSL (60) 21.7 13 885 31.7 19 679
correlation clustering (129) 25.6 33 19780 14.7 19 4499
haplotyping pedigrees (100) 100.0 100 1343 100.0 100 1374
hs-timetabling (14) 7.1 1 167 7.1 1 2596
packup-wpms (99) 100 99 410 95.0 94 191
preference planning (29) 100 29 2021 100 29 264
railway transport (11) 27.3 3 283 27.3 3 340
relational inference (9) 44.4 4 3167 88.9 8 1360
timetabling (26) 46.2 12 764 46.2 12 878
upgradeability (100) 100.0 100 118 100.0 100 59
wcsp spot5 dir (21) 81.0 17 2776 66.7 14 24
wcsp spot5 log (21) 66.7 14 19 66.7 14 17
Total Industrial (630) 435 50333 423 14426

Crafted Domain (#instances)
auctions (40) 60.0% 24 313 95.0% 38 1759
causal discovery (35) 82.9% 29 6851 17.1% 6 1357
CSG (10) 100.0% 10 825 80.0% 8 1370
frb (34) 73.5% 25 4298 50.0% 17 4041
min-enc (48) 66.7% 32 27 75.0% 36 455
miplib (12) 41.7% 5 56 41.7% 5 437
ramsey (15) 13.3% 2 1335 20.0% 3 2073
random-net (32) 100.0% 32 288 40.6% 13 5
set-covering (45) 46.7% 21 1530 20.0% 9 155
staff-scheduling (12) 16.7% 2 1244 16.7% 2 1406
wmaxcut (48) 10.4% 5 3651 6.3% 3 2960
Total Crafted (331) 187 20417 140 16018

ning times: while PMRES+WCE uses 14416 seconds to solve 423 instances, MSCG15b
uses a noticeable 35917 seconds more to solve additional 12 instances. Looking more
closely at the results on a benchmark domain basis, we notice that the main advantage
of MSCG15b is within the correlation clustering domain, where the solver also uses
a noticeably amount of time to solve an additional 14 instances; furthermore, notice
that the correlation clustering domain is over-represented among the full benchmark
set with 129 instances. On the other hand, PMRES solves twice as many instances as
MSCG15b within the relational inference domain, using at the same time only 43%
of the cumulative running time of MSCG15b. The abstraction refinement domain pro-



vides another example where PMRES+WCE solves instances cumulatively noticeably
faster than MSCG15b: here the solvers solve the same number of instances, but the
cumulative running time of PMRES+WCE is less than 13% of that of MSCG15b (i.e.,
an 8x speed-up relative to MSCG15b). Turning to the crafted domains, we observe that
MSCG15b clearly dominates on several of them. This is an interesting observation, also
in that Eva500a never participated in the crafted MaxSAT evaluation categories.

6 WCE and Other SAT-Based MaxSAT Algorithms

In this section we discuss WCE in a more general setting and the question of to what
extent it could be applied to other recently proposed MaxSAT algorithms.

The key to integrating WCE with a core-guided MaxSAT algorithm is whether
clause cloning can be implemented through assumptions in the algorithm. As far as
we understand, the reason clause cloning through assumptions can be added to PMRES
is the fact that no clause ever appears in a core more than once. In more detail, let κ
be a core extracted by PMRES during solving and assume C ∈ κ needs to be cloned,
i.e., that w(C) > wmin

κ . Since the extended clause C ∨ A(C) is added to the working
formula as hard, that clause is not going to be extracted in any subsequent cores, but
rather, only its clone CL(C) or some of the soft clauses added in RELAX(wmin

κ ,R).
This simple observation is a key to implementing clause cloning through assumptions.

WPM1 As an example of an algorithm in which clause cloning seems to be difficult to
implement through assumptions, consider the WPM1 algorithm [24, 3]. WPM1 works
similarly to PMRES in the sense that it uses a SAT solver to extract and relax unsatisfi-
able cores of the input instance F . Given a core κ, WPM1 clones its clauses similarly to
PMRES and extends each clause Ci ∈ κ (now of weight wmin

κ ) with a fresh relaxation
variable ri. For WCE, the key difference between PMRES and WPM1 is that WPM1
leaves all extended clauses Ci∨ ri as soft in the working formula and adds a cardinality
constraint CNF(

∑
ri = 1) as hard clauses. Hence the extended clause might appear in

subsequent cores, making it difficult if not impossible to also reuse it as its own clone.

Finally, we point out MaxSAT algorithms to which WCE can be integrated.

OLL & K Two algorithms that closely resemble PMRES3 are OLL [2, 30] and K [1].
Both extract cores iteratively, harden and clone the clauses in cores, and compile them
into the formula using soft cardinality constraints. In contrast to PMRES, OLL makes
use of cardinality networks in order to dynamically modify the previously added cardi-
nality constraints while K uses parametrized constraints for bounding their size. In both
cases the clauses in the extracted cores are hardened and do not appear in subsequent
cores, and as such WCE could be incorporated into both algorithms. Indeed, at least the
K algorithm does implement clause cloning through assumptions [1]. The MSCG15b
MaxSAT solver considered in Section 5 implements OLL.

WPM3 [7] maintains a set of at-most constraints, initialized to not allow any soft
clauses to be falsified. During solving all clauses are treated as hard and the at-most

3 Originally in [31] PMRES was formalized as a special case of the so-called MAXRES [19]
rule; the specific special case is equivalent to the formalization of PMRES used here.



constraints as soft, and hence all cores are subsets of these constraints. After finding
a new core, WPM3 performs clause cloning and then merges the constraints to form
new ones that make effective use of the global core structure. In contrast to OLL and
PMRES, the cardinality constraints in the extracted cores are not hardened, but instead
removed from the instance. To the best of our understanding, the version of WPM3
presented in [7] does not use the SAT solver iteratively, but instead rebuilds it on each
iteration. Hence the idea of implementing clause cloning through assumptions is not ap-
plicable to this version of WPM3, even though it might be if the algorithm is extended
with incremental cardinality constraints in the spirit of [28]. However, the discussed
requirement of a clause in a core not appearing in any subsequent cores is satisfied by
the algorithm. Thereby delaying the modification of cardinality constraints could be
incorporated to the presented version of WPM3.

WMSU3 [27] maintains a single cardinality constraint
∑
r∈R r = λ over the set R of

relaxation variables of clauses appearing in cores extracted so far. When a new core κ is
extracted, all the assumption variables A(C) of clauses C ∈ κ are reused as relaxation
variables, i.e., added into the set R, after which a new bound λ is computed and the
solver invoked again. Here λ is a lower bound on the optimal cost of the instance. As
noted in Section 4, WCE can be viewed as an extension of the lower bounding technique
from [18], the difference being that WMSU3 extended with WCE would perform such
a core mining step in between each modification of the cardinality constraint, not only
before the cardinality constraint is added.

SAT-IP Hybrids Finally, also the SAT-IP hybrid solvers MaxHS [15] and LMHS [32],
based on the implicit hitting set approach to MaxSAT, could potentially make use of
specific ideas related to WCE. Specifically, WCE could be incorporated into the disjoint
core extraction phase—that is very important in terms of performance in practice [15]—
in this context in a straight-forward way: instead of ruling out each clause C in a core
κ from the working instance during the disjoint phase, lower the weight of all clauses
in the core by wmin

κ , and rule out only those clauses whose weight is lowered to 0.

7 Conclusions

We proposed weight-aware core extraction (WCE) as a refinement to the approach taken
by various core-guided MaxSAT solvers for compiling the cores extracted at each iter-
ation of search. WCE allows for extracting multiple cores of the same working formula
by taking into account the residual weights of the current soft clauses, thereby postpon-
ing the compilation step and allowing the SAT solver to work on a less bloated working
formula. We detailed WCE in the context of PMRES, a representative of the most recent
line of core-guided MaxSAT solvers that use soft cardinality constraints in the compi-
lation step, and showed empirically that WCE noticeably improves the performance of
PMRES on standard weighted partial MaxSAT benchmarks. We also outlined how to
integrate ideas behind WCE into other core-guided MaxSAT algorithms. The empirical
results obtained for PMRES suggests that integrating WCE into other recent MaxSAT
solvers may provide further improvements to the state of the art.
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6. Ansótegui, C., Didier, F., Gabàs, J.: Exploiting the structure of unsatisfiable cores in
MaxSAT. In: Proc. IJCAI. pp. 283–289. AAAI Press (2015)
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22. Li, C.M., Manyà, F., Planes, J.: Detecting disjoint inconsistent subformulas for computing
lower bounds for Max-SAT. In: Proc. AAAI. pp. 86–91. AAAI Press (2006)

23. Lin, H., Su, K., Li, C.M.: Within-problem learning for efficient lower bound computation in
Max-SAT solving. In: Proc. AAAI. pp. 351–356. AAAI Press (2008)

24. Manquinho, V., Marques-Silva, J., Planes, J.: Algorithms for weighted boolean optimization.
In: Proc. SAT. Lecture Notes in Computer Science, vol. 5584, pp. 495–508. Springer (2009)

25. Marques-Silva, J., Janota, M., Ignatiev, A., Morgado, A.: Efficient model based diagnosis
with maximum satisfiability. In: Proc. IJCAI. pp. 1966–1972. AAAI Press (2015)

26. Marques-Silva, J., Argelich, J., Graça, A., Lynce, I.: Boolean lexicographic optimization:
algorithms & applications. Annals of Mathematics and Artificial Intelligence 62(3-4), 317–
343 (2011)

27. Marques-Silva, J., Planes, J.: On using unsatisfiability for solving maximum satisfiability.
CoRR abs/0712.1097 (2007)

28. Martins, R., Joshi, S., Manquinho, V., Lynce, I.: Incremental cardinality constraints for
MaxSAT. In: Proc. CP. Lecture Notes in Computer Science, vol. 8656, pp. 531–548. Springer
(2014)

29. Martins, R., Manquinho, V., Lynce, I.: Open-WBO: A modular MaxSAT solver. In:
Proc. SAT. Lecture Notes in Computer Science, vol. 8561, pp. 438–445. Springer (2014)

30. Morgado, A., Dodaro, C., Marques-Silva, J.: Core-guided MaxSAT with soft cardinality con-
straints. In: Proc. CP. Lecture Notes in Computer Science, vol. 8656, pp. 564–573. Springer
(2014)

31. Narodytska, N., Bacchus, F.: Maximum satisfiability using core-guided MaxSAT resolution.
In: Proc. AAAI. pp. 2717–2723. AAAI Press (2014)

32. Saikko, P., Berg, J., Järvisalo, M.: LMHS: A SAT-IP hybrid MaxSAT solver. In: Proc. SAT.
Lecture Notes in Computer Science, vol. 9710, pp. 539–546. Springer (2016)

33. Tseitin, G.S.: On the complexity of derivation in propositional calculus. In: Siekmann, J.H.,
Wrightson, G. (eds.) Automation of Reasoning: 2: Classical Papers on Computational Logic
1967–1970, pp. 466–483. Springer (1983)

34. Zhu, C., Weissenbacher, G., Malik, S.: Post-silicon fault localisation using maximum satis-
fiability and backbones. In: Proc. FMCAD. pp. 63–66. FMCAD Inc. (2011)


