
Impact of SAT-Based Preprocessing on
Core-Guided MaxSAT Solving?

Jeremias Berg and Matti Järvisalo

Helsinki Institute for Information Technology HIIT, Department of Computer Science,
University of Helsinki, Finland

Abstract. We present a formal analysis of the impact of Boolean satisfiabil-
ity (SAT) based preprocessing techniques on core-guided solvers for the con-
straint optimization paradigm of maximum satisfiability (MaxSAT). We analyze
the behavior of two solver abstractions of the core-guided approaches. We show
that SAT-based preprocessing has no effect on the best-case number of iterations
required by the solvers. This implies that, with respect to best-case performance,
the potential benefits of applying SAT-based preprocessing in conjunction with
core-guided MaxSAT solvers are in principle solely a result of speeding up the
individual SAT solver calls made during MaxSAT search. We also show that,
in contrast to best-case performance, SAT-based preprocessing can improve the
worst-case performance of core-guided approaches to MaxSAT.

1 Introduction

Real-world applications [1–18] of maximum satisfiability (MaxSAT) [19–21], the op-
timization counterpart of the famous Boolean satisfiability problem (SAT) [22, 23], are
increasing in numbers as recent breakthroughs in MaxSAT solvers [24–32] are making
MaxSAT more and more competitive as a constraint optimization paradigm.

A great majority of state-of-the-art MaxSAT solvers for solving optimization prob-
lems from the real world are core-guided [20, 21], heavily relying on the power of
SAT solvers as very effective means of proving unsatisfiability of subsets of soft con-
straints, or unsat cores, in an iterative fashion towards an optimal solution. Thus new
breakthroughs in techniques for speeding up SAT solvers also have the potential of di-
rectly speeding up MaxSAT solvers further. One particularly fruitful line of research
on speeding up SAT solvers has been the development of effective preprocessing tech-
niques [33–35], applied most typically before search, as well as most recently also as in-
processing [34], i.e., during SAT search. Compared to SAT, preprocessing for MaxSAT
has seen some but arguably less progress so far [26, 30, 36–39]. Recently, ways of em-
ploying preprocessing techniques developed for pure SAT in the context of MaxSAT
have been explored [26, 30, 40]. However, the impact of SAT-based preprocessing for
MaxSAT solving seems to often be somewhat more modest than in the context of SAT
solving [26, 30, 40]. The exact reasons for this difference are currently unclear; specif-
ically, we are not aware of studies towards fundamental understanding on the potential
of SAT-based preprocessing in the context of MaxSAT.
? Work supported by Academy of Finland, grants 251170 COIN, 276412, 284591; and DoCS

Doctoral School in Computer Science at the University of Helsinki.

In this paper, we aim at providing further understanding on the potential of SAT-
based preprocessing techniques in speeding up modern MaxSAT solvers. More specif-
ically, we formally analyze the impact of SAT-based preprocessing techniques on the
best-case and worst-case behavior of core-guided MaxSAT solvers [41–43]. As the ba-
sis of our analysis, we focus on two abstractions of MaxSAT solvers which together
cover a number of modern core-guided MaxSAT solvers [25, 30, 42]. As the formal
metric, we focus on the impact of SAT-based preprocessing on the best-case and worst-
case number of iterations, which—although not the only possible metric—is a natural
choice of metric applied in the literature for analyzing iterative SAT-based approaches
in various problem settings [41–45] and which has also been subjected to some extent
to empirical analysis for understanding specific MaxSAT solving approaches [46].

As the main contributions, considering best-case performance of the abstract core-
guided solvers, we show that SAT-based preprocessing has no effect on the number
of iterations required by the solvers. In fact, this is true regardless of assumptions on
the type of cores (guaranteed-minimal or not) the underlying SAT solver (unsat core
extractor) provides to the MaxSAT solvers; thus our analysis also sheds light on the
impact of core minimization on the performance of the abstract core-guided solvers.
Essentially, our results imply that, in terms of best-case performance—assuming opti-
mal search heuristics—the potential benefits of applying SAT-based preprocessing in
conjunction with core-guided MaxSAT solvers are solely a result of speeding up the in-
dividual SAT solver calls made during MaxSAT search. Furthermore, contrasting the re-
sults for best-case behavior, we also show that SAT-based preprocessing does, in cases,
improve worst-case performance of core-guided MaxSAT solvers (without ever having
a negative effect on the worst-case number of iterations).

This paper is organized as follows. After preliminaries on MaxSAT and SAT-based
preprocessing for MaxSAT (Sect. 2), we detail abstractions of core-guided MaxSAT
solvers we focus on (Sect. 3). Before detailed proofs of our results (provided in Sects. 5–
6), we present a detailed overview of the main contributions (Sect. 4).

2 Preliminaries

Maximum satisfiability. For every Boolean variable x there are two literals: the pos-
itive literal x and the negative literal ¬x. A clause C is a disjunction of literals, and a
CNF formula F is a conjunction of clauses. When convenient, we treat a clause as a set
of literals and a CNF formula as a set of clauses. We denote by VAR(F) the set of vari-
ables appearing in F . A truth assignment is a function τ : VAR(F)→ {0, 1}. A clause
C is satisfied by τ if τ(l) = 1 for a positive literal or τ(l) = 0 for a negative literal
l ∈ C. A CNF formula F is satisfied by τ if τ satisfies all clauses C ∈ F . A formula F
is satisfiable if there is a truth assignment that satisfies it, otherwise it is unsatisfiable.

A (weighted partial) MaxSAT instance F = (Fh, Fs, w) consists of two CNF for-
mulas, Fh (hard clauses) and Fs (soft clauses), together with a function w : Fs → N
assigning a positive weight w(C) to each C ∈ Fs. If w(C) = 1 for all C ∈ Fs, the
instance is unweighted. An (unsatisfiable) core of a MaxSAT instance F is a subset
κ ⊆ Fs such that κ ∧ Fh is unsatisfiable. A core is minimal (a MUS) if no κs ⊂ κ is a
core of F . We denote the set of all MUSes of F by mus(F). For a subset S ⊆ Fs and

clause C ∈ S, C is necessary for S if Fh ∧ S is unsatisfiable and Fh ∧ (S \ {C}) is
satisfiable.

An assignment τ that satisfies Fh is a solution to a MaxSAT instance F . For a solu-
tion τ , let COST(F, τ) =

∑
C∈Fs

w(C) · (1− τ(C)), i.e., the sum of the weights of soft
clauses in F not satisfied by τ . A solution τ is optimal if COST(F, τ) ≤ COST(F, τ ′)
for every solution τ ′; we denote the cost of F , i.e., the value COST(F, τ) for optimal
solutions τ , by COST(F). Given a MaxSAT instance F , the MaxSAT problem asks to
find an optimal solution to F .

SAT-Based Preprocessing for MaxSAT. Preprocessing is today an integral part of SAT
solving [33, 34]. Consisting of applying a combination of satisfiability-preserving sim-
plification (or rewriting) rules on the input CNF formula F to obtain a preprocessed
CNF formula pre(F), a central aim of preprocessing is to speed up the runtime of a
SAT solver so that the combined preprocessing time and solving time on pre(F) is
shorter than the runtime of the solver on F . Several preprocessing techniques for SAT
have been proposed. In this work we will focus on bounded variable elimination, sub-
sumption elimination, self-subsuming resolution, and blocked clause elimination, as
perhaps the most common preprocessing techniques in modern SAT solving.

Resolution. Given two clauses C = C1 ∨ l and D = D1 ∨ ¬l of F , the resolution
rule states that the clause C ./l D = C1 ∨D1, called the resolvent, can be inferred by
resolving on the literal l. This is lifted to two sets Sl ⊆ F and S¬l ⊆ F of clauses that
contain the literal l and ¬l, respectively, by Sl ./l S¬l = {C ./l D | C ∈ Sl, D ∈
S¬l, and C ./l D is not a tautology}.

Bounded Variable Elimination (BVE) [33]. For a variable x ∈ VAR(F), denote by Fx
(F¬x) the clauses of F containing the literal x (¬x). If |Fx ./x F¬x| ≤ |Fx ∪ F¬x|, the
BVE rule allows converting the formula F to (F \ (Fx ∪ F¬x)) ∪ (Fx ./x F¬x).

Subsumption Elimination (SE). A clause C ∈ F subsumes another clause D ∈ F if
C ⊆ D. The SE rule allows for removing subsumed clauses from F .

Self-Subsuming Resolution (SSR). Given two clauses C,D ∈ F s.t. C = C1 ∨ l, D =
D1 ∨ ¬l for a literal l and D1 ⊆ C1, the SSR rule allows for replacing C by C1.

Blocked Clause Elimination (BCE) [47]. A clause C ∈ F is blocked if it contains a
literal l ∈ C s.t C ./l D is a tautology for all D ∈ F¬l. BCE allows removing blocked
clauses from F .

Example 1. Consider the CNF formula
F = {(x ∨ y), (¬t ∨ ¬z), (¬z ∨ y), (¬y ∨ z), (z ∨ t), (x), (y ∨ t), (z ∨ t ∨ x)}. Due to
the clause (x), SE allows for removing (x ∨ y) and (z ∨ t ∨ x). After this, using BVE
to eliminate z, results in the formula pre(F) = {(¬t ∨ ¬y), (t ∨ y), (x)}.

As shown in [26], many important SAT preprocessing techniques, including BVE,
SE, and SSR, cannot be used directly on MaxSAT instances. However, a correct lifting
on these techniques for MaxSAT is enabled by the so-called labelled CNF (LCNF)
framework [26, 48]. The LCNF framework enables correct applications of SAT-based
preprocessing techniques on a MaxSAT instance F = (Fh, Fs, w) using the procedure

1. F a
s = {(C ∨ lC) | C ∈ Fs, lC is a fresh variable}.

2. Run VE, SSR, SE, and BCE on Fh ∪ F a
s until fixpoint to obtain pre(F)h.

3. pre(F)s = {(¬lC) | ∃C′ ∈ pre(F)h, lC ∈ C′}.
4. wP ((¬lC)) = w(C) for all (¬lC) ∈ pre(F)s.
5. Return pre(F) = (pre(F)h, pre(F)s, w

P) .

Fig. 1. Applying SAT-based preprocessing to MaxSAT instance F = (Fh, Fs, w).

outlined in Figure 1. Each soft clause C ∈ Fs is augmented with a fresh label variable
lC (Step 1). Then SAT preprocessing is applied on the CNF formula Fh ∪ F as (Step 2).
To ensure correctness in terms of MaxSAT, the preprocessor needs to be restricted from
resolving on any of the label variables. The hard clauses of pre(F) are the clauses
output by the SAT preprocessor on Fh∪F as (Step 3). The soft clauses of pre(F) contain
a unit negation of each label variable that has not been eliminated by preprocessing;
the weight function wP assigns to each (¬lC) the same weight as was assigned to
C by w (Step 4). Finally, the procedure returns the preprocessed instance pre(F) =
(pre(F)h,pre(F)s, wP) (Step 5). The soft clauses of pre(F) are all unit soft clauses
(¬lC) where the variable lC was added to some soft clause C ∈ Fs of the original
instance F in Step 1. Due to BVE, the variable lC might appear in more than one hard
clause of pre(F) and there might be literals that have been eliminated entirely from the
formula during preprocessing.

Example 2. Let F = (Fh, Fs) be an unweighted MaxSAT instance with
Fh = {(x∨y), (z), (z∨ t)} and Fs = {(¬x), (¬y), (¬t)}. Augmenting the soft clauses
with the label variables l1, l2, and l3 to form F as = {(¬x∨ l1), (¬y∨ l2), (¬t∨ l3)}, and
applying SAT-based preprocessing (BVE and SE) results in the instance pre(F) with
pre(F)h = {(l1 ∨ l2), (z)} and pre(F)s = {(¬l1), (¬l2)}. Notice that preprocessing
eliminates the label l3.

Correctness of SAT-based preprocessing for MaxSAT is summarized as follows [26].

Theorem 1 ([26]). Let F be a MaxSAT instance and pre(F) the instance resulting
from preprocessing F according to the procedure in Figure 1. The following hold:
(i) COST(F) = COST(pre(F)); (ii) any optimal solution to pre(F) restricted to VAR(F)
is an optimal solution toF ; and (iii) {C1, . . . , Cn} ∈ mus(F) iff {(¬lC1

), . . . , (¬lCn
)} ∈

mus(pre(F)).

3 Core-guided MaxSAT Algorithms

In this section we detail the two abstractions of MaxSAT algorithms we analyze in
this work: CG and HS. Both are examples of so-called core-guided MaxSAT solvers,
one of the most successful current MaxSAT solving approaches with several variants,
e.g. [49–51, 42, 28, 52, 31]. CG (Figure 2 left) is the same abstraction as studied in [53].
CG works by iteratively calling a SAT solver to extract unsatisfiable cores and ruling
out each of the found cores by exploiting cardinality constraints. HS (Figure 2 right)

CG:
F 1
w ← Fh ∪ Fs

for i=1. . . do
(result, κ, τ)← SATSOLVE(F i

w)
if result=”satisfiable” then

return τ // optimal solution
else

// SAT solver returned unsat core
F i
w = (F i

w \ κ)
F i+1
w ← PROCESS(F i

w, κ)
end

end

HS:
K ← ∅ // set of found unsat cores of F
Fw ← (Fh ∪ Fs)
while true do

H ← MINCOSTHITTINGSET(K)
Fw ← Fh ∪ (Fs \H)
(result, κ, τ)← SATSOLVE(Fw)
if result=”satisfiable” then

return τ // optimal solution
else

// SAT solver returned unsat core
K ← K ∪ {κ}

end
end

Fig. 2. Abstractions of MaxSAT solvers: CG (left) and HS (right), given a MaxSAT instance
F = (Fh, Fs, w) as input.

follows the implicit hitting set approach to MaxSAT [54, 55], iteratively using a SAT
solver to extract unsatisfiable cores, and an exact minimum-cost hitting set algorithm to
compute hitting sets over the found cores.

In more detail, at each iteration i, CG checks the satisfiability of a working formula
F iw, which initially contains all clauses in the input formula, using a SAT solver. If F iw is
satisfiable, CG returns the satisfying assignment τ returned by the SAT solver restricted
onto the variables of F . Otherwise, the SAT solver returns a core κi of F iw. Finally,
CG forms the next working formula F i+1

w by processing the core κi. The exact method
in which CG processes κi is left abstract. Following [53], we consider algorithms that
extend soft clauses with blocking variables and impose hard linear (in)equalities over
the blocking variables. More precisely, CG is allowed to modify the soft clausesC ∈ F is
by two operations: Relax(C) and Clone(C,w).

– Relax(C) allows replacing C by C ∨ b where b is a new blocking variable not
appearing anywhere else in the formula.

– Clone(C,w) allows adding a soft duplicate C ′ of C to the formula and relaxing
C ′ by calling Relax(C ′). The (relaxed) clone C ′ is assigned weight w, and w is
subtracted from the weight of C (C is discarded once it has weight 0).

In addition to these operations, CG is also allowed to add hard linear (in)equalities
(cardinality, or more precisely, pseudo-Boolean, constraints) over the blocking vari-
ables. Given a cardinality constraint

∑
wi · xi ◦K over variables xi, constants wi, and

◦ ∈ {=, <,≤}, we denote by CNF(
∑
wi · xi ◦ K) a CNF encoding of such a con-

straint. Following most core-guided MaxSAT algorithm implementations, we place two
important restrictions on how CG can process the cores it encounters. First, the cardi-
nality constraints are not allowed to mention any of the variables in the initial formula
F . Second, if the algorithm extracts n cores during solving an instance F , and wim is
the smallest weight over all clauses in the ith core extracted, the optimum cost of F is
COST(F) =

∑n
i=1 w

i
m. A concrete example of an algorithm fitting the CG model is the

WPM1 algorithm [50], concurrently proposed as WMSU1 [51], as an extension of the
classical Fu-Malik algorithm [49] to weighted MaxSAT. Given a core κi, WPM1 first
computes wim. Then it calls Clone(Ci, wim) for each Ci ∈ κi and adds an exactly-one
constraint over the blocking variables added during the cloning operation.

HS is a hybrid algorithm, instantiated in [25, 55], that uses a SAT solver for core ex-
traction from a working formula Fw, initially all clauses of the working formula. Given
a collection K of extracted cores, HS uses an exact algorithm (an integer programming
solver in practice) to find a minimum-cost hitting set hs over K. The working formula
is then updated to contain all clauses of F except for the soft clauses in hs, and the SAT
solver invoked again. If the working formula is satisfiable, the satisfying assignment
obtained is an optimal solution to F . Otherwise another core is obtained and the search
continues with hitting set computation.

4 Overview of Results

In this section we give an overview of the main contributions of this paper. The algorithm-
dependent formal proofs are provided after this overview in Sections 5–6.

We start by first defining the metric with respect to which we perform the formal
analysis. The definition, intuitively matching with the number of iterations made by the
abstract MaxSAT solvers considered, relies on the concept of core traces. Informally,
a core trace T is a finite sequence of MaxSAT cores matching a possible execution of
a core-guided MaxSAT solver. More formally, given a MaxSAT instance F and A ∈
{CG,HS}, a sequence (κ1, . . . , κn) of cores is an A core trace on F if there exists an
execution of A on F such that (i) the core extracted by A at iteration i is κi; and (ii) A
terminates after having encountered all cores in the sequence (i.e., the (n + 1)th SAT
solver call is satisfiable). For a core trace T , we denote by |T | the number of cores in
T , i.e., the length of T . Whenever appropriate, we refer to A core traces on F simply
as A traces on F .

As the metric under analysis, we consider both the minimum and maximum length
over all possibleA traces for different choices ofA. More specifically, forA ∈ {CG,HS},
we analyze the relative minimum and maximum lengths of core traces for the following
variants of A.

– Apre: A applied after SAT-based preprocessing (recall Fig. 1).
– Amus: A using a SAT solver that is guaranteed to return a MUS when invoked on

an unsatisfiable formula (notice that an Amus trace contains only MUSes).
– Amus

pre : Amus applied after SAT-based preprocessing.

For a MaxSAT instance F , we denote by minlen(A, F) and maxlen(A, F) the
minimum and maximum lengthA traces on F , respectively, or in other words, the best-
case and worst-case number of iterations required by A for solving F .

Results. We provide a full characterization of the effect of preprocessing on the maxi-
mum and minimum length of core traces on F . The results on the best-case performance
(minimum lengths of core traces) are summarized in Figure 3 for A ∈ {CG,HS}. In
the figure, an edge X → Y indicates that, for any MaxSAT instance F , the shortest

X core trace on F is at most as long as the shortest Y core trace on F . Analogously,
our results for the worst-case performance (maximum lengths of core traces) are sum-
marized in Figure 4. Here the edge X → Y indicates that, for any MaxSAT instance
F , the longest X core trace on F is at most as long as the longest Y core trace on F ;
X 9 Y indicates that X → Y does not hold. In words, we will provide in the follow-
ing sections detailed proofs for the fact that SAT-based preprocessing cannot lower the
minimum number of iterations required by CG or HS. For some intuition, we will show
that for A ∈ {CG,HS}, one of the shortest A core traces on any MaxSAT instance
F is also a Amus trace, and that preprocessing cannot alter the MUS structure nor the
Amus traces on F . In contrast, we will also show that preprocessing can improve the
worst-case performance of both of the algorithms. Intuitively, this is due to the fact that
preprocessing can remove soft clauses that are not members of any MUSes of F and
hence do not contribute to the unsatisfiability of F , but still might force either algorithm
to iterate unnecessarily many times.

A

Amus

Apre

Amus
pre

Observation 1
Proposition 2,

Proposition 6
Observation 2,

Proposition 5

Observation 2,

Proposition 5

Corollary 2,

Corollary 5

Corollary 2,

Corollary 5

Observation 1
Proposition 2,

Proposition 6

Fig. 3. Best-case performance in the number of iterations of A ∈ {CG,HS}. Here X → Y iff
minlen(X,F) ≤ minlen(Y, F) for all instances F .

A

Amus

Apre

Amus
pre

Observation 1
Proposition 3,

Proposition 9

Observation 2

Proposition 5

Observation 2

Proposition 5

Observation 3,

Proposition 7

Proposition 3,

Proposition 8

Observation 1
Proposition 4,

Proposition 9

Fig. 4. Worst-case performance in the number of iterations of A ∈ {CG,HS}. Here X → Y iff
maxlen(X,F) ≤ maxlen(Y, F) for all F , and X 9 Y indicates that X → Y does not hold.

We proceed now throughout Sects. 5–6 by providing formal proofs for all of the
results summarized in Figures 3 and 4. Before the more involved proofs, we start with
an algorithm-independent observation and an auxiliary result that makes the remaining
proofs simpler by allowing us to assume MaxSAT instances to have a specific form
without loss of generality.

Observation 1 For A ∈ {CG,HS} and any MaxSAT instance F , any Amus trace on F
is also an A trace on F . Hence maxlen(Amus, F) ≤ maxlen(A, F) and
minlen(Amus, F) ≥ minlen(A, F).

Finally, in the remaining proofs, we will use the fact that Theorem 1 guarantees
that SAT-based preprocessing does not affect the set of MUSes of F in terms of of the
mapping (¬lC) → C between the soft clauses of pre(F) and F . In order to avoid ex-
plicitly referring to this mapping in every proof, we will employ a technical observation
from [40]. More specifically, we will assume for the remaining part of this paper that
the soft clauses C ∈ Fs of each MaxSAT instance F have already been augmented with
label variables lC to form the hard clause C ∨ lC and the soft clause (¬lC). In other
words, we will assume that all soft clauses of F are unit negative literals (¬lC) with the
variable lC not appearing negatively in any other clause and only appearing positively
among the hard clauses. Under this assumption, the literals appearing in the soft clauses
of F can be reused as label variables while preprocessing [40], thus removing the need
of adding any new variables. Hence pre(F)s ⊆ Fs, and Theorem 1 can be simplified.

Corollary 1 (of Theorem 1) Let F be a MaxSAT instance and pre(F) the instance
resulting after preprocessing F . Then mus(F) = mus(pre(F)).

Most importantly, our assumption on the form of MaxSAT instances does not affect
core traces. A proof for this auxiliary result is provided in Appendix A.

Proposition 1. LetF = (Fh, Fs, w) be a MaxSAT instance, andFP = (Fh∪F as , FPs , wP)
the MaxSAT instance with F as = {C ∨ lC | C ∈ Fs, lC is a fresh variable},
FPs = {(¬lC) | C ∈ Fs}, and wP ((¬lC)) = w(C). The following observations hold.

1. COST(F) = COST(FP), and the optimal solutions of F are the same as the optimal
solutions of FP restricted to VAR(F).

2. ForA ∈ {HS,CG}, there is a one-to-one mapping between theA core traces on F
and FP of equal length.

5 Impact of Preprocessing on HS

We continue with formal proofs of our main results for HS. An essential intuition for
these proofs is that HS only extracts cores of the original instance. In other words, an
HS core trace on any F only contains cores of the original instance F .

We first analyze best-case performance. The first observation shows that prepro-
cessing does not affect the lengths of HS MUS traces in a significant way.

Observation 2 For any MaxSAT instance F , minlen(HSmus, F) = minlen(HSmus
pre , F).

Proof. (Sketch) By Corollary 1 we obtain κ ∈ mus(F) iff κ ∈ mus(pre(F)). The fact
that an HSmus trace on F only contains MUSes of F implies that T is an HSmus trace
on F iff it is an HSmus

pre trace on F . ut

Next we show that executions of HSmus are always shortest executions of HS.

Proposition 2. For any MaxSAT instance F , minlen(HS, F) ≥ minlen(HSmus, F) and
minlen(HSpre, F) ≥ minlen(HSmus

pre , F).

Proof. We will show that minlen(HS, F) ≥ minlen(HSmus, F) for any F , and thus
minlen(HSpre, F) ≥ minlen(HSmus

pre , F) as well. Let T = (κ1, . . . , κn) be an arbitrary
HS core trace on F . Let hs∗ be a minimum-cost hitting set over {κ1, . . . , κn} for which
F \ hs∗ is satisfiable. The statement follows by constructing an HSmus trace Tm on
F s.t. |Tm| ≤ |T |. As each κi ∈ T is a core of F , all contain at least one MUS
m ⊆ κi. Consider the setM of at most n MUSes of F constructed as follows. (1) Let
M1 = {m1}, where m1 is any MUS contained in κ1; (2) letMi = Mi−1 ∪ {mi},
where mi ⊆ κi is a MUS such that mi /∈Mi−1 if any exist, else letMi =Mi−1. We
obtainMn = M of size |M| = k ≤ n such that each m ∈ M is a subset of some
κi ∈ T .

We show thatM can be ordered to form an HSmus trace on F of length at most k,
since if a minimum-cost hitting set hs over any proper subsetMs ⊂ M hits all m ∈
M, then hs∗ is also a minimum-cost hitting set overMs, and HSmus can terminate. As
F \ hs∗ is satisfiable, hs∗ is also a hitting set overM and overMs. Furthermore, as
each m ∈ M is a subset of some κi ∈ T and each κi ∈ T contains a MUS inM, hs∗

is a minimum-cost hitting set ofM. Finally, as hs is a hitting set overM the cost of hs
is not less than the cost of hs∗. Hence hs∗ is a minimum-cost hitting set ofMs, so the
hitting set computation could have returned hs∗, thus allowing HSmus to terminate. ut

A simple corollary is that shortest executions of HS and HSpre are of equal length.

Corollary 2 For any MaxSAT instance F , minlen(HS, F) = minlen(HSpre, F).

Proof. Observation 1 and Proposition 2 establish minlen(HS, F) = minlen(HSmus, F)
and minlen(HSpre, F) = minlen(HSmus

pre , F). Together with Observation 2 this implies
minlen(HS, F) = minlen(HSmus, F) = minlen(HSmus

pre , F) = minlen(HSpre, F). ut

We move on to the worst-case results. Corollary 1 can be used to show that valid
executions of HSpre are also valid executions of HS on any MaxSAT instance.

Observation 3 For any MaxSAT instance F , maxlen(HSpre, F) ≤ maxlen(HS, F).

Proof. As pre(F)s ⊆ Fs and any MUS of pre(F) is a MUS of F , any core of pre(F)
is a core of F . ut

Finally for this section, we prove the three X 9 Y edges in Figure 4 for HS. For this,
we need as a witness a family of MaxSAT instances F (n) and a X core trace T on
F (n) s.t. |T | > maxlen(Y, F (n)).

Proposition 3. There is a family of MaxSAT instances F (n) withO(n) soft clauses s.t.
maxlen(HS, F (n)) ≥ n and maxlen(HSmus, F (n)) = maxlen(HSpre, F (n)) = 1.

Proof. Fix n and let F (n)h = {(x ∨ y)} ∪ {(x ∨ y ∨ zi) | i = 1, . . . , n} and F (n)s =
{(¬x), (¬y)}∪{(¬zi) | i = 1, . . . , n} with w((¬x)) = w((¬y)) = n and w((¬zi)) =
1 for all i. Now COST(F (n)) = n and mus(F (n)) = {{(¬x), (¬y)}}, explaining why
maxlen(HSmus, F (n)) = 1. A linear-length HS core trace on F (n) is (κ1, . . . , κn),
where κi = {(¬x), (¬y), (¬zi)}. HS cannot terminate before extracting all n cores. To
see this, consider an earlier iteration i < n. The weight of the hitting set {(¬zj) | j =
1, . . . , i} over Ki = {κ1, . . . , κi} is i < n = w((¬x)) = w((¬y)) and as such any
minimum-cost hitting set over Ki can not contain (¬x) or (¬y), preventing HS from
terminating. Hence maxlen(HS, F (n)) ≥ n.

However, due to the clause (x∨y), SE allows the removal of the clause (x∨y∨zi) for
all i. Hence pre(F (n)) has pre(F (n))h = {(x∨y)} and pre(F (n))s = {(¬x), (¬y)}.
The only core of pre(F (n)) is {(¬x), (¬y)}, and thus maxlen(HSpre, F (n)) = 1. ut
Proposition 4. For any n, there is a family of MaxSAT instances F (n) with O(n) soft
clauses s.t. maxlen(HSpre, F (n)) ≥ n and maxlen(HSmus

pre , F) = 1.

Proof. Fix n and let

F (n)h = {(x1,2 ∨ x1,3 ∨ ¬x2,3), (E ∨ x2,3)} ∪ (1)
n+3⋃
i=4

{(x1,2 ∨ x2,i ∨ ¬x1,i), (x1,i ∨ x1,3 ∨ ¬x3,i), (x3,i ∨ x2,i ∨ ¬x2,3)} ∪ (2)

{(xT,x ∨ xx,y ∨ ¬xT,y), (xT,x ∨ xT,y ∨ ¬xx,y) | 1 ≤ x, y ≤ n+ 3} (3)

andF (n)s = {(¬x1,2), (¬x1,3), (¬E)}∪{(¬x2,i) | i = 4, . . . , n+3}withw((¬x1,2)) =
w((¬x1,3)) = w((¬E)) = n and w((¬x2,i)) = 1 for all i. The hard clauses on
row 3 are included in order to prevent preprocessing from simplifying F (n) in any
way. Intuitively, F (n) encodes hard transitivity constraints over an undirected graph
with each node having degree at least 4. Hence pre(F (n)) = F (n) at it suffices to
show maxlen(HS, F (n)) ≥ n and maxlen(HSmus, F) = 1. Both arguments are sim-
ilar to Proposition 3. As mus(F (n)) = {{(¬x1,2), (¬x1,3), (¬E)}}, it follows that
maxlen(HSmus, F) = 1. A linear-length HS core trace on F (n) is (κ1, . . . , κn), where
κi = {(¬x1,2), (¬x1,3), (¬E), (¬x2,i+3)}. ut

6 Impact of Preprocessing on CG

We start the analysis for CG by linking CG core traces with optimum cost.

Observation 4 Let T = (κ1, . . . , κn) be a CG or CGmus core trace on a MaxSAT
instance F , and wi = min{w(Ci) | Ci ∈ κi}. The cost of F is COST(F) =

∑n
i=1 w

i.

An important corollary of Observation 4 is that no proper subsequence of a CG or
CGmus core trace on F can in itself be a CG or CGmus trace on F .

The proofs on CG, in contrast to HS, need to consider the fact that the ith core κi in
a CG core trace on F is not a core of F , but rather, of the working formula F i instead.
Following this, a relationship between the cores of F i and the cores of F was derived
in [53]. After necessary definitions and restatement of the result of [53], we will prove
an analogous result regarding the relationship between the MUSes of F i and F , which
proves useful for obtaining our main results for CG.

6.1 Cores and MUSes of Working Formulas of CG

We follow here definitions from [53]. Let F be a MaxSAT instance and F i the working
formula of CG on iteration i when invoked on F . Let cardi be the set of all cardinality
constraints added to F by CG during iterations 1, . . . , i. Thus the hard clauses of F i are
F ih = Fh ∪ cardi. We denote by soln(cardi) the set of truth assignments satisfying
cardi and not assigning any of the variables in F . Given any τ : VAR(F)→ {0, 1} and
α ∈ soln(cardi), (τ :α) is the truth assignment over the variables of F i that assigns
all variables of F according to τ and the rest according to α; (τ :α) is well-defined
as the auxiliary cardinality constraints are not allowed to mention variables in F . For
any β ∈ soln(cardi) and Si ⊆ F is , the reduction of Si wrt β, Si|β is obtained by
(1) removing from Si all clauses satisfied by β; (2) removing from each remaining
clause Ci ∈ Si all blocking variables, i.e., all literals falsified by β; and (3) setting the
weights of each Ci ∈ Si back to their original weights in F (removing duplicates).
The restriction R(Ci) ∈ Fs of a soft clause Ci ∈ F is is obtained by (1) removing all
added blocking variables from Ci; (2) removing all clones of Ci from the instance; and
(3) setting the weight of Ci back to its original weight in F . Restriction is lifted to a set
Si ⊆ F is by R(Si) = {R(Ci) | Ci ∈ Si}. Notice that Si|β ⊆ R(Si) ⊆ Fs. With these
definitions we can now restate a central result from [53].

Theorem 2 (Adapted from [53]).
A set κi ⊆ F is is a core of F i iff κi|β is a core of F for all β ∈ soln(cardi).

We will now prove an analogous characterization of the MUSes of F i.

Theorem 3. A set M i ⊆ F is is a MUS of F i iff there is a collection Υ ⊆ mus(F) s.t.

1. R(M i) =
⋃
M∈Υ M ;

2. for each M ∈ Υ , there is an α ∈ soln(cardi) s.t. M ⊆ M i|α and M ′ 6⊆ M i|α
for all other M ′ ∈ Υ ; and

3. for each α ∈ soln(cardi), there is an M ∈ Υ s.t. M ⊆M i|α.

Note that condition 3 is equivalent to the requirement of Theorem 2 for the setM i being
a core of F i, since M i|α ⊆ R(M i) and M i|α should be unsatisfiable for all α.

Before proving Theorem 3, consider the following example for more intuition.

Example 3. Consider the unweighted MaxSAT instance F = (Fh, Fs) with
Fh = {(x1∨x2∨x3), (x3∨x4∨x5), (x5∨x6∨x7), (x8)} and Fs = ∪8i=1{(¬xi)}. In-
voke WPM1 [50] onF and assume that it first processes the core {(¬x3), (¬x4), (¬x5)}.
Afterwards the working formula F 2 is F 2

h = Fh ∪ {CNF(r1 + r2 + r3 = 1)} and
F 2
s = {(¬x1), (¬x2), (¬x3 ∨ r1), (¬x4 ∨ r2), (¬x5 ∨ r3), (¬x6), (¬x7)(¬x8)}. Now

card2 = {CNF(r1 + r2 + r3 = 1)} and the set soln(card2) contains three assign-
ments αi, i = 1, . . . , 3, assigning ri to 1 and the others to 0. By Theorem 2, the set
κ2 = {(¬x1), (¬x2), (¬x3 ∨ r1), (¬x5 ∨ r3), (¬x6), (¬x7)} is a core of F 2 as each
κ2|αi is a core of F . For example, κ2|α1 = {(¬x1), (¬x2), (¬x5), (¬x6), (¬x7)}. In
order to use Theorem 3 to show that κ2 is also a MUS of F 2, note that R(κ2) =
{(¬x1), (¬x2), (¬x3), (¬x5), (¬x6), (¬x7)} = {(¬x1), (¬x2), (¬x3)}∪{(¬x5), (¬x6), (¬x7)},
where {(¬x1), (¬x2), (¬x3)} and {(¬x5), (¬x6), (¬x7)} are MUSes of F . Condi-
tion 2 of Theorem 3 follows since the only MUS in κ2|α3 is {(¬x1), (¬x2), (¬x3)}
and the only MUS in κ2|α1 is {(¬x5), (¬x6), (¬x7)}.

Next we prove Theorem 3. We begin by some lemmas. Assume for each of them
that CG is invoked on an instance F and that F i is the working formula on iteration i.

Lemma 1. Let M i be a MUS of F i and Ci ∈ M i. There is an α ∈ soln(cardi) s.t.
R(Ci) is necessary for M i|α.

Proof. By Theorem 2, M i|α′ is a core of F for all α′ ∈ soln(cardi). Hence it suffices
to show that M i|α \ R(Ci) is not a core for some α. Consider the assignment (τ :α)
satisfying F ih∧(M i \{Ci}), guaranteed to exist asM i is a MUS of F i. Now τ satisfies
Fh ∧ (M i \ {Ci})|α = Fh ∧ (M i|α \ R(Ci)) as required. ut

Corollary 3 For any MUS M i of F i, R(M i) ⊆
⋃

mus(F).

Corollary 4 For any MUSM i ofF i, there is an irreducible Υ ⊆ mus(F) s.t. R(M i) =⋃
M∈Υ M.

Proof. Take Υ as the smallest collection of MUSes ofF for which R(M i) ⊆
⋃
M∈Υ M ;

by Corollary 3 such a collection exists. We claim that
⋃
M∈Υ M ⊆ R(M i), from which

irreducibility follows directly by minimality of Υ . Fix an arbitrary Ce ∈ M in some
M ∈ Υ . By minimality of Υ , there is a clause Ci ∈ M i for which the only MUS of
Υ containing R(Ci) is M . By Lemma 1, there exists a β for which R(Ci) is neces-
sary for M i|β . As M i|β ⊆ R(M i) ⊆

⋃
M∈Υ M and the only MUS in Υ containing

R(Ci) is M , we have Ce ∈ M ⊆ M i|β ⊆ R(M i), establishing Ce ∈ R(M i) and⋃
M∈Υ M ⊆ R(M i). ut

We are now ready to prove Theorem 3.

Proof (of Theorem 3). A collection Υ ⊆ mus(F) satisfying condition 1 exists by
Corollary 4. For condition 2, we use the fact that the set Υ is irreducible. Let M ∈ Υ
be arbitrary. Similarly to the proof of Corollary 4, we can find a Ci ∈ M i ∈ Υ and
α ∈ soln(cardi) s.t R(Ci) /∈ M ′ for any other M ′ ∈ Υ and R(Ci) is necessary for
M i|α, implying that the only MUS inM i|α isM . Finally, condition 3 follows fromM i

being a core of F i and Theorem 2.
What remains is to show that subset M i ⊆ F is satisfying conditions 1-3 is a MUS

of F i. By condition 3 and Theorem 2, M i is a core of F i. Hence we only need to
show that it is minimally unsatisfiable, i.e., F ih ∧ (M i \ {Ci}) is satisfiable for all
Ci ∈M i. Fix Ci ∈M i and let Υ be the collection of MUSes of F for which R(M i) =⋃
M∈Υ M. Consider any MUS MC ∈ Υ s.t. R(Ci) ∈ MC . By condition 2, there is an

α ∈ soln(cardi) for which the only MUS (of F) in M i|α ⊆ R(M i) is MC . For such
α, Fh ∧M i|α \ {R(Ci)} is satisfied by some τ . Hence (τ :α) satisfies Fh ∧ cardi ∧
(M i \ {Ci}) = F ih ∧ (M i \ {Ci}). ut

Finally, we note that each condition in Theorem 3 is necessary.

Example 4. Consider again the MaxSAT instance F from Example 3. The set
{(¬x1), (¬x2), (¬x3∨r1)} is an example of a non-MUS of F 1 satisfying conditions 1-2
and the set {(¬x1), (¬x2), (¬x3∨r1), (¬x5∨r3), (¬x6), (¬x7), (¬x8)} is an example
of a non-MUS of F 1 satisfying conditions 1 and 3.

6.2 Results on Core Trace Lengths

We proceed with proofs on the number of iterations for CG. With respect to best-case,
preprocessing does not affect the lengths of CGmus traces significantly.

Proposition 5. For any MaxSAT instanceF , minlen(CGmus, F) = minlen(CGmus
pre , F).

Proof. We show that a Tm = (m1, . . . ,mn) is a CGmus trace on F iff it is a CGmus
pre

trace on F . We prove the left-to-right direction, the other is similar. We will show that
there is an execution of CGmus

pre on F for which the ith MUS extracted is mi and which
terminates only after extracting all MUSes of Tm. The termination follows from no
proper subset of a CGmus trace being a core trace in itself.

We show that each mi is a MUS of pre(F)i by induction. By Corollary 1, m1

is a MUS of pre(F). Assume that CGmus has extracted and processed the MUSes
(m1, . . . ,mi−1) from pre(F) and consider the ith iteration. As mi is a MUS of F i, by
Theorem 3 there is an Υ ⊆ mus(F) s.t. R(mi) = ∪m∈Υm. For mi ∈ mus(pre(F)i),
we show that Υ satisfies the conditions of Theorem 3 in pre(F) as well. By Corollary 1,
each m ∈ Υ is a MUS of pre(F). For the other two conditions, note that by induction,
the set of cardinality constraints cardip added to pre(F) after processing the MUSes
m1, . . . ,mi−1 is the same as the set cardi added to F after processing the same se-
quence of MUSes. Hence α ∈ soln(cardip) iff α ∈ soln(cardi), which implies the
two other conditions of Theorem 3. ut

Next we show that some shortest execution of CG is also an execution of CGmus.

Proposition 6. For any MaxSAT instance F , minlen(CGmus, F) ≤ minlen(CG, F)
and minlen(CGmus

pre , F) ≤ minlen(CGpre, F).

Proof. (Sketch) We prove minlen(CGmus, F) ≤ minlen(CG, F); the same proof works
for minlen(CGmus

pre , F) ≤ minlen(CGpre, F) as well. Let T = (κ1, . . . , κn) be a CG
trace on F . We construct a CGmus trace Tm = (m1, . . . ,mk) on F of at most the same
length recursively. For intuition, on each iteration i CGmus processes a subset of the
clauses CG would have processed on the ith iteration of the execution corresponding
to T . Hence, if cardim and cardi are the set of cardinality constraints added to F by
the ith iteration on the execution corresponding to Tm and T , respectively, then any
α ∈ soln(cardim) can be extended to a solution to cardi by assigning the remaining
variables to 0.

Let m1 be an MUS of F contained in κ1. Assume that CGmus has extracted the
MUSes mj for j = 1, . . . , i − 1 s.t each mj ⊆ κj . Consider the ith iteration and
the current working formula F im. As κi is a core of F i, the ith working formula on
the execution corresponding to T , by Theorem 2 κi|β is a core of F for all β ∈
soln(cardi). Hence κi|β is also a core of F for all β ∈ cardim. Applying Theo-
rem 2 gives that κi is a core of F im. Hence it also contains a MUS mi of F im. For
termination of CGmus, note that minCi∈κi{w(Ci)} ≤ minCi∈mi{w(Ci)} for every i.
Since

∑n
i=1 minCi∈κi{w(Ci)} = COST(F), termination of CGmus occurs at the latest

after n iterations on the execution corresponding Tm. ut

Finally, we show that the shortest executions of CG and CGpre are of the same length.

Corollary 5 For any MaxSAT instance F , minlen(CG, F) = minlen(CGpre, F).

Proof. Proposition 6 and Observation 1 imply minlen(CG, F) = minlen(CGmus, F)
and minlen(CGmus

pre , F) = minlen(CGpre, F). Together with Proposition 5 we obtain
minlen(CG, F) = minlen(CGmus, F) = minlen(CGmus

pre , F) = minlen(CGpre, F).
ut

We move on to worst-case results for CG. We begin by showing that valid executions
of CGpre are also valid executions of CG.

Proposition 7. For any MaxSAT instance F , maxlen(CG, F) ≥ maxlen(CGpre, F).

Proof. We show that a CGpre trace T = (κ1, . . . , κn) on F is also a CG trace on F . The
termination of CG only after n iterations follows from the cost-preserving properties
of preprocessing and Observation 4. We show that each κi is a valid core of F i by
induction. The case i = 1 follows from pre(F)s ⊆ Fs and Corollary 1. Assume next
that all κj for j < i have been cores of F j and consider κi. By Theorem 2, κi|β is a core
of pre(F) for all β ∈ soln(cardip), where cardip is the set of cardinality constraints
added to pre(F) after processing cores κ1, . . . , κi−1. By induction, this set is exactly
the same as set of cardinality constraints cardi added to F after processing the same
cores. As any core of pre(F) is a core of F , it follows that κi|β is a core of F for all
β ∈ soln(cardi). We conclude that κi is a core of F i. ut

Finally, two families of instances witness the 9 edges in Figure 4 for CG.

Proposition 8. There is a family of MaxSAT instances F (n) withO(n) soft clauses s.t.
maxlen(CG, F (n)) ≥ n and maxlen(CGmus, F (n)) = maxlen(CGpre, F (n)) = 1.

Proof. (Sketch) Consider again the instance F (n) constructed in the proof of Proposi-
tion 3. We showed that maxlen(HSmus, F) = maxlen(HSpre, F) = 1. This also holds
for CG. A linear-length CG core trace (κ1, . . . , κn), on F can be constructed iteratively
as follows: κ1 = {(¬x), (¬y), (¬z1)} and κi = {(¬x)ci−1, (¬y)ci−1, (¬zi)} where
(¬x)ci−1 and (¬y)ci−1 are duplicates of the original clauses added on iteration i−1. The
existence of such duplicates for all n iterations follows from w((¬x)) = w((¬y)) = n
and w((¬zi)) = 1. The termination of CG after the nth iteration follows from Obser-
vation 4 as the smallest weight among the clauses in each κi is 1. ut

Proposition 9. There is a family of MaxSAT instances F (n) withO(n) soft clauses s.t.
maxlen(CGpre, F (n)) ≥ n and maxlen(CGmus

pre , F) = 1.

Proof. (Sketch) F (n) is the same as for HS and the proof follows Proposition 4. A
linear-length CG core trace can be constructed similarly to Proposition 8 by replacing
clauses in the linear-length HS trace from Proposition 4 with duplicates of original
clauses where required. ut

7 Conclusions

We formally analyzed the effect of SAT-based preprocessing, as well as core mini-
mization, on the performance of core-guided MaxSAT solvers. As a main result, we
showed that SAT-based preprocessing has no effect on the best-case number of itera-
tions required by the solvers but can improve on the worst-case. In terms of best-case
performance, the potential benefits of applying SAT-based preprocessing in conjunc-
tion with core-guided MaxSAT solvers are thus in principle—assuming optimal search
heuristics—solely in speeding up individual SAT solver calls made during MaxSAT
search. Simultaneously, our analysis also revealed an analogous result on the impact
of core minimization in core-guided MaxSAT solvers. Our results motivate further
work on developing MaxSAT-specific preprocessing techniques capable of affecting
the MaxSAT algorithms on a more general level. In contrast, SAT-based preprocessing
does in cases have a positive effect on the worst-case number of iterations. Of inde-
pendent interest, we established a formal characterization of how the underlying MUS
structure is altered by iterative revisions performed by CG solvers on MaxSAT instances
(Theorem 3), thus sharpening the main results of [53].

A Proof of Proposition 1

(1) If an optimal solution τ to F assigns τ(C) = 0, then an optimal solution τP to FP
has to assign FP (lC) = 1. Similarly, if τ(C) = 1, then τP can assign τP (lC) = 0.
(2) We sketch the conversion of an A core trace TP = (κ1P , . . . , κ

n
P) on FP into a

core trace T = (κ1, . . . , κn) on F , the other direction is similar. For A = HS, every
κiP is a core of FP . The corresponding core trace of F is obtained by exchanging each
κiP = {(¬lCi) | i = 1, . . . , n} with κi = {Ci | i = 1, . . . , n}. Now κiP is a core of FP
iff κi is a core of F . To see this, note that if κi is not a core of F , then it can be satisfied
by some assignment τ . The same τ extended by setting all lCi

variables to 0 to satisfies
both κiP and the hard clauses {C1 ∨ lC1

, . . . , Cn ∨ lCn
}. Hence κiP is not a core of FP

either. A similar argument shows the other direction. Finally the termination of HS after
n iterations follows by a similar argument showing that F \ hs is satisfiable for some
hs = {C1, . . . , Ci} iff FP \hsP is satisfiable for hsP = {(¬lC1), . . . , (¬lCi)}. Hence
the trace T = (κ1, . . . , κn) is a HS trace on F of the same length as TP .

For A = CG the argument is similar but inductive. To form a CG trace T on F ,
every occurrence of a (¬lCi

) in a clause Ci ∈ κiP is replaced by Ci to form a core
κi of F i. For i > 0, each such Ci may have been augmented with blocking variables,
i.e., Ci = (¬lCi ∨

∨
b) for some set of blocking variables. However, the substitution

(¬lCi ∨
∨
b) → Ci ∨

∨
b is still valid as, by induction, if CG adds

∨
b to (¬lCi)

on the execution corresponding to TP , then it also adds
∨
b to Ci on the execution

corresponding to T . ut

References

1. Park, J.D.: Using weighted MAX-SAT engines to solve MPE. In: Proc. AAAI, AAAI Press
/ The MIT Press (2002) 682–687

2. Chen, Y., Safarpour, S., Veneris, A.G., Marques-Silva, J.P.: Spatial and temporal design
debug using partial MaxSAT. In: Proc. 19th ACM Great Lakes Symposium on VLSI, ACM
(2009) 345–350

3. Chen, Y., Safarpour, S., Marques-Silva, J., Veneris, A.G.: Automated design debugging
with maximum satisfiability. IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems 29(11) (2010) 1804–1817

4. Argelich, J., Berre, D.L., Lynce, I., Marques-Silva, J.P., Rapicault, P.: Solving linux up-
gradeability problems using boolean optimization. In: Proc. LoCoCo. Volume 29 of EPTCS.
(2010) 11–22

5. Lynce, I., Marques-Silva, J.: Restoring CSP satisfiability with MaxSAT. Fundam. Inform.
107(2-3) (2011) 249–266

6. Zhu, C., Weissenbacher, G., Malik, S.: Post-silicon fault localisation using maximum satis-
fiability and backbones. In: Proc. FMCAD, FMCAD Inc. (2011) 63–66

7. Jose, M., Majumdar, R.: Cause clue clauses: error localization using maximum satisfiability.
In: Proc. PLDI, ACM (2011) 437–446

8. Morgado, A., Liffiton, M.H., Marques-Silva, J.: MaxSAT-based MCS enumeration. In:
Revised Selected Papers of HVC 2012. Volume 7857 of Lecture Notes in Computer Science.,
Springer (2013) 86–101

9. Guerra, J., Lynce, I.: Reasoning over biological networks using maximum satisfiability. In:
Proc. CP. Volume 7514 of Lecture Notes in Computer Science., Springer (2012) 941–956

10. Zhang, L., Bacchus, F.: MAXSAT heuristics for cost optimal planning. In: Proc. AAAI,
AAAI Press (2012)

11. Ansótegui, C., Izquierdo, I., Manyà, F., Torres-Jiménez, J.: A Max-SAT-based approach to
constructing optimal covering arrays. In: Proc. CCIA. Volume 256 of Frontiers in Artificial
Intelligence and Applications., IOS Press (2013) 51–59

12. Ignatiev, A., Janota, M., Marques-Silva, J.: Towards efficient optimization in package man-
agement systems. In: Proc. ICSE, ACM (2014) 745–755

13. Berg, J., Järvisalo, M., Malone, B.: Learning optimal bounded treewidth Bayesian networks
via maximum satisfiability. In: Proc. AISTATS. Volume 33 of JMLR Workshop and Confer-
ence Proceedings., JMLR.org (2014) 86–95

14. Fang, Z., Li, C., Qiao, K., Feng, X., Xu, K.: Solving maximum weight clique using maximum
satisfiability reasoning. In: Proc. ECAI. Volume 263 of Frontiers in Artificial Intelligence
and Applications., IOS Press (2014) 303–308

15. Berg, J., Järvisalo, M.: SAT-based approaches to treewidth computation: An evaluation. In:
Proc. ICTAI, IEEE Computer Society (2014) 328–335

16. Marques-Silva, J., Janota, M., Ignatiev, A., Morgado, A.: Efficient model based diagnosis
with maximum satisfiability. In: Proc. IJCAI, AAAI Press (2015) 1966–1972

17. Berg, J., Järvisalo, M.: Cost-optimal constrained correlation clustering via weighted partial
maximum satisfiability. Artificial Intelligence (2015) in press.

18. Wallner, J.P., Niskanen, A., Järvisalo, M.: Complexity results and algorithms for extension
enforcement in abstract argumentation. In: Proc. AAAI, AAAI Press (2016)

19. Li, C., Manyà, F.: MaxSAT, hard and soft constraints. In: Handbook of Satisfiability. IOS
Press (2009) 613–631

20. Ansótegui, C., Bonet, M., Levy, J.: SAT-based MaxSAT algorithms. Artificial Intelligence
196 (2013) 77–105

21. Morgado, A., Heras, F., Liffiton, M., Planes, J., Marques-Silva, J.: Iterative and core-guided
MaxSAT solving: A survey and assessment. Constraints 18(4) (2013) 478–534

22. Cook, S.A.: The complexity of theorem-proving procedures. In: Proc. STOC, ACM (1971)
151–158

23. Biere, A., Heule, M., van Maaren, H., Walsh, T.: Handbook of Satisfiability: Volume 185
Frontiers in Artificial Intelligence and Applications. IOS Press, Amsterdam, The Nether-
lands, The Netherlands (2009)

24. Koshimura, M., Zhang, T., Fujita, H., Hasegawa, R.: QMaxSAT: A partial Max-SAT solver.
Journal of Satisfiability, Boolean Modeling and Computation 8(1/2) (2012) 95–100

25. Davies, J., Bacchus, F.: Exploiting the power of MIP solvers in MaxSAT. In: Proc. SAT.
Volume 7962 of Lecture Notes in Computer Science., Springer (2013) 166–181

26. Belov, A., Morgado, A., Marques-Silva, J.: SAT-based preprocessing for MaxSAT. In:
Proc. LPAR-19. Volume 8312 of Lecture Notes in Computer Science., Springer (2013) 96–
111

27. Martins, R., Manquinho, V.M., Lynce, I.: Open-WBO: A modular MaxSAT solver. In:
Proc. SAT. Volume 8561 of Lecture Notes in Computer Science., Springer (2014) 438–445

28. Narodytska, N., Bacchus, F.: Maximum satisfiability using core-guided MaxSAT resolution.
In: Proc. AAAI, AAAI Press (2014) 2717–2723

29. Bjørner, N., Narodytska, N.: Maximum satisfiability using cores and correction sets. In:
Proc. IJCAI, AAAI Press (2015) 246–252

30. Berg, J., Saikko, P., Järvisalo, M.: Improving the effectiveness of SAT-based preprocessing
for MaxSAT. In: Proc. IJCAI, AAAI Press (2015) 239–245

31. Morgado, A., Dodaro, C., Marques-Silva, J.: Core-guided maxsat with soft cardinality con-
straints. In: Proc. CP. Volume 8656 of Lecture Notes in Computer Science., Springer (2014)
564–573

32. Ansótegui, C., Gabàs, J.: Solving (weighted) partial MaxSAT with ILP. In: Proc. CPAIOR.
Volume 7874 of Lecture Notes in Computer Science., Springer (2013) 403–409

33. Eén, N., Biere, A.: Effective preprocessing in SAT through variable and clause elimination.
In: Proc. SAT. Volume 3569 of Lecture Notes in Computer Science., Springer (2005) 61–75

34. Järvisalo, M., Heule, M., Biere, A.: Inprocessing rules. In: Proc. IJCAR. Volume 7364 of
Lecture Notes in Computer Science., Springer (2012) 355–370

35. Lagniez, J.M., Marquis, P.: Preprocessing for propositional model counting. In: Proc. AAAI,
AAAI Press (2014) 2688–2694

36. Li, C.M., Manyà, F., Mohamedou, N.O., Planes, J.: Exploiting cycle structures in Max-
SAT. In: Proc. SAT. Volume 5584 of Lecture Notes in Computer Science., Springer (2009)
467–480

37. Argelich, J., Li, C.M., Manyà, F.: A preprocessor for Max-SAT solvers. In: Proc. SAT.
Volume 4996 of Lecture Notes in Computer Science., Springer (2008) 15–20

38. Bonet, M.L., Levy, J., Manyà, F.: Resolution for Max-SAT. Artificial Intelligence 171(8-9)
(2007) 606–618

39. Heras, F., Marques-Silva, J.: Read-once resolution for unsatisfiability-based Max-SAT algo-
rithms. In: Proc. IJCAI, AAAI Press (2011) 572–577

40. Berg, J., Saikko, P., Järvisalo, M.: Re-using auxiliary variables for maxsat preprocessing. In:
Proc ICTAI, IEEE (2015) 813–820

41. Krentel, M.W.: The complexity of optimization problems. Journal of Computer and System
Sciences 36(3) (1988) 490 – 509

42. Heras, F., Morgado, A., Marques-Silva, J.: Core-guided binary search algorithms for maxi-
mum satisfiability. In: Proc. AAAI, AAAI Press (2011)

43. Ignatiev, A., Morgado, A., Manquinho, V.M., Lynce, I., Marques-Silva, J.: Progression in
maximum satisfiability. In: ECAI 2014, IOS Press (2014) 453–458

44. Kullmann, O., Marques-Silva, J.: Computing maximal autarkies with few and simple oracle
queries. CoRR abs/1505.02371 (2015)

45. Janota, M., Marques-Silva, J.: On the query complexity of selecting minimal sets for mono-
tone predicates. Artif. Intell. 233 (2016) 73–83

46. Ansótegui, C., Gabàs, J., Levy, J.: Exploiting subproblem optimization in SAT-based
MaxSAT algorithms. J. Heuristics 22(1) (2016) 1–53

47. Järvisalo, M., Biere, A., Heule, M.: Blocked clause elimination. In: Proc. TACAS. Volume
6015 of Lecture Notes in Computer Science., Springer (2010) 129–144

48. Belov, A., Järvisalo, M., Marques-Silva, J.: Formula preprocessing in MUS extraction. In:
Proc. TACAS. Volume 7795 of Lecture Notes in Computer Science., Springer (2013) 108–
123

49. Fu, Z., Malik, S.: On solving the partial MaxSAT problem. In: Proc. SAT. Volume 4121 of
Lecture Notes in Computer Science., Springer (2006) 252–265

50. Manquinho, V.M., Marques-Silva, J.P., Planes, J.: Algorithms for weighted boolean opti-
mization. In: Proc. SAT. Volume 5584 of Lecture Notes in Computer Science., Springer
(2009) 495–508

51. Ansótegui, C., Bonet, M.L., Levy, J.: Solving (weighted) partial maxsat through satisfiability
testing. In: Proc. SAT. Volume 5584 of Lecture Notes in Computer Science., Springer (2009)
427–440

52. Martins, R., Joshi, S., Manquinho, V., Lynce, I.: Incremental cardinality constraints for
MaxSAT. In: Proc. CP. Volume 8656 of Lecture Notes in Computer Science., Springer
(2014) 531–548

53. Bacchus, F., Narodytska, N.: Cores in core based MaxSat algorithms: An analysis. In:
Proc. SAT. Volume 8561 of Lecture Notes in Computer Science., Springer (2014) 7–15

54. Davies, J., Bacchus, F.: Postponing optimization to speed up MAXSAT solving. In: Proc. CP.
Volume 8124 of Lecture Notes in Computer Science., Springer (2013) 247–262

55. Saikko, P., Berg, J., Järvisalo, M.: LMHS: A SAT-IP hybrid MaxSAT solver. In Creignou, N.,
Berre, D.L., eds.: Proc. SAT. Volume 9710 of Lecture Notes in Computer Science., Springer
(2016) 539–546

