
Cost-Optimal Constrained Correlation Clustering via
Weighted Partial Maximum SatisfiabilityI

Jeremias Berg, Matti Järvisalo∗

HIIT, Department of Computer Science, University of Helsinki, Finland.
Emails: jeremias.berg@cs.helsinki.fi,matti.jarvisalo@cs.helsinki.fi

Abstract

Integration of the fields of constraint solving and data mining and machine learning has recently been
identified within the AI community as an important research direction with high potential. This work con-
tributes to this direction by providing a first study on the applicability of state-of-the-art Boolean optimiza-
tion procedures to cost-optimal correlation clustering under constraints in a general similarity-based setting.
We develop exact formulations of the correlation clustering task as Maximum Satisfiability (MaxSAT), the
optimization version of the Boolean satisfiability (SAT) problem. For obtaining cost-optimal clusterings,
we apply a state-of-the-art MaxSAT solver for solving the resulting MaxSAT instances optimally, result-
ing in cost-optimal clusterings. We experimentally evaluate the MaxSAT-based approaches to cost-optimal
correlation clustering, both on the scalability of our method and the quality of the clusterings obtained. Fur-
thermore, we show how the approach extends to constrained correlation clustering, where additional user
knowledge is imposed as constraints on the optimal clusterings of interest. We show experimentally that
added user knowledge allows clustering larger datasets, and at the same time tends to decrease the running
time of our approach. We also investigate the effects of MaxSAT-level preprocessing, symmetry breaking,
and the choice of the MaxSAT solver on the efficiency of the approach.

Keywords: Boolean optimization, Boolean satisfiability, Maximum satisfiability, correlation clustering,
cost-optimal clustering, constrained clustering

1. Introduction

Integration of the fields of constraint solving and data mining and machine learning has recently been
identified within the AI community as an important research direction with high potential. This work con-
tributes to this direction by studying the applicability of Boolean optimization to cost-optimal correlation
clustering under constraints.

IThis work is supported by Academy of Finland (grants #251170 COIN Centre of Excellence in Computational Inference
Research, 276412, and 284591), Research Funds of the University of Helsinki, and Finnish Funding Agency for Technology and
Innovation (project D2I: From Data to Intelligence). The authors thank Jessica Davies for providing the MaxHS solver version
used in the experiments. A preliminary version of this work appeared as [1] and was presented at the 2013 ICDM workshops. This
article thoroughly revises and extends the earlier workshop paper considerable, for examples by addressing the problem in a more
general weighted setting, by introducing a third improved MaxSAT encoding, by extended experiments including comparisons with
quadratic integer programming and several approximative algorithms, application of SAT-based preprocessing, symmetry breaking,
and a MaxSAT solver comparison, as well as inclusion of full formal proofs and extended background and discussions.
∗Corresponding author. Phone: +358 50 3199 248, Fax: +358 9 1915 1120.

Preprint submitted to Artificial Intelligence July 7, 2015

A common problem setting in data analysis is a set of data points together with some information re-
garding their pairwise similarities from which some interesting underlying structure needs to be discovered.
One way of approaching the problem is to attempt to divide the data into subgroups in a meaningful way,
for example, so that data points in the same group are more similar to each other than to data points in
other groups [2]. Discovering an optimal way of making such a division is in most settings computationally
challenging and an active area of research [3]. A general term for problems of this kind is clustering: the
groups the data is partitioned into are called clusters, and a partitioning of the dataset is called a clustering
of the data.

In this work, we study the correlation clustering paradigm [4] in a general similarity-based setting.
Correlation clustering is a well-studied [5, 6, 7, 8, 9] NP-hard problem. Given a labeled undirected graph
with each edge labeled with either a positive or a negative label, the objective of correlation clustering is
to cluster the nodes of the graph in a way which minimizes the number of positive edges between different
clusters and negative edges within clusters. Taking a more general view to correlation clustering, we study
the problem setting of weighted correlation clustering, in which each edge is associated with a weight
(instead of merely a negative or positive label), indicating our confidence in that label. In the more general
weighted case, the objective of correlation clustering is to minimize the sum of the weights of the positive
edges between different clusters and the negative edges within clusters.

The correlation clustering paradigm is geared towards classifying data based on qualitative similarity
information—as opposed to quantitative information—of pairs of data points. In contrast to other typical
clustering paradigms, correlation clustering does not require the number of clusters as input. This makes it
especially well-suited for settings in which the true number of clusters is unknown—which is often the case
when dealing with real-world data. As a concrete example, consider the problem of clustering documents
by topic without any prior knowledge on what those topics might be, based only on similarity information
(edges) between pairs of different documents [4, 10]. Indeed, correlation clustering has various applications
in biosciences [11], social network analysis and information retrieval [12, 13, 14]. Furthermore, the related
problem of consensus clustering [15], with recent applications in bioinformatics and in particular microarray
data analysis [16, 17, 18, 19], can also be naturally cast as correlation clustering.

Due to NP-hardness of correlation clustering [4], most algorithmic work on the problem has been heuris-
tic, focusing on local search and approximative algorithms. While strong approximation algorithms have
been proposed [4, 5, 6, 9]—providing up to constant-factor approximations in restricted settings—these al-
gorithms are unable to provide actual cost-optimal solutions in general. In this work, we take a different
approach: we study the applicability of state-of-the-art Boolean optimization techniques to cost-optimally
solving real-world instances of the correlation clustering problem. A baseline motivation for this work are
the recent advances in applying constraint programming for developing generic approaches to common data
analysis problems [20, 21, 22, 23, 24, 25]. In a constraint programming based approach, the data analysis
problem is stated in a declarative fashion within some constraint language, and then a generic solver for that
language is used for solving the resulting instance.

Harnessing constraint solving for data analysis tasks has two key motivations. Firstly, declarative op-
timization systems allow for finding provably cost-optimal solutions. While heuristic approaches allow
for scaling to very large datasets, quickly obtaining some hopefully meaningful clustering, the provably
cost-optimal solutions obtained by the declarative approach can result in notably better clusterings which
provide better insights into the data. This can be valuable especially when working on smaller scientific
datasets which have taken years to collect [26]. Secondly, the declarative approach allows for easily inte-
grating various types of additional constraints over the solution space at hand. This way, a user (domain
data expert) may specify properties of solutions that are of interest to the user, without needing to extend

2

available specialized algorithms in a non-trivial way to cope with such additional constraints. A constraint-
based framework for clustering problems is well-suited for problem instances where some form of domain
specific knowledge might be required in order to obtain meaningful clusterings. The paradigm for cluster-
ing problems of this type is known as constrained clustering [27, 28, 29]. Recently, Boolean satisfiability
(SAT) [30] based approaches to solving constrained clustering within other clustering problems have been
proposed [23, 31], However, to the best of our knowledge the only work done on constrained correlation
clustering is the linear programming based approach of [10]; this work is the first study on the applicabil-
ity of Maximum Satisfiability (MaxSAT) [32], a well-known optimization version of SAT, to correlation
clustering under constraints. The problem definition we study covers correlation clustering with additional
constraints that, e.g., either force or forbid a pair of points from being assigned to the same cluster; known
as must-link and cannot-link constraints [27].

1.1. Contributions

We present a novel and extensible MaxSAT-based approach to optimal correlation clustering. Using
propositional logic as the declarative language, we formulate the correlation clustering task in an exact
fashion as weighted partial MaxSAT [32] and apply a state-of-the-art MaxSAT solver to solve the resulting
MaxSAT instance optimally. To our best knowledge this is the first practical approach to exactly solving
correlation clustering for finding cost-optimal clusterings, i.e., optimal clusterings wrt the actual objective
function of the problem, for real-world datasets with hundreds of elements. In contrast, most of the previous
work on correlation clustering has mainly focused on approximation algorithms and greedy local-search
techniques which cannot in general find optimal clusterings.

At the core of the approach, we present three different MaxSAT formulations of correlation clustering,
and provide formal proofs for their correctness. We experimentally evaluate our approach on real-world
datasets and compare the approach to both two alternative exact approaches, based on linear and quadratic
integer programming [5, 33], and two approximation algorithms [5, 34]. The results show that our ap-
proach can provide cost-optimal solutions and scales better than competing exact integer and quadratic
programming formulations. Furthermore, our approach performs especially well in terms of solution cost
on sparse datasets (with many missing similarity entries), outperforming approximative methods even when
the approximative methods are given full similarity information. Our approach easily extends to the task
of constrained correlation clustering, which allows for the user to specify the clusterings of one’s interest
by imposing hard user-defined constraints over the search space of clusterings. We explain how different
types of constraints can be handled within a MaxSAT-based approach to cost-optimally solving constrained
correlation clustering instances. While approaches to constrained clustering have been proposed previously
for different clustering paradigms [27, 28, 29, 35, 36, 23], the only previous work on constrained correlation
clustering that we know of is [10]. However, their approach is approximative and the experiments are done
on smaller datasets. In contrast, we show experimentally that added user knowledge allows clustering on
larger datasets as it tends to notably decrease the running time of the approach. We also provide experimen-
tal results on MaxSAT-specific aspects of solving the correlation clustering instances, considering the effects
of MaxSAT-level preprocessing, symmetry breaking, as well as the choice of the MaxSAT solver used on
the efficiency of the approach.

1.2. Paper Organization

In Section 2 we provide a generic problem definition for correlation clustering that is used throughout
this article. Our definition covers both correlation clustering and constrained correlation clustering. We also
demonstrate how a symmetric similarity measure simplifies the objective function of the clustering problem

3

and show that a similarity measure can always be assumed to be symmetric. In Sections 3 and 4 we overview
previously proposed linear and quadratic integer programs for solving correlation clustering exactly. In Sec-
tion 5 we provide necessary background on Maximum Satisfiability. The MaxSAT encodings of correlation
clustering are detailed in Sections 6, 7 and 8, respectively. Extensive experimental results are provided
in Section 9. Finally, we present a short survey on related work in Section 10 and give some concluding
remarks in Section 11. Formal proofs of the theorems presented in the paper are given in Appendix A.

2. Problem Setting

In this section, we present the general similarity-based problem setting under which we study correlation
clustering in both unconstrained and constrained settings.

2.1. Problem Definition
Let R = R ∪ {∞,−∞}, V = {v1, . . . , vN} a set of N data points that we wish to cluster, and W ∈

RN×N a similarity matrix. We denote the element on row i column j in W by W (i, j). This input can be
viewed as a weighted graph, as demonstrated by the following example.

Example 1. Let V = {v1, v2, v3, v4} be a set of data points and consider the similarity matrix W given
in Figure 1 on the left. We can view this input as a directed graph G = (V,E) where (vi, vj) ∈ E if
W (i, j) 6= 0, and the weight of each edge (vi, vj) is equal to W (i, j). Figure 1 (right) illustrates the graph
corresponding to W . In case the similarity matrix is symmetric, i.e., W (i, j) = W (j, i) for all i and j, the
graph underlying W is essentially undirected.

W =

∞ 0 −4.5 40
−0.3 ∞ −∞ 65
2.5 0 ∞ 0
0 4.5 0 ∞

v1

v2

v3

v4

−4.5

40

−0.3 −∞

65

2.5

4.5

Figure 1: An example similarity matrix and its graph presentation.

The intuition behind the similarity matrix is that it expresses preferences on whether or not two points vi
and vj should be assigned to the same cluster; a positive value indicates that vi and vj should be assigned to
the same cluster, a negative value that they should not. We say that points vi and vj are similar ifW (i, j) ∈ R
and W (i, j) > 0. If W (i, j) < 0 and W (i, j) ∈ R, we say that vi and vj are dissimilar. In the most general
setting, neither the requirement of assigning pairs of points to the same (different) cluster(s) nor the notion
of pairs of points being (dis)similar are required to be symmetric relations.

Any function cl : V → N is a solution to the clustering problem, representing a clustering of the data
points into clusters indexed with natural numbers. We say that two points vi and vj are co-clustered if
cl(vi) = cl(vj). Note that our formulation allows forcing two points to the same or different clusters. If

4

W (i, j) =∞ for some i and j, then vi and vj have to be co-clustered. Analogously, if W (i, j) = −∞, then
vi and vj are not allowed to be co-clustered. If the infinite values are in conflict with each other, the problem
instance is infeasible. These additional hard constraints are commonly referred to as must-link (ML) and
cannot-link (CL) constraints [27]. We will use the following definition to incorporate the intended semantics
of the infinite values onto the possible clusterings. Given a similarity matrix W , we say that a clustering cl
respects the infinite values of W , if cl(vi) = cl(vj) whenever W (i, j) = ∞ and cl(vi) 6= cl(vj) whenever
W (i, j) = −∞.

Given a cost function G such that G(W, cl) ∈ R for every solution cl, we say that a clustering cl (of
V) is optimal under W as measured by G, if cl respects the infinite values of W and G(W, cl) ≤ G(W, cl′)
holds for any clustering cl′ (of V) that respects the infinite values of W . The definition is sufficient for
all purposes as we can always turn a function G we wish to maximize into a minimization problem by
considering the function −G. For a given similarity matrix W we use argmincl(G(W, cl)) to denote the set
of optimal clusterings under W as measured by G.

In this work we focus on the the cost function of correlation clustering with additional must-link and
cannot-link constraints. In correlation clustering [4, 9] we are given a pairwise similarity measure over a set
of data points. The task is then to cluster the nodes in a way that maximizes the number of similar points
co-clustered and minimizes the number of dissimilar points co-clustered. More formally, given a symmetric
similarity matrix W , the task is to find a clustering which minimizes the cost function

H(W, cl) =
∑

cl(vi)=cl(vj)
i<j

(I[−∞ < W (i, j) < 0] · |W (i, j)|) +
∑

cl(vi)6=cl(vj)
i<j

(I[∞ > W (i, j) > 0] ·W (i, j))

(1)
where I[b] is an indicator function which takes the value 1 if the condition b is true, else I[b] = 0. Figure 2
gives a precise formulation of constrained correlation clustering used throughout this work.

Input: A set of N data points V = {v1 . . . vN} and a symmetric similarity matrix W ∈ RN×N .

Output: A function cl∗ : V → N such that cl∗ ∈ argmin
cl : : V→N

(H(W, cl)).

Figure 2: The constrained correlation clustering problem.

This definition covers all variants of correlation clustering that we are aware of. For example, the defi-
nition of [4] where the input consists of a complete graph with each edge labeled by a + or − is equivalent
to restricting the input similarity matrix to only contain values from {−1, 1} and specifically not to contain
infinite values. Furthermore, the assumption of symmetric input can be made without loss of generality, as
detailed in Section 2.2.

Example 2. Let V = {v1, v2, v3, v4} be a set of data points and consider the similarity matrix given in
Figure 3 on the left. Figure 3 (right) illustrates one possible solution cl to the correlation clustering problem
for this input data. In described solution, cl(v1) = cl(v2) = cl(v3) 6= cl(v4). The cost of cl is

H(W, cl) = (I[W (1, 2) < 0] · |W (1, 2)|+ I[W (1, 3) < 0] · |W (1, 3)|+ I[W (2, 3) < 0] · |W (2, 3)|) +

(I[W (1, 4) > 0] ·W (1, 4) + I[W (2, 4) > 0] ·W (2, 4) + I[W (3, 4) > 0] ·W (3, 4))

= |W (1, 2)|+W (3, 4) = 3.3.

5

W =

∞ −0.3 2.5 0
−0.3 ∞ 4 −5
2.5 4 ∞ 3
0 −5 3 ∞

v1

v2

v3

v4

−0.3

2.5

4

−5

3

Figure 3: An example similarity matrix and the graphical representation of a solution to the correlation clustering problem

In contrast to many other clustering problems, deciding the number of clusters is in the most general
case part of the correlation clustering problem. However, as every point is assigned to exactly one cluster,
in practice it is enough to search over all functions cl : V → {1, . . . , N}.

2.2. On the Assumption of Symmetric Similarities

We will now show that the assumption of symmetric similarity matrices in our problem definition (Fig-
ure 2) can be done without loss of generality. Correlation clustering is often defined with 2 positive weights
w+
ij and w−ij for each pair of data points vi, vj as the input [5]. The intuition behind these weights is that

they give a separate measure for the costs of not assigning vi and vj to the same (w+
ij) and to different (w−ij)

cluster(s). A straightforward method of modeling this in terms of our clustering setting would be to use a
cost function such as

H ′(W, cl) =
∑

cl(vi)=cl(vj)

(I[−∞ < W (i, j) < 0] · |W (i, j)|)+
∑

cl(vi) 6=cl(vj)

(I[∞ > W (i, j) > 0] ·W (i, j)) ,

(2)
and letting W (i, j) = w+

ij and W (j, i) = −w−ij for all i < j. However, this turns out to be unnecessary.

Theorem 1. Let V = {v1 . . . vN} be a set of data points and W an asymmetric similarity matrix over
V . Assume that for all i and j, W (i, j) = ∞ implies W (j, i) 6= −∞ (from which it also follows that
W (i, j) = −∞ implies W (j, i) 6=∞). Then there is a symmetric similarity matrix WS such that

argmin
cl

(H(WS , cl)) = argmin
cl

(H ′(W, cl)).

We note that the assumption in the theorem is minor. The condition can be checked in polynomial
time, and if it does not hold, there are no feasible solutions to the constrained problem. A detailed proof of
Theorem 1 is provided in Appendix A. The simpler objective function H simplifies the exact declarative
formulations considered in this work.

2.3. Constrained Clustering

In the clustering domain, the concept of a constraint is fairly abstract and the exact types of constraints
that are feasible depend on the particular domain. A typical categorization of different types of constraints
are instance-level constraints and cluster-level constraints [37]. Cluster-level constraints [36] deal with rela-
tionships between clusters. Examples of cluster-level constraints include constraints which enforce a prede-
fined lower bounds for the similarity (distance) over clusters or a predefined upper bound on the dissimilarity
of points within the clusters, as well as constraints requiring that the clustering contains at most/exactly/at

6

least some fixed number of clusters or that all clusters contain at least a certain number of data points.
Instance-level constraints deal with relationships between pairs of points. Two very well known examples
are the already discussed ML and CL constraints. ML and CL constraints are have been shown to be flexible
in the sense that many different types of constraints can be expressed in terms of them [37].

2.4. Consensus clustering

As detailed in [15], another problem closely related to correlation clustering is consensus clustering. In
consensus clustering we are given a set V of data points and K different clusterings of V . The task is then
to find a single consensus clustering which agrees as well as possible with the input clusterings. Consensus
clustering fits into our problem definition by the following construction. For each pair of points vi, vj ∈ V
let sij be the number of clusterings in which vi and vj are co clustered and dij = K − sij be the number
of clusterings in which they are not. Now construct a similarity matrix W by assigning W (i, j) = sij and
W (j, i) = −dij for each pair of data points and apply Theorem 1 to obtain the equivalent (in terms of
correlation clustering) symmetric similarity matrix. Then an optimal solution to the resulting correlation
clustering problem corresponds to an optimal solution to the consensus clustering problem. Consensus
clustering is indeed also NP-hard [38]. Recently the problem has received more attention due to applications
in bioinformatics and in particular microarray data analysis [16, 17, 18, 19].

3. Correlation Clustering as Integer Linear Programming

An exact integer linear programming (ILP) formulation of correlation clustering has been proposed
in [5, 10]. We will now restate this integer linear programming formulation in terms of our generic problem
setting.

Given a set V = {v1, . . . , vN} of N data points and a symmetric similarity matrix W , the integer
program involves binary variables xij ∈ {0, 1}, where 1 ≤ i < j ≤ N . The intended interpretation of
these variables is that xij = 1 iff vi and vj are co-clustered in any clustering. We note that the variables
are only required whenever i < j. However, for notational convenience, we use xij and xji to denote the
same variable. Using these variables, the set of optimal solutions to the following integer linear program
represents the set of optimal clusterings of V under W [5].

MINIMIZE
∑

−∞<W (i,j)<0
i<j

(xij · |W (i, j)|)−
∑

∞>W (i,j)>0
i<j

(xij ·W (i, j))

where xij + xjk ≤ 1 + xik for all distinct i, j, k

xij = 1 for all W (i, j) =∞
xij = 0 for all W (i, j) = −∞

xij ∈ {0, 1} for all i, j. (3)

The purpose of the transitivity constraint xij + xjk ≤ 1 + xik is to ensure a well-defined clustering; for
any (vi, vj , vk) ∈ V × V × V , each of the points vi, vj , vk must belong to exactly one cluster, and hence it
follows that if points vi, vj are assigned to the same cluster and points vj , vk are assigned to the same cluster,
by transitivity then points vi, vk should also be assigned to the same cluster. Stated as a linear constraint we
require that if xij + xjk = 2 then xik = 1, which is exactly what the transitivity constraint in the integer
program demands. The purpose of the two other constraints is to ensure that the solution clustering respects

7

the infinite values of W . Whenever W (i, j) = ∞, vi and vj have to be co-clustered, which in terms of
the integer program is equivalent to xij = 1. Analogously, W (i, j) = −∞ is equivalent to xij = 0. This
formulation consists of O(N2) variables and O(N3) constraints. In terms of practical considerations, this
suggests poor scalability for larger datasets.

4. Correlation Clustering as Quadratic Integer Programming

A quadratic integer programming formulation of correlation clustering was proposed in [33]. In addition
to the number of data pointsN , the quadratic integer programming (QIP) formulation requires one additional
parameter K, an upper limit for the number of clusters that the solution clustering should contain. The
formulation allows K = N in which case the set of possible solutions to the quadratic program exactly
matches the set of possible solutions to the integer linear programming formulation of correlation clustering
and our general definition of correlation clustering (recall Figure 2). We next restate the quadratic program
in terms of our generic problem setting and the parameter K.

Given a set V = {v1, . . . , vN} of N data points, an upper bound on the number of clusters K, and
a symmetric similarity matrix W , the quadratic program involves binary variables yki ∈ {0, 1}, where
1 ≤ i ≤ N and 1 ≤ k ≤ K. The intended interpretation of the variables is that yki = 1 iff data point vi is
assigned to cluster k. Using these variables, the set of optimal solutions to the following quadratic integer
program represents the set of optimal clusterings of V under W [33].

MINIMIZE
∑

−∞<W (i,j)<0
i<j

(
K∑
k=1

(
yki y

k
j

)
· |W (i, j)|

)
−

∑
∞>W (i,j)>0

i<j

(
K∑
k=1

(
yki y

k
j

)
·W (i, j)

)

where
K∑
k=1

yki = 1 for all i

K∑
k=1

(
yki y

k
j

)
= 1 for all W (i, j) =∞

K∑
k=1

(
yki y

k
j

)
= 0 for all W (i, j) = −∞

yki ∈ {0, 1} for all i, k. (4)

For some intuition, note that the sum
∑K

k=1

(
yki y

k
j

)
is equal to 1 only if points vi and vj are assigned

to the same cluster in the solution clustering. The purpose of the
∑K

k=1 y
k
i = 1 for all i constraint is to

ensure that the solution to the quadratic program corresponds to a well-defined clustering of the data. As
all the variables used are binary, the constraint forces exactly one of the variables y1i , . . . , y

K
i to 1 for all i,

which in turn ensures that the corresponding data point vi is assigned to exactly one cluster, as required for
a well-defined clustering. This non-convex QIP consists of O(NK) variables and O(N + I) constraints
where I is the number of infinite values in the input similarity matrix. We note that the non-convexity
of the quadratic program can follow both from the integrality constraints as well as the similarity values
themselves, as demonstrated by the following example.

8

Example 3. Consider the set V = {v1, v2, v3} of data points and the following similarity matrix over V :

W =

 ∞ −1 −10
−1 ∞ 1
−10 1 ∞

 .
For this similarity matrix and K = N = 3, the QIP in matrix form is

MINIMIZE
1

2
(y)TW(y)

subject to: Ay = b

y ∈ {0, 1}9,

where

y =

y11
y21
y31
y12
y22
y32
y13
y23
y33

and W =

0 0 0 1 0 0 10 0 0
0 0 0 0 1 0 0 10 0
0 0 0 0 0 1 0 0 10
1 0 0 0 0 0 −1 0 0
0 1 0 0 0 0 0 −1 0
0 0 1 0 0 0 0 0 −1
10 0 0 −1 0 0 0 0 0
0 10 0 0 −1 0 0 0 0
0 0 10 0 0 −1 0 0 0

with A and b chosen to fit the constraints

∑K
k=1 y

k
i = 1 for all i. For this instance of correlation clustering,

the matrix W is indefinite. To see this, observe that it has both negative and positive eigenvalues, for example
10 and −5− 3

√
3. Hence the objective function of the quadratic program in itself is not convex.

5. Maximum Satisfiability

Before describing our MaxSAT formulations of correlation clustering, we review necessary basic con-
cepts related to Maximum Satisfiability.

5.1. Syntax and Semantics

For a Boolean variable x, there are two literals, x and ¬x. A clause is a disjunction (∨, logical OR) of
literals and a truth assignment is a function from Boolean variables to {0, 1}. A clause C is satisfied by a
truth assignment τ (τ(C) = 1) if τ(x) = 1 for a literal x in C, or τ(x) = 0 for a literal ¬x in C. A set F
of clauses is satisfiable if there is an assignment τ satisfying all clauses in F (τ(F) = 1), and unsatisfiable
(τ(F) = 0 for any assignment τ) otherwise.

An instance F = (Fh, Fs, c) of the weighted partial MaxSAT problem consists of two sets of clauses, a
set Fh of hard clauses and a set Fs of soft clauses, and a function c : Fs → R+ that associates a non-negative
cost with each of the soft clauses1. Any truth assignment τ that satisfies Fh is a solution to F . The cost

1Our definition for the function c is more general than the standard c : Fs → N+, which restricts the costs of soft clauses to be
integral.

9

1

2 3

4

5

Figure 4: An example of representing graph coloring as MaxSAT.

COST(F, τ) of a solution τ to F is defined as

COST(F, τ) =
∑
C∈Fs

c(C) · (1− τ(C)),

i.e., as the sum of the costs of the soft clauses not satisfied by τ . A solution τ is (globally) optimal for F if
COST(F, τ) ≤ COST(F, τ ′) holds for any solution τ ′ to F . The cost of the optimal solutions of F is denoted
by OPT(F). Given a weighted partial MaxSAT instance F , the weighted partial MaxSAT problem asks to
find an optimal solution to F . For simplicity, we will from here on drop the term “weighted partial” when
referring to weighted partial MaxSAT instances, and simply refer to them as MaxSAT instances.

Example 4. As an example of modeling problems with MaxSAT, consider the 3-coloring problem for the
graph in Figure 4. The coloring problem can be modeled with MaxSAT by forming a MaxSAT instance
F = (Fh, Fs, c) using a set of 15 boolean variables, {ri, bi, gi | i = 1..5}. The intended semantics of a
variable rx is that the node x is colored red, similarly for gx (green) and bx (blue). The hard clauses in F
restrict each node to be colored with exactly one color and the soft clauses represent the constraints forcing
each pair of nodes sharing an edge to be colored with different colors. As clauses, this corresponds to

Fh = {(r1 ∨ b1 ∨ g1), (r2 ∨ b2 ∨ g2), (r3 ∨ b3 ∨ g3), (r4 ∨ b4 ∨ g4), (r5 ∨ b5 ∨ g5),
(¬r1 ∨ ¬g1), (¬r1 ∨ ¬b1), (¬b1 ∨ ¬g1), (¬r2 ∨ ¬g2), (¬r2 ∨ ¬b2), (¬b2 ∨ ¬g2),
(¬r3 ∨ ¬g3), (¬r3 ∨ ¬b3), (¬b3 ∨ ¬g3), (¬r4 ∨ ¬g4), (¬r4 ∨ ¬b4), (¬b4 ∨ ¬g4),
(¬r5 ∨ ¬g5), (¬r5 ∨ ¬b5), (¬b5 ∨ ¬g5)},

and

Fs = {(¬r1 ∨ ¬r2), (¬b1 ∨ ¬b2), (¬g1 ∨ ¬g2), (¬r1 ∨ ¬r3), (¬b1 ∨ ¬b3), (¬g1 ∨ ¬g3),
(¬r1 ∨ ¬r4), (¬b1 ∨ ¬b4), (¬g1 ∨ ¬g4), (¬r2 ∨ ¬r3), (¬b2 ∨ ¬b3), (¬g2 ∨ ¬g3),
(¬r2 ∨ ¬r4), (¬b2 ∨ ¬b4), (¬g2 ∨ ¬g4), (¬r3 ∨ ¬r4), (¬b3 ∨ ¬b4), (¬g3 ∨ ¬g4),
(¬r3 ∨ ¬r5), (¬b3 ∨ ¬b5), (¬g3 ∨ ¬g5), (¬r4 ∨ ¬r5), (¬b4 ∨ ¬b5), (¬g4 ∨ ¬g5)}

with c(w) = 1 for all w ∈ Fs. An optimal solution τ to F is τ(r1) = τ(r3) = τ(b5) = τ(b2) = τ(g4) = 1
and τ(x) = 0 for all other variables. The cost of this solution is 1, proving that any 3-coloring of the graph
in Figure 4 has to assign the same color to at least one pair of nodes sharing an edge.

5.2. Solving MaxSAT
Recent advances in MaxSAT solvers make MaxSAT a viable approach to finding globally (cost-)optimal

solutions to various optimization problems with successful real-world applications such as hardware design

10

debugging [39], post-silicon and C-code fault localization [40, 41], reasoning over biological networks [42],
and optimal Bayesian network structure learning [43]. As both SAT solvers and MaxSAT solvers continue
improving, it is becoming commonly accepted that large problems can be solved in practice [44] and that the
computational time is very much an empirical question and often not dominated by theoretical worst-case
complexity. Indeed, MaxSAT is an active area of research [45, 46, 47, 48, 49]. We next provide a short
overview of MaxSAT solvers. For a more comprehensive discussion, we refer the reader to [50, 51].

Many of the state-of-the-art MaxSAT solvers aimed at efficiently solving real-world instances in practice
make use of a SAT solver as a subroutine. By relaxing the soft clauses in the input formula, the MaxSAT
solver can linearly search for the optimal solution to the instance by querying the SAT solver for the existence
of a truth assignment (not) satisfying at least (at most) k soft clauses for different values of k. Intuitively,
k can then either be an upper [46] or a lower bound [52, 53] for the optimal solution. Another often used
search strategy is binary search [49, 47]. This basic idea of the algorithm has been improved by exploiting
the fact that whenever invoked on an unsatisfiable set of clauses, a modern SAT-solver can produce proof of
unsatisfiability in the form of a (small) subset of the input clauses that in itself is unsatisfiable. These subsets
are commonly referred to as unsatisfiable cores [52, 47, 54]. By using the information provided by the cores,
MaxSAT solver can relax soft cores on demand, instead of having to relax all of them upfront. Solvers
following this strategy are referred to as core-guided solvers. Other proposed methods for MaxSAT solving
include incorporating integer linear programming techniques, either as one part of the solving algorithm [55]
or by directly encoding the MaxSAT instance as an instance of integer linear programming [56].

In this work, we extend the application domains of MaxSAT to correlation clustering by presenting three
different encodings for finding optimal solutions to the correlation clustering problem. Given a symmetric
similarity matrixW over a set V of data points (recall Section 2.1), the basic idea behind all of our MaxSAT
formulations of correlation clustering is that hard clauses are used to enforce that any solution to the MaxSAT
instance represents a well-defined clustering (i.e., a mapping cl : V → N). The soft clauses are used to
encode the cost function in a faithful way, so that each solution to the MaxSAT instance can be mapped into
a clustering with exactly the same cost. In this way the optimal solution of the created MaxSAT instance can
be mapped into the optimal clustering of the correlation clustering problem. Next we will present all three
encodings in detail.

6. A MaxSAT Formulation of Correlation Clustering: Transitive Encoding

Our first MaxSAT formulation, the transitive encoding, of correlation clustering can be viewed as a
simple reformulation of the integer linear programming formulation (recall Section 3) in terms of MaxSAT.

Similarly as in the ILP formulation, we use boolean variables xij , where 1 ≤ i < j ≤ N , with the
interpretation that xij = 1 iff points vi and vj are co-clustered2. We again adopt the notational convenience
xij = xji. Now the transitive encoding forms the MaxSAT instance F 1 = (F 1

h , F
1
s , c) summarized in

Figure 5.
We next describe the different parts of F 1 in detail.

6.1. Hard Clauses

The hard clauses F 1
h of the transitive encoding are a clausal formulation of the transitivity constraints

(xij +xjk ≤ 1 +xik for all distinct i, j, k) of the ILP formulation. In terms of propositional logic, these can

2Unlike the two other MaxSAT encodings considered in this work, the transitive encoding does not directly allow for enforcing
an upper bounds of less than N on the number of clusters.

11

Hard Clauses F 1
h : (¬xij ∨ ¬xjk ∨ xik) for all (vi, vj , vk) ∈ V 3

where i, j, k are distinct

Must-Link (xij) for all i < j s.t. W (i, j) =∞
Cannot-Link (¬xij) for all i < j s.t. W (i, j) = −∞

Soft Clauses F 1
s : (xij) for all similar vi, vj s.t. i < j

(¬xij) for all dissimilar vi, vj s.t. i < j

Cost c of soft clauses c((xij)) = W (i, j) for all similar vi, vj s.t. i < j

c((¬xij)) = |W (i, j)| for all dissimilar vi, vj s.t. i < j

Figure 5: MaxSAT instance F 1 = (F 1
h , F

1
s , c) produced by the transitive encoding.

be stated as (xij ∧ xjk)→ xik, which in clausal form corresponds to

(¬xij ∨ ¬xjk ∨ xik) .

6.2. Soft Clauses

The soft clauses F 1
s encode the cost function. Each dissimilar pair of points vi and vj (−∞ < W (i, j) <

0) that are co-clustered corresponds to exactly one unsatisfied soft clause with weight −W (i, j), and sim-
ilarly, each similar pair of points vi and vj (∞ > W (i, j) > 0) that are assigned to different clusters
corresponds to one unsatisfied soft clause with weight W (i, j). These conditions are captured by the unit
soft clauses (¬xij) and (xij), respectively, with weights set to |W (i, j)|.

6.3. Encoding Constrained Clustering

The transitive encoding extends naturally to constrained correlation clustering with ML and CL con-
straints. For each W (i, j) = ∞, vi and vj are forced to be co-clustered. This is achieved with the hard
clause (xij). Similarly, for each W (i, j) = −∞, points vi and vj are forced to different clusters, which is
achieved by the hard clause (¬xij). In addition to ML and CL, various types of other constraints can be
expressed.

Example 5. (Running example of further constraints) We will use a running example of encoding additional
constraints under the three MaxSAT encodings considered in the work, highlighting some of the differences
between the encodings. As an example, consider the constraint NOTCOCLUSTERED(i, j, t) forbidding a
triple of points vi, vj and vt from being co-clustered. Under the transitive encodings, this constraint can
be encoded as a single clause NOTCOCLUSTERED(i, j, t) := (¬xij ∨ ¬xjt ∨ ¬xit). As another example,
consider the cluster-level constraint ATMOSTINALL(k) requiring each cluster to contain at most k data
points. This constraint can be reformulated as requiring that each data point vi is co-clustered with at most
k − 1 other data points. For a fixed data point vi the latter formulation can be encoded as a cardinality
constraint

∑
j={1,...,N}\{i} xij ≤ (k−1) requiring at most k−1 of the variables xi1, . . . xiN to be set to true,

which can further be encoded with hard clauses using one of the several compact cardinality constraints; see
e.g. [57, 58]. The whole ATMOSTINALL(k) constraint decomposes in to a conjunction of such cardinality
constraints over i.

12

6.4. Constructing a Clustering from a MaxSAT Solution to the Transitive Encoding

Any solution τ to F 1 represents a valid clustering clτ of V , constructed in an iterative manner as follows.

While there still are unassigned points left:

1. Let i be the smallest index for which clτ (vi) is not defined yet and let j be the iteration number
(j = 1...).

2. Assign clτ (vi) = j.
3. Assign clτ (vk) = j for all still unassigned vk for which τ(xik) = 1.

The fact that clτ is well-defined follows from the observation that each point gets assigned to at most one
cluster and each iteration of the procedure assigns at least one point to a cluster. Furthermore, the hard
transitivity constraints in F 1 ensure that the intended semantics of the xij variables hold in clτ . Hence it
follows that the optimal solutions of F 1 correspond to the optimal clusterings of V . The correctness of the
transitive encoding can be formalized as follows.

Theorem 2. Given a set V of data points and a symmetric similarity matrix W over V , let F 1 be the
MaxSAT instance produced by the transitive encoding on W . The clustering clτ∗ : V → N constructed from
an optimal solution τ∗ to F 1 is an optimal clustering of V .

A detailed proof of the theorem is given in Appendix A.
We note that the transitive encoding does not require a predefined number of clusters. This is avoided

by the definition of the xij variables, interpreted as pairwise indicator variables for two data points vi, vj
being assigned to the same cluster. However, the encoding is not very compact. Its size is similar to the ILP
presented earlier, O(N2) variables and O(N3) clauses, suggesting that also this encoding does not scale
well. Next we will present a unary encoding of correlation clustering into MaxSAT, which to some extent
addresses the compactness issue of the transitive encoding.

7. An Unary Encoding of Correlation Clustering into MaxSAT

We now consider a more compact unary encoding, which to some extent resembles the quadratic integer
programming formulation presented in Section 4. Similarly to the QIP, the unary encoding allows an upper
bound K on the number of available clusters. By letting K = N , the set of clusterings produced by
the unary encoding is exactly the same as for the transitive encoding. The size of the unary encoding is
O(E ·K + N ·K) variables and O(E ·K) clauses where E is the number of nonzero values in the input
similarity matrix W . Due to the dependence on E, in practice the unary encoding is more compact than the
transitive encoding whenever the input matrix contains 0-entries or K < N .

The unary encoding involves N ·K boolean variables yki , where i = 1..N (the number of data points)
and k = 1..K (the number of clusters). The intended interpretation of these variables is that yki = 1 iff point
vi belongs to cluster k. Furthermore, the encoding employs two types of auxiliary variables.

• Akij , where i = 1..N , j = 2..N , i < j, W (i, j) > 0, and k = 1..K, with the interpretation Akij = 1
iff points vi and vj are both assigned to cluster k.

• Dij , where i = 1..N , j = 2..N , i < j, and W (i, j) < 0, with the interpretation that if Dij = 0, then
points vi and vj are assigned to different clusters.

13

These variables are used for compactly encoding the similarity and dissimilarity constraints. We will next
present details on the clauses used in the unary encoding. As with the transitive encoding, the hard clauses
limit the set of solutions to well-defined clusterings, and the soft clauses encode the cost function in a faithful
way. However, the hard and soft clauses differ significantly from the clauses in the transitive encoding.
Most notably, both hard and soft clauses are included in the unary encoding for encoding the similarity and
dissimilarity constraints.

Concretely, the unary encoding forms the MaxSAT instance F 2 = (F 2
h , F

2
s , c) summarized in Figure 6.

Hard Clauses F 2
h : EXACTLYONE(i) for all vi ∈ V

HARDSIMILAR(i, j, k) for all similar vi, vj s.t. i < j

and 1 ≤ k ≤ K
HARDDISSIMILAR(i, j, k) for all dissimilar vi, vj s.t. i < j

and 1 ≤ k ≤ K
Must-Link MLU (vi, vj) for all i < j s.t. W (i, j) =∞

Cannot-Link CLU (vi, vj) for all i < j s.t. W (i, j) = −∞
Soft Clauses F 2

s : SOFTSIMILAR(i, j) for all similar vi, vj s.t. i < j

SOFTDISSIMILAR(i, j) for all dissimilar vi, vj s.t. i < j

Cost c of soft clauses c(SOFTSIMILAR(i, j)) = W (i, j) for all similar vi, vj s.t. i < j

c(SOFTDISSIMILAR(i, j)) = |W (i, j)| for all dissimilar vi, vj s.t. i < j

Figure 6: MaxSAT instance F 2 = (F 2
h , F

2
s , c) produced by the unary encoding.

We next describe the different parts of F 2 in detail.

7.1. Ensuring Well-Defined Clusterings

The hard constraints EXACTLYONE(i) constrain the search to well-defined clusterings by enforcing that
each data point vi is assigned into exactly one cluster k. In terms of the variables in the encoding this means
that, for each i, exactly one of the variables y1i , . . . , y

K
i should be assigned to 1, i.e.,

EXACTLYONE(i) :=
K∑
k=1

yki = 1.

A number of different encodings of this cardinality constraint as clauses have been previously developed [59].
In our experiments, we used the so-called sequential encoding [60] which is linear, or more precisely, intro-
duces 3K − 4 clauses and K − 1 auxiliary variables for each i. We refer the interested reader to [60] for a
detailed description of this encoding.

7.2. Encoding Similarity

For a similar pair of data points vi and vj , the constraints HARDSIMILAR(i, j, k) for each k = 1..K and
SOFTSIMILAR(i, j) together enforce the requirement that vi and vj are assigned to the same cluster when-
ever the soft constraint SOFTSIMILAR(i, j) is satisfied. In terms of propositional logic, this requirement can
be expressed as the formula

(y1i ∧ y1j) ∨ (y2i ∧ y2j) ∨ . . . ∨ (yKi ∧ yKj).

14

In order to the express this propositional formula as clauses, we employ the auxiliary variables Akij and
define the semantics of these to be τ(Akij) = 1 iff τ(yki ∧ ykj) = 1. In terms of propositional logic, the
defining constraint is Akij ↔ (yki ∧ ykj), which can be expressed as

HARDSIMILAR(i, j, k) := {(¬Akij ∨ yki), (¬Akij ∨ ykj), (Akij ∨ ¬yki ∨ ¬ykj)}.

We note that the definitions of the auxiliary variables do not yet enforce points vi and vj to be assigned to
cluster k. Instead, the clauses HARDSIMILAR(i, j, k) state that the variable Akij is set to true if and only if
points vi and vj are both assigned to cluster k. This must hold in every solution to F 2, hence the clauses are
hard.

Using the auxiliary variables, the soft constraint expressing that the points vi and vj are assigned to the
same cluster can be encoded as the clause

SOFTSIMILAR(i, j) := (A1
ij ∨ · · · ∨AKij) with weight c(SOFTSIMILAR(i, j)) = W (i, j).

For some intuition, we note that if this clause is satisfied in a solution τ , then for some k, τ(Akij) = 1. Since
all hard clauses are satisfied in any solution, it follows that points vi and vj will be assigned to cluster k,
exactly as required. Similarly, if points vi and vj are not assigned to the same cluster, then due to the hard
constraints we have τ(Akij) = 0 for all k, and the soft clause will not be satisfied. Each unsatisfied clause
must increase the cost of a MaxSAT solution according to the similarity values of the corresponding points,
which is why the weight of the clause is set to W (i, j).

7.3. Encoding Dissimilarity

For a dissimilar pair of data points vi and vj , the clauses HARDDISSIMILAR(i, j, k) for each k = 1..K
and SOFTDISSIMILAR(i, j) together enforce the requirement that vi and vj are assigned to different clusters.
This can be expressed by requiring for each cluster that at least one of vi and vj should not be assigned to that
cluster, which in clausal form is expressed by (¬yki ∨ ¬ykj) for a cluster k. The whole constraint enforcing
vi and vj to be assigned to different clusters is hence

(¬y1i ∨ ¬y1j) ∧ . . . ∧ (¬yKi ∨ ¬yKj). (5)

Equation 5 is already in clausal form. However, we want to make sure that breaking any of the individual
clauses corresponds to a cost of |W (i, j)|. To achieve this, we use the auxiliary variables Dij , and define
them in terms of propositional logic as ¬Dij → (¬yki ∨ ¬ykj) for each cluster k = 1..K. That is, if
τ(Dij) = 0 for some solution τ to F 2, then vi and vj are not assigned to the same cluster3. The defining
constraint can be expressed as the hard clauses

HARDDISSIMILAR(i, j, k) := (Dij ∨ ¬yki ∨ ¬ykj).

The auxiliary variable Dij makes it possible to express the soft constraint requiring vi and vj to not be
co-clustered simply as

SOFTDISSIMILAR(i, j) := (¬Dij) with weight c(SOFTDISSIMILAR(i, j)) = |W (i, j)|.

3The formalism behind grouped soft clauses like the ones in Equation 5 is known as group-MaxSAT. An exact treatment of
group-MaxSAT is beyond the scope of this work, we refer the interested reader to [61].

15

For some intuition, we have that if the clause (¬Dij) is satisfied in a solution to F 2, then the clauses
(¬yki ∨ ¬ykj) also have to be satisfied for all k. Hence points vi and vj are not assigned to the same cluster.
On the other hand, if vi and vj are assigned to the same cluster k, then the solution has to assign Dij = 1 in
order to satisfy the hard clause (Dij ∨¬yki ∨¬ykj), resulting in one unsatisfied clause with weight |W (i, j)|,
exactly as required for representing the correlation clustering cost function faithfully.

7.4. Encoding Constrained Clustering
By noticing that for each k = 1..K we need to enforce that cl(vi) = k iff cl(vj) = k, the must-link

constraint over vi and Vj can be encoded under the unary encoding as

MLU (vi, vj) := {(¬y1i ∨ y1j), (y1i ∨ ¬y1j), . . . , (¬yKi ∨ yKj), (yKi ∨ ¬yKj)},

where the clauses (¬yki ∨ ykj) and (yki ∨ ¬ykj) correspond to yki ↔ ykj . For some intuition, in any solution
τ we have that, whenever τ(yki) = 1, the solution has to assign τ(ykj) = 1 in order to satisfy (¬yki ∨ ykj).
Furthermore, based on the other hard clauses, we know that there exists exactly one k = 1..K for which
τ(yki) = 1, and hence τ(yk

′
i) = 0 for all k′ 6= k. Thus τ has to assign τ(yk

′
j) = 0 in order to satisfy the

clause (yk
′
i ∨ ¬yk

′
j); hence the points are assigned to the same cluster.

The benefit of encoding the must-link constraint in this way compared to the similarity constraint pre-
sented earlier is the elimination of the auxiliary variables Akij and hence a decrease in the number of clauses
generated. On the other hand, similarity constraints cannot be encoded directly in this way since they are
soft. Furthermore, whenever a similarity constraint is not satisfied, the cost added to a MaxSAT solution
should be exactly the corresponding similarity value, which is controlled in a simple way with the Akij
variables.

Cannot-link constraints in the unary encoding can also be encoded more compactly than the dissimilarity
constraints. The variable Dij in the encoding is used to ensure that an unsatisfied dissimilarity constraint
corresponds exactly to cost |W (i, j)|. If we know that the dissimilarity constraint has to be satisfied (making
it a hard cannot-link constraint), we can simply leave out the extra variable. The intuition between the
cannot-link clauses is that for each k = 1..K and any solution τ , either τ(yki) = 0 or τ(ykj) = 0. Stated as
clauses, we have

CLU (vi, vj) := {(¬y1i ∨ ¬y1j), . . . , (¬yKi ∨ ¬yKj)}.

Example 6. (Running example of further constraints continued.)
Under the unary encoding, the NOTCOCLUSTERED(i, j, t) constraint, forbidding all three of the points

vi, vj and vt from being co-clustered, can be encoded with a set of K clauses

NOTCOCLUSTERED(i, j, t) := {(¬y1i ∨ ¬y1j ∨ ¬y1t), . . . , (¬yKi ∨ ¬yKj ∨ ¬yKt)}.

The constraint includes one clause for each cluster s = 1..K, each forbidding all three points from being
assigned to cluster s. The constraint ATMOSTINALL(k), requiring each cluster to contain at most k data
points, can be encoded as a conjunction of K cardinality constraints, namely, by enforcing

∑N
i=1 y

j
i ≤ k

over each cluster index j.

7.5. Constructing a Clustering from a MaxSAT Solution to the Unary Encoding
Given a solution τ to F 2, we can easily construct a corresponding well-defined clustering clτ of the

data points by assigning each point vi into the cluster k for which τ(yki) = 1. Due to the hard constraints
F 2
h , in any solution τ there is exactly one such k for every i. Especially, the clustering constructed from

an optimal solution to F 2 will be an optimal clustering of the data, minimizing the correlation clustering
objective function. This correctness of the unary encoding can be formalized as follows.

16

Theorem 3. Given a set V of data points with |V | = N , a symmetric similarity matrix W over V , and an
upper limit K on the available clusters such that 1 ≤ K ≤ N , let F 2 be the MaxSAT instance produced by
the unary encoding on W . The clustering clτ∗ : V → {1, . . .K} constructed from an optimal solution τ∗ to
F 2 is an optimal clustering of V over all clusterings cl : V → {1, . . .K}. In other words, clτ∗ is optimal
over all clusterings of V that use at most K clusters.

Intuitively, the theorem follows from the already discussed connections between cost incurred by a
clustering and the weight of unsatisfied soft clauses in the unary encoding. A proof of Theorem 3 is provided
in Appendix A.

8. A Binary Encoding of Correlation Clustering into MaxSAT

As the third encoding, we describe a binary encoding of correlation clustering as MaxSAT, which is
essentially a bitwise reformulation of the unary encoding. Similarly to the unary encoding, the binary
encoding allows an upper limit K on the available clusters. As is often the case with SAT and MaxSAT
encodings, the binary encoding is more compact than both the unary and the transitive encoding, regardless
of the input similarity matrix or the value of K. An instance formed by the binary encoding contains
O(E + N · log2K) variables and O(E · log2K) clauses, where E is the number of nonzero values in the
input similarity matrix W .

For simplicity, we first assume that K is a power of 2, more precisely K = 2a for some a ∈ N. From
this it follows that log2K = a is an integer. The encoding also works if this is not the case; we will describe
the required adaptations in Section 8.5. The encoding uses a variables bki where 1 ≤ k ≤ a for each point
vi. The intended semantics of these variables is that point vi is assigned to cluster index bai ..b

1
i , interpreted

as a binary number with the least significant bit to the right. Additionally, we employ two types of auxiliary
variables.

• EQkij , where 1 ≤ i < j ≤ N , W (i, j) ∈ R \ {0}, and 1 ≤ k ≤ a. The intended semantics of EQkij
is EQkij = 1 iff bki = bkj .

• Sij , where 1 ≤ i < j ≤ N and W (i, j) ∈ R \ {0}. Sij = 1 iff points vi and vj are co-clustered.
(Note the equivalence: also, if Sij = 0, then points vi and vj are not assigned to the same cluster.)

Hard Clauses F 3
h : EQUALITY(i, j, k) for all W (i, j) ∈ R \ {0}

SAMECLUSTER(i, j) for all W (i, j) ∈ R \ {0}
Must-Link MLB(vi, vj) for all i < j s.t. W (i, j) =∞

Cannot-Link CLB(vi, vj) for all i < j s.t. W (i, j) = −∞
If K 6= N and K 6= 2a for any a CLUSTERSLESSTHAN(i,K) for all vi ∈ V

Soft Clauses F 3
s : (Sij) for all similar vi, vj s.t. i < j

(¬Sij) for all dissimilar vi, vj s.t. i < j

Cost c of soft clauses c((Sij)) = W (i, j) for all similar vi, vj s.t. i < j

c((¬Sij)) = |W (i, j)| for all dissimilar vi, vj s.t. i < j

Figure 7: MaxSAT instance F 3 = (F 3
h , F

3
s , c) produced by the binary encoding.

An instance F 3 produced by the binary encoding is summarized in Figure 7. This time, the only hard
clauses required are the clauses defining the auxiliary variables. This is due to the fact that any MaxSAT

17

solution has to assign all the variables bki in some unique way, and hence any solution will represent a
well-defined clustering. We next describe the binary encoding in more detail.

8.1. Hard Clauses
As the bki variables form the bit-representation of the cluster index of point vi, the question of whether

two points vi and vj are assigned to the same cluster is equivalent to whether the values of bki and bkj are
equal for all 1 ≤ k ≤ a. In order to reason about the equality of individual bits, the binary encoding uses a
“equality” variables EQkij for each pair of points vi and vj for which i < j and W (i, j) ∈ R \ {0}. These
variables are defined to be equivalent to τ(bki) = τ(bkj) when τ is a solution to F 3. In terms of propositional
logic, the defining constraint is EQkij ↔ (bki ↔ bkj), which corresponds to the set of clauses

EQUALITY(i, j, k) := {(EQkij ∨ bki ∨ bkj), (EQkij ∨ ¬bki ∨ ¬bkj), (¬EQij ∨ ¬bki ∨ bkj), (¬EQij ∨ bki ∨ ¬bkj)}.

Encoding the semantics of the Sij variables is straightforward using the equality variables. Two points
vi and vj are assigned to the same cluster iff the values at each bit-position in the bit representation of their
cluster indices are the same. Stated in propositional logic, we have Sij ↔ (EQ1

ij ∧ . . . ∧ EQaij), which
corresponds to

SAMECLUSTER(i, j) := {(¬Sij ∨ EQ1
ij), . . . , (¬Sij ∨ EQaij), (Sij ∨ ¬EQ1

ij ∨ . . . ∨ ¬EQaij)}.

8.2. Soft Clauses
As the variable Sij has the exact same semantics as the variable xij in the transitive encoding, it can be

used to formulate the soft clauses of the binary encoding in a very similar manner as the soft clauses in the
transitive encoding. For every similar pair of points vi and vj , the cost of the clustering should increase by
W (i, j) whenever the points are not assigned to the same cluster. This condition is encoded by the unit soft
clause (Sij) with weight c((Sij)) = W (i, j). Analogously, for every dissimilar pair the instance includes
the soft clause (¬Sij) with weight c((¬Sij)) = |W (i, j)|.

8.3. Encoding Constrained Clustering
For compactly encoding the must-link constraint in the binary encoding, we simplify the similarity

constraint. We need to ensure that τ(bki) = τ(bkj) for all bits k = 1..a and all MaxSAT solutions τ . For a
fixed k, this can be stated as (bki ↔ bkj), which as clauses is expressed by (¬bki ∨ bkj), (bki ∨¬bkj). Hence the
whole must-link constraint is

MLB(vi, vj) := {(¬b1i ∨ b1j), (b1i ∨ ¬b1j), . . . , (¬bai ∨ baj), (bai ∨ ¬baj)}.

The cannot-link constraint can be seen as a simplified dissimilarity constraint. The variable EQkij and the
clauses defining it are still required for all bits. However, the cannot-link constraint can be stated as a single
clause: we simply require that there exists a bit-position k such that the values bki and bkj differ. The whole
cannot-link constraint is

CLB(vi, vj) := {EQUALITY(i, j, 1), . . . , EQUALITY(i, j, a), (¬EQ1
ij ∨ . . . ∨ ¬EQaij)}.

Example 7. (Running example of further constraints continued.) Due to the similar semantics of the Sij
variables of the binary encoding and the xij variables of the transitive encoding, both of our example
constraints can be encoded very similarly to the transitive encoding. The NOTCOCLUSTERED(i, j, t) con-
straint, forbidding all three of the points vi, vj and vt from being co-clustered, can be encoded by a single

18

clause NOTCOCLUSTERED(i, j, t) := (¬Sij ∨¬Sit ∨¬Sjt), i.e., more compactly than in the unary encod-
ing directly. Also, the ATMOSTINALL(k) constraint can be encoded similarly to the transitive encoding by
using for each vi, a cardinality constraint forbidding vi from being co-clustered with mode than k− 1 other
points:

∑
j={1...N}\{i} Sij ≤ k − 1.

8.4. Constructing a Clustering from a MaxSAT Solution to the Binary Encoding

Given a solution τ to F 3, there is again a very natural way of constructing a clustering of V . For each
data point vi, let τ(bai)τ(ba−1i) . . . τ(b1i) = c, where the left hand side is interpreted as a binary number,
and assign clτ (vi) = c + 1. Since the number of available bits is log2K, it follows that 0 ≤ c ≤ K − 1,
and hence 1 ≤ clτ (vi) ≤ K holds for all vi. The clustering constructed from an optimal solution to F 3 is
optimal amongst all clusterings using at most K clusters.

Theorem 4. Given a set V of data points with |V | = N , a symmetric similarity matrix W over V , and an
upper limit K on the available clusters such that 1 ≤ K ≤ N , let F 3 be the MaxSAT instance produced by
the binary encoding on W . The clustering clτ∗ : V → {1, . . .K} constructed from an optimal solution τ∗

to F 3 is an optimal clustering of V under W over all clusterings cl : V → {1, . . .K}. In other words, clτ∗
is optimal over all clusterings of W that use at most K clusters.

A proof of this theorem is provided in Appendix A.

8.5. The Binary Encoding for General K

So far we have assumed that the upper limit on the available clusters is an power of 2, or, more precisely,
that K = 2a for some a. This assumption simplifies the binary encoding since the values representable in
binary with a bits are exactly 0 to 2a − 1. It is also possible to constraint K to an arbitrary value. A simple
approach would be to encode a separate constraint for each point vi and each value j ∈ {K,K+1, . . . , 2a−
1} forbidding the value of the bit variables bai , . . . , b

1
i (interpreted as a binary number) from being equal to

j. However, this would result in O(N2 · log2N) clauses, the same as the worst-case size of the whole
encoding.

A more compact formulation can be obtained by observing that, for each data point we only need
to encode a single constraint stating that the value of its assigned cluster index should be less than K.
For a given K, let Kj denote the value of the jth bit in the binary representation of K. Note that as
2a−1 < K ≤ 2a, there are exactly a bits in the binary representation of K. For any set of bit variables
bai , . . . , b

1
i , denote the value represented by these variables in binary by (bai . . . b

1
i)2. For a given datapoint

vi we can encode the constraint (bai . . . b
1
i)2 < K recursively using the observation that a binary number

(bai . . . b
1
i)2 is less than another binary number (Ka . . .K1)2 iff

• Ka = 1 and bai = 0, or

• Ka = bai and (ba−1i . . . b1i)2 < (Ka−1 . . .K1)2.

This formulation of inequality between binary numbers follows directly from the properties of binary num-
bers. We encode it as MaxSAT by introducing a fresh variables Bj

i , 1 ≤ j ≤ a, and adding clauses defining
them recursively as

DEFB(i, 1) := B1
i ↔

(
¬b1i ∧ (K1 = 1)

)
,

DEFB(i, j) := Bj
i ↔

(
(¬bji ∧ (Kj = 1)) ∨ ((bji ↔ Kj) ∧Bj−1

i)
)
. (6)

19

As the value of K is known, we can simplify the definition accordingly when adding the clauses to the
encoding. Using these variables, the whole constraint limiting the number of clusters is enforced by the
clauses defining the semantics of the Bj

i variables, together with N unit clauses, one for each data point:

CLUSTERSLESSTHAN(i,K) := {DEFB(i, 1), . . . ,DEFB(i, a) | i = 1..N} ∪ {(Ba
1), . . . , (Ba

N)}.

The size of this formulation is O(N · log2(N)).

9. Experimental Evaluation

We will now describe an experimental evaluation of our MaxSAT-based approach to correlation cluster-
ing.

9.1. Benchmarks

We experiment on real-world datasets consisting of similarity values between amino-acid sequences of
different proteins [62], as well as similarity matrices we obtained from standard UCI benchmark datasets.
For each of the obtained similarity matrices, we normalized the matrix entries to the range [−0.5, 0.5].

9.1.1. Protein Sequence Datasets
We obtained four protein sequence datasets from http://www.paccanarolab.org/scps. The

data consists of similarity values between amino-acid sequences, originally computed using BLAST [63].
All values were originally in the range [0, 1.0]. Normalization of the similarity information to the range
[−0.5, 0.5] was done by subtracting 0.5 from each entry. Table 1 shows the number of data points for each
data set.

9.1.2. UCI Datasets
In addition to the protein sequence datasets, we produced similarity matrices based on the following

UCI datasets.

• ORL: the AT&T ORL database of images of faces, each of size 92 × 112. Obtained from http:
//www.cl.cam.ac.uk/research/dtg/attarchive/facedatabase.html.

• Ionosphere: the UCI ionosphere dataset, for classification of radar returns from the ionosphere, origi-
nally with 34 attributes. Obtained from http://archive.ics.uci.edu/ml/.

• Umist: the Sheffield (previously UMIST) Face Database, each face image of size 92× 112. Obtained
from http://www.sheffield.ac.uk/eee/research/iel/research/face.

• Breastcancer: the LIBSVM breast-cancer dataset, originally named “Wisconsin Breast Cancer in
UCI”. The set contains 10 features.
Obtained from http://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/.

• Diabetes: the LIBSVM diabetes dataset, originally from UCI, containing 8 features. Obtained from
http://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/.

• Ecoli: the UCI Ecoli dataset, containing protein localization sites, with 8 features. Obtained from
http://archive.ics.uci.edu/ml/.

20

Table 1: Number of data points in datasets considered

Dataset Number of points
Ecoli 327
Ionosphere 351
ORL 400
Prot 3 567
Umist 575
Prot 2 586
Prot 4 654
Prot 1 669
Breastcancer 683
Diabetes 768
Vowel 990

• Vowel: the LIBSVM Vowel dataset, originally from UCI, with 10 features. Obtained from http:
//www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/.

For these datasets, we first calculated the normalized Euclidean distance between each pair of points, and
directly interpreted the distances as similarity values by linear inverse mapping to the range [−0.5, 0.5]. In
order to simulate incomplete similarity information, we finally modified all similarity values in the range
[−0.25, 0.25] to be 0. The size of each dataset is reported in Table 1.

9.1.3. Setup
For solving the MaxSAT instances resulting from our encodings, we used the academic off-the-shelf

MaxSAT solver MaxHS [64, 55, 65] (MaxSAT evaluation 2013 version) obtained from the authors. MaxHS
implements a hybrid approach to MaxSAT solving, combining the logical reasoning power of a SAT solver
with the arithmetic reasoning power of an integer linear programming solver. During its execution, MaxHS
maintains a set of unsatisfiable cores (recall Section 5.2). At each iteration, the ILP solver is used for
finding a minimum-cost hitting set over the soft clauses in the current set of cores. Clauses in the hitting set
are then temporarily removed from the instance and the SAT solver is invoked again. MaxHS terminates
when the working formula is satisfiable, at which point the assignment returned by the SAT solver is an
optimal solution to the MaxSAT instance. We note that MaxHS is by no means the only possible choice for
a MaxSAT solver to use. We also report on a comparison of different state-of-the-art MaxSAT solvers in
Section 9.4.3, the results of which motivate the use of MaxHS.

We compare the MaxSAT-based approach with exactly solving the integer linear programming and the
quadratic integer programming formulations of correlation clustering (recall Sections 3 and 4, respectively).
We used the commercial state-of-the-art integer programming solvers IBM CPLEX (version 12.6) and
Gurobi Optimizer (version 6.0) for solving the integer linear programs, and additionally, the non-commercial
SCIP [66] framework for solving the quadratic integer programs. Furthermore, we also compare to two ap-
proximative algorithms in terms of the cost of solutions obtained: the approximation algorithm KwickClus-
ter (KC) proposed in [5] and further considered in [67], and the SDPC approach based on a semi-definite
relaxation of the quadratic integer programming formulation, proposed in [34]. More details on these algo-
rithms are provided in Section 10.1. For solving the semi-definite programs, we used the Matlab package
SeDuMi 1.3 [68].

21

On the protein data we also experimented with the algorithms described in [62], available from http:
//www.paccanarolab.org/scps, which are specialized algorithms for correlation clustering protein
sequences. The authors provide two algorithms that allow an unrestricted number of clusters by default.
One is based on spectral clustering (SCPS) and the other on connected component analysis (CCA).

In addition to the comparative results, we also report on MaxSAT-specific experiments on the effect of
MaxSAT-level preprocessing (in Section 9.4.1) and symmetry breaking (in Section 9.4.2) on solving times.
We employed MaxSAT preprocessing in all experiments due to its positive impact on solving times. As
for symmetry breaking on the MaxSAT-level in the other experiments, we only applied partial symmetry
breaking to all formulas by enforcing the point with the lowest index to always be assigned to the first
cluster.

A timeout of 8 hours and a memory limit of 30 GB were enforced on each individual run of a solver.
The experiments were run under Linux on eight-core Intel Xeon E5440 2.8-GHz cluster nodes each with 32
GB of RAM. In order to ensure repeatable results, only a single algorithm on a single benchmark instance
was executed on each cluster node at each time.

9.2. Experiments on Unconstrained Correlation Clustering

We first focus on unconstrained correlation clustering, i.e., correlation clustering under the assumption
that there are no infinite values in the input similarity matrices.

9.2.1. Comparison of Algorithms Providing Optimal Solutions
We start with a comparison of the exact approaches to correlation clustering: our three MaxSAT encod-

ings, the integer linear programming formulation (ILP), and the quadratic integer programming formulation
(QIP). As the size of the transitive encoding and the integer linear program does not depend on the number
of non-zero elements in the similarity matrix, for these experiments we created instances by varying the
number of points n ≥ 50 in the four protein datasets (Prot1, Prot2, Prot3 and Prot4) by considering only the
n first rows and columns of the original similarity matrix of each data set.

The results are shown in Figure 8. The reason for the absence of the QIP approach from the plot is
that neither CPLEX, Gurobi, nor SCIP was able to solve any of the quadratic programs exactly within
the time limit. For example, SCIP was able to solve the instances when using 20 points within seconds,
but was unable to solve 50 points within 8 hours. While we do not have a definitive explanation for this
poor behaviour, one possible explanation may deal with the non-convexity (recall Section 4) of the QIP
formulation of correlation clustering.4 The transitive and the unary MaxSAT encodings, as well as the ILP
approach, are competitive with the binary encoding only when the number of points is small. However,
all three MaxSAT encodings scale better than ILP and QIP. Both CPLEX and Gurobi ran out of memory
on the ILP formulation for instances larger than 300 points, suggesting it will fail to solve larger instance
irrespective of the timeout. Furthermore, the encodings for which the size of the instance is not dependent
on the number of non-zero entries in the similarity matrix cannot benefit from any sort of pruning that one
might be able to do on the similarity values of the input data.

Based on these observations, for the MaxSAT-based approach we focus on the binary encoding in the
rest of the experiments.

4This would be inline with behavior observed in other problem domains as well, see e.g. [69].

22

 1

 10

 100

 1000

 10000

 100 200 300 400 500 600

S
o
lv

in
g
 T

im
e
 (

s
)

Number of Points

ILP-Gurobi

ILP-Cplex

MaxSAT-Unary

MaxSAT-Transitive

MaxSAT-Binary

Timeout
 1

 10

 100

 1000

 10000

 100 200 300 400 500

S
o
lv

in
g
 T

im
e
 (

s
)

Number of Points

ILP-Gurobi

ILP-Cplex

MaxSAT-Unary

MaxSAT-Transitive

MaxSAT-Binary

Timeout

 1

 10

 100

 1000

 10000

 50 100 150 200 250 300 350 400 450

S
o
lv

in
g
 T

im
e
 (

s
)

Number of Points

ILP-Gurobi

ILP-Cplex

MaxSAT-Unary

MaxSAT-Transitive

MaxSAT-Binary

Timeout
 1

 10

 100

 1000

 10000

 100 200 300 400 500 600

S
o
lv

in
g
 T

im
e
 (

s
)

Number of Points

ILP-Gurobi

ILP-Cplex

MaxSAT-Unary

MaxSAT-Transitive

MaxSAT-Binary

Timeout

Figure 8: Point scalability of the exact approaches. Top left: Prot1, top right: Prot2, bottom left: Prot3, bottom right: Prot4.

9.2.2. Performance on Sparse Data
Next we simulate a setting in which the input data is sparse, that is, situations in which the similarity

information available is incomplete. For p ∈ {0.05, 0.10, . . . , 1}, we created instances from a given simi-
larity matrix W by independently setting each non-zero element W (i, j) to 0 with a probability 1− p. This
results in a matrix W ′ where the expected number of non-zero entries is p · 100% of the number of non zero
entries in W .

We ran each of the approximative algorithms 100 times on each instance, and report the best values
returned by them. We note that a single run of any of the approximative algorithms is very short, at most
one minute for SDPC and within 10 seconds for the others.

Figures 9, 10 and 11 summarize the result of solving the sparse instances. A sparser matrix results in
MaxSAT instances which are faster to solve. More importantly, however, we notice that MaxSAT is fairly
robust when it comes to dealing with sparse data and the cost of the solution clustering. We experimentally
compare the robustness of the different algorithms by calculating the cost H(W, cl) for clusterings cl which
were obtained withW ′ as input. This simulates a setting where there is some “true” objective function value
that we would like the algorithms to optimize, but the amount of information available to the algorithms is
limited/noisy. The cost of clusterings produced by the binary encoding is significantly lower than the other
generic correlation clustering algorithms KwickCluster and SDPC for all values of p solvable by MaxSAT.
For p > 0.4, the solutions obtained with MaxSAT have a clearly lower cost than the solutions provided by

23

 1

 10

 100

 1000

 10000

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

S
o
lv

in
g
 T

im
e
 (

s
)

p

MaxSAT-Binary-Prot2

MaxSAT-Binary-Prot1

Timeout

 600

 700

 800

 900
 1000

 1200

 1500

 2100

 2700

 3500

 4500

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

C
o
s
t
o
f
C

lu
s
te

ri
n
g

p

SDPC
KC

SCPS
CCA

MaxSAT-Binary

 650

 800

 1000

 1300

 1700

 2300

 3000

 4000

 5000

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

C
o
s
t
o
f
C

lu
s
te

ri
n
g

p

SDPC
KC

SCPS
CCA

MaxSAT-Binary

Figure 9: Top: Evolution of running times. Bottom: Cost of the clusterings obtained on sparse matrices. Bottom left: Prot1, bottom
right: Prot2.

 0.1

 1

 10

 100

 1000

 10000

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

S
o
lv

in
g
 T

im
e
 (

s
)

p

MaxSAT-Binary-Prot3

MaxSAT-Binary-Prot4

Timeout

 650

 800

 1000

 1300

 1700

 2300

 3000

 4000

 5000

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

C
o
s
t
o
f
C

lu
s
te

ri
n
g

p

SDPC
KC

SCPS
CCA

MaxSAT-Binary

 300

 400

 500

 600

 700

 900

 1200

 1700

 2500

 3500

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

C
o
s
t
o
f
C

lu
s
te

ri
n
g

p

SDPC
KC

SCPS
CCA

MaxSAT-Binary

Figure 10: Top: evolution of running times. Bottom: cost of the clusterings obtained on sparse matrices. Bottom left: Prot3, Bottom
right: Prot4. For the unsolvable MaxSAT instances we report the cost of the highest value of p still solvable.

24

 1

 10

 100

 1000

 10000

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

S
o
lv

in
g
 T

im
e
 (

s
)

p

MaxSAT-Binary-Umist
MaxSAT-Binary-Ion
MaxSAT-Binary-Orl

Timeout
 15
 20

 35

 55

 100

 150
 200

 300

 700

 2000

 3000
 4000

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

C
o
s
t
o
f
C

lu
s
te

ri
n
g

p

SDPC
KC

MaxSAT-Binary

 100

 150

 200

 300

 400

 1800

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

C
o
s
t
o
f
C

lu
s
te

ri
n
g

p

SDPC
KC

MaxSAT-Binary

 400

 500

 700

 900

 1200

 1700

 4500

 5500

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

C
o
s
t
o
f
C

lu
s
te

ri
n
g

p

SDPC
KC

MaxSAT-Binary

Figure 11: Evolution of running times (top left) and the cost of the clusterings obtained on sparse matrices. Top right: orl, bottom
left: ionosphere, bottom right: umist. For the unsolvable MaxSAT instances we report the cost of the highest value of p still
solvable.

two algorithms specialized for clustering protein sequences. Perhaps the most significant observation here
is that, whenever the dataset was not solvable within the timeout, the clusterings obtained by MaxSAT on
the highest value of p still solvable had in general a lower cost than any of the approximative algorithms at
p = 1.0. This suggests that one can prune away a significant number of the non-zero entries in a matrix,
hence speeding up MaxSAT solving, and still obtain clusterings of lower cost than those obtained with the
approximative algorithms. We hypothesize that a more sophisticated method of pruning, perhaps taking into
account the structure of the input matrix, could further improve the results. Comparing KwickCluster with
SDPC, we observe that semi-definite programming performs slightly better on extremely sparse instances.
However, when the density of the underlying graph increases, the performance of KwickCluster improves
while the performance of SDPC remains fairly constant. One possible explanation for this could be that the
relaxation of a quadratic program into a semi-definite program (see Section 10.1 for details) has a similar
effect to the quality of the obtained clustering as pruning similarity information from the matrix.

9.3. Constrained Correlation Clustering

We now turn our attention to MaxSAT-based constrained correlation clustering.

25

9.3.1. Instance-Level Constraints
We first consider a situation in which an oracle, for example a domain expert, provides domain specific

knowledge in the form of a set of must-link and cannot-link constraints the solution clusterings are expected
to satisfy. By running several tests with an increasing number of constraints, we simulate a setting in which
the current solution clustering is shown to the oracle, who is then allowed to add more constraints to the
clustering algorithm in order to further restrict the set of acceptable clusterings. An iterative setting like this
has previously been studied for example in [70, 71] and has been shown to greatly increase the clustering
accuracy in other clustering problems [70, 71, 27].

We simulate this setting with the help of a (human created) “golden” clustering supplied with each of the
datasets. Given the similarity matrixW based on a dataset, the golden clustering can be seen as a symmetric
similarity matrix GW of the same dimension where each element is either ∞ or −∞. To simulate this
iterative setting, we sampled an increasing number of pairs of indices i < j, and modify W by assigning
W (i, j) = GW (i, j). Added x% user knowledge (UK) means that x% of available pairs of indices i < j
were sampled. This results in a setting in which at each iteration the MaxSAT algorithm has an increasing
amount of information on the golden clustering. We note that, to the best of our knowledge, the considered
approximative algorithms cannot handle such a constrained correlation clustering setting directly. Even
though additional constraints could be included into the semi-definite program solved with SDPC, there
are no guarantees that the clustering obtained after the rounding procedure within SDPC respects the added
constraints (see Section 10.1 for more details). This is why all the values reported for those are for 0% added
UK.

In these tests the performance of our encoding is evaluated using the well-known rand index [72] de-
signed for measuring the similarity of two clusterings.

Definition 1. Given a dataset V = {v1 . . . vN}, a clustering cl of V , and an example clustering g, let

TP = |{(vi, vj) | cl(vi) = cl(vj) ∧ g(vi) = g(vj)}|

denote the number of pairs of points i < j that are co-clustered in both cl and g (true positives). Let

TN = |{(vi, vj) | cl(vi) 6= cl(vj) ∧ g(vi) 6= g(vj)}|

denote the number of pairs of points i < j that are assigned to different clusters in both cl and g (true
negatives). The rand index of cl and g is then

R(cl, g) =
TP + TN(

N
2

) =
2 · (TP + TN)

N · (N − 1)
.

Note that the denominator is the total number of unordered pairs of points over N data points.

As discussed in Section 2.3, ML and CL constraints are a non-trivial addition to the correlation clustering
problem. Local search style clustering algorithms tend to suffer from over-constrainment in the sense that
adding too many constraints can prevent such algorithms from converging. In contrast, the running time of
the MaxSAT solver decreases with added constraints, see Figure 125. As a consequence, using UK several
additional datasets could be fully clustered with MaxSAT.

5Note that, especially when using a MaxSAT solver which searches bottom-up in the cost function (such as MaxHS), adding
more constraints could also have a negative effect on ther running times of the solver.

26

 1

 10

 100

 1000

 10000

 0 0.5 1 1.5 2 2.5 3 3.5

S
o

lv
in

g
 T

im
e

 (
s
)

% of UK added

MS-Binary Prot1
MS-Binary Prot2
MS-Binary Prot4
MS-Binary Prot3

 0.1

 1

 10

 100

 1000

 10000

 0 0.5 1 1.5 2 2.5 3 3.5

S
o

lv
in

g
 T

im
e

 (
s
)

% of UK added

MS-Binary Vowel
MS-Binary BreastCancer

MS-Binary Diabetes
MS-Binary Ecoli

MS-Binary Ion

Figure 12: Evolution of running times of the MaxSAT solver with increasing amount of user knowledge added to the matrices.

Finally, we demonstrate that added UK constraints steer the clusterings produced by our MaxSAT en-
coding effectively towards the golden clustering. Figure 13 shows how the rand index increases as ML and
CL constraints are added to the original similarity matrix. The number of extra constraints required for our
algorithm to achieve rand indexes over 0.95 is for most datasets fairly small. The results suggest that extra
constraints are highly beneficial and user knowledge should be taken advantage of whenever available.

9.3.2. Cluster-Level Constraints
To illustrate that the MaxSAT-based approach also enables obtaining optimal solutions which are guar-

anteed to satisfy cluster-level constraints, we consider a Cluster Dissimilarity constraint CL-DIS(k), closely
related to constraints previously studied in distance-based clustering. Informally, a clustering cl satisfies the
CL-DIS(k) constraint if no pair of points that are “more similar” than the threshold k are assigned to dif-
ferent clusters. More precisely, we require that W (i, j) < k whenever cl(vi) 6= cl(vj). This constraint is
similar to the δ constraint in [37], where it was enforced by observing that the constraint can be decomposed
into a set of ML constraints: whenever W (i, j) > k, we add a ML constraint over vi and vj .

Figure 14 demonstrates the running time of MaxHS on the four protein datasets (without any pruning)
and an added CL-DIS(k) constraint for different threshold values k. Recall that all values in the benchmark
similarity matrices were normalized to be between−0.5 and 0.5, which explains why we experimented with
the threshold values 0.02, 0.04, . . . , 0.5. Note that k = 0.5 means that we are solving the original instance.
All in all, the results show that the running time of MaxHS decreased drastically already for values only
slightly below 0.5, all such instances being solvable in under a second.

9.4. MaxSAT-Specific Experiments

For the rest of this section, we will focus more MaxSAT-specific questions. We will consider the effects
of MaxSAT-level preprocessing and symmetry breaking, as well as the performance of different state-of-the-
art MaxSAT solvers, under the best-performing binary encoding. For these experiments we used the same
set of benchmarks as in Section 9.2.2. We begin by considering preprocessing.

9.4.1. Effects of MaxSAT Preprocessing
Preprocessing is today an essential part of SAT solving. However, to date there has been few studies

on MaxSAT preprocessing [73, 74]. As such, MaxSAT preprocessing is a relatively recent area of research,

27

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 0.5 1 1.5 2 2.5 3 3.5

R
a
n
d
 I
n
d
e
x

% UK Added

MaxSAT-Binary

SCPS No UK

CCA No UK

KC No UK

SDPC No UK

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 0.5 1 1.5 2 2.5 3 3.5

R
a
n
d
 I
n
d
e
x

% UK Added

MaxSAT-Binary

SCPS No UK

CCA No UK

KC No UK

SDPC No UK

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1 1.5 2 2.5 3 3.5

R
a
n
d
 I
n
d
e
x

% UK Added

MaxSAT-Binary

SCPS No UK

CCA No UK

KC No UK

SDPC No UK

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1 1.5 2 2.5 3 3.5

R
a
n
d
 I
n
d
e
x

% UK Added

MaxSAT-Binary

CCA No UK

SCPS No UK

KC No UK

SDPC No UK

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0.5 1 1.5 2 2.5 3 3.5

R
a
n
d
 I
n
d
e
x

% UK Added

MaxSAT-Binary Diabetes

MaxSAT-Binary BreastCancer

KC-BreastCancer No UK

SDPC-Diabetes No UK

SDPC-BreastCancer No UK

KC-Diabetes No UK

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 1 2 3 4 5

R
a
n
d
 I
n
d
e
x

% UK Added

MaxSAT-Binary Ion
MaxSAT-Binary Vowel
MaxSAT- Binary Ecoli

KC-Vowel No UK
KC-Ecoli No UK

SDPC-Ecoli No UK
SDPC-Vowel No UK

KC-Ion No UK
SDPC-Ion No UK

Figure 13: Evolution of the Rand index with increasing amount of user knowledge added to the matrices. The datasets from the
top, left to right are: Prot1, Prot2, Prot3, Pro4, Breastcancer/Diabetes, Ecoli/Ionosphere/Vowel.

possibly due to the fact that not all popular SAT preprocessing techniques can be directly applied in the
context of MaxSAT [73]. However, one recently proposed way of using SAT preprocessing on MaxSAT
instances is through the so-called labeled-CNF framework [75, 73] which we also apply here.

We preprocess a given MaxSAT instance F = (Fh, Fs, c) with N soft clauses in the following way.

1. Form the CNF formula FSAT = Fh ∪ Fr, where Fr = {(wi ∨ ¬ri) | wi ∈ Fs, i = 1..N}, with each

28

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.04 0.08 0.12 0.16 0.2 0.24 0.28 0.32 0.36 0.4 0.44 0.48

S
o
lv

in
g
 T

im
e
 (

s
)

Threshold

Prot2

Prot1

Prot3

Prot4

Figure 14: Running time of the MaxSAT solver with CL-DIS(k) constraint for different values of k.

of the variables ri not appearing anywhere in FSAT except the clause (wi ∨ ¬ri), thus obtaining the
so-called labeled-CNF [75].

2. Apply the Coprocessor 2.0 [76] SAT preprocessor on FSAT , obtaining the CNF formula F ′SAT . Co-
processor implements a large range of modern SAT preprocessing techniques, including unit propaga-
tion, variable elimination [77], clause elimination [78, 79], binary clause reasoning [80], etc. We used
the white-listing option of Coprocessor to disable the preprocessor from removing any occurrences of
any of the ri variables. This is critical for ensuring correctness on the MaxSAT-level [75].

3. Finally, we constructed the MaxSAT instance FPRE = (FPREh , FPREs , cPRE) where FPREh =
F ′SAT , FPREs = {(ri) | i = 1..N} and cPRE(ri) = c(wi). Now OPT(F) = OPT(FPRE) and
any solution τ to FPRE can be extended into a solution for F of equal cost in polynomial (negligible)
time, similarly as when applying SAT preprocessing on the SAT-level [81].

The preprocessing time of MaxSAT instances resulting from the binary encoding was negligible, less than
10 seconds for each instance.

Figure 15 demonstrates the difference in running time with and without preprocessing on instances
consisting of 50% and 100% of the non-zero values of the datasets. On a majority of 94 out of 140 instances,
preprocessing lowered the running time of the MaxSAT solver enough to compensate for the extra time spent
on preprocessing. Furthermore, all instances that were solved without preprocessing were also solved after
applying preprocessing. However, we did also observe instances on which preprocessing had a negative
impact on the running time, exemplified in Figure 15 by the Prot1 dataset.

9.4.2. Effect of Symmetry Breaking
The solution space of correlation clustering is highly symmetric: given any clustering cl : V → {1 . . . |V |}

of a set of data points, the cluster indices can be arbitrarily permuted without affecting the actual partition-
ing of the data points and hence its cost. This leads to the question of whether MaxSAT solving could be
sped-up by breaking some of these symmetries on the MaxSAT-level.

29

 0

 5000

 10000

 15000

 20000

 25000

 30000

Io
n
.1

0
0
%

O
rl
.1

0
0
%

U
m

is
t.
1
0
0
%

P
ro

t1
.1

0
0
%

P
ro

t2
.1

0
0
%

P
ro

t3
.1

0
0
%

P
ro

t4
.1

0
0
%

Io
n
.5

0
%

O
rl
.5

0
%

U
m

is
t.
5
0
%

P
ro

t1
.5

0
%

P
ro

t2
.5

0
%

P
ro

t3
.5

0
%

P
ro

t4
.5

0
%

S
o
lv

in
g
 T

im
e
 (

s
)

NoPreProcess
PreProcess

Timeout

Figure 15: Effect of preprocessing MaxSAT instances. The percentage in the instance name is the expected number of nonzero
entries (compared to the full instance). Solving times reported for MaxHS and the binary encoding.

Full symmetry breaking seems unlikely to be beneficial, due to the fact that a very large number of
clauses—going far beyond the size of the binary encoding—would be needed. More formally, define a
relation ≡ over the set of possible clusterings of V by cl ≡ cl′ if cl = σ ◦ cl′ for some permutation σ.
It is simple to see that the relation ≡ is an equivalence relation. Full symmetry breaking corresponds to
adding constraints that forbid all but one member out of each equivalence class of ≡. A straightforward
approach to achieve this would require clauses that identify some representative point (e.g., the smallest)
assigned to each cluster in a clustering and enforce an ordering over these points. This could be done by
encoding constraints stating If vi is not co-clustered with vj for any j < i, then cl(vi) > cl(vk) for all k < i.
Such a constraint can be encoded into MaxSAT by techniques similar to the ones presented in Section 8.
However, as there can be up to N clusters, this would introduceO(N3) new clauses, which would evidently
deteriorate the performance of a MaxSAT solver. As a related observation, note that the cubic transitive
MaxSAT encoding breaks all symmetries, but does not perform as well as the binary encoding (without
symmetry breaking).

Even though full symmetry breaking seems infeasible, we might still be able to boost solver perfor-
mance by applying partial symmetry breaking to our encoding. Partial symmetry breaking refers to includ-
ing clauses that remove (only) some symmetric solutions. As a simple example and the baseline in our
experiments, we have the already mentioned the very simple first point into the first cluster constraint that
can be enforced with log2N unit clauses of the form (¬bi1), 1 ≤ i ≤ log2N .

A more involved symmetry breaking constraint we consider is the CLUSTERSLESSTHAN(i,N) pre-
sented in Section 8.5. Without enforcing a limit on the number of clusters, the constraints CLUSTERSLESSTHAN(i,N)
are not required in order for the encoding to be correct. However, including them does prune away a sig-
nificant number of symmetric solutions. Furthermore, the constraints are relatively compact, in total only
O(N · log2(N)) new clauses need to be added. In our experiments we call this type of symmetry breaking
REMOVESLACK.

30

A further form of symmetry breaking deals with symmetries induced by the possibility of empty clusters.
As an instance created by the binary encoding allows (at least) N different cluster indices for every point,
the placement of empty clusters can potentially introduce symmetries into the solution space. Assume
for example that some optimal clustering cl contains C clusters. Then cl is equivalent to at least

(
N

N−C
)

other clusterings, depending on which of the N cluster indices are empty. We can remove some of these
symmetries by forcing the empty clusters to occupy indices C + 1, . . . N , or, more generally, the largest (or
equivalently, the smallest) available indices. We next describe the encoding of this constraint in terms of the
binary encoding.

Assume that we are using a bits to represent the cluster indices in the binary encoding. We introduce
new variables E1 . . . E(2a), with the intended interpretation τ(Ej) = 1 iff c(v) 6= j for all v ∈ V , that is,
cluster j is empty. Using these variables, the empty cluster indices are propagated with constraints of the
form Ei → Ei+1 which inductively require that the clusters of higher index than an empty cluster are also
empty, and that all clusters of lower index than a non-empty cluster are also non-empty. To define the Ej
variables for a given cluster j and data point vi, let bt∗i denote the literal corresponding to the value of the
t:th bit in j, i.e., bti if the t:th bit in j is 1, and ¬bti otherwise. Now the Ej variable can be defined as

Ej ↔
N∨
i=1

(
b1∗i ∧ . . . ∧ ba∗i

)
,

which can be compactly represented as clauses by introducing N new auxiliary variables Cj1 , . . . , C
j
N and

defining them as Cji ↔
(
b1∗i ∧ . . . ∧ ba∗i

)
. Similar constraints are introduced for all of the Ei variables.

We call this type of symmetry breaking PROPAGATEEMPTY. Compared to REMOVESLACK, the PROPA-
GATEEMPTY constraint breaks more symmetries. In particular, symmetries broken by PROPAGATEEMPTY

include all of the symmetries broken by REMOVESLACK. However, PROPAGATEEMPTY is more costly in
terms of encoding size. In total, the constraints introduce O(N2 · log2N) new clauses. Recall that the total
size of the binary encoding is O(E · log2N) where E is at most of order N2, which means that enforcing
the PROPAGATEEMPTY constraint might significantly increase the number of clauses on sparse instances.

Figure 16 demonstrates the effect of the REMOVESLACK constraint compared to the baseline. The
PROPAGATEEMPTY constraint is missing from the figure due to the fact that, when enforcing it, no instances
could be solved within the timeout. We hypothesize that the reason for this is the significant number of
clauses required for encoding it. As a concrete example, the preprocessed Prot1 dataset with 100% of
the non-zero values present contains 323 301 clauses without PROPAGATEEMPTY and 6 427 796 clauses
when enforcing PROPAGATEEMPTY. However, as can be seen in Figure 16, the REMOVESLACK constraint
actually does improve solver performance on most instances.6

9.4.3. A Comparison of MaxSAT solvers
In the main experiments reported in this work, we used the MaxHS MaxSAT solver, which has shown

very good performance especially in the “crafted” category of the recent MaxSAT Evaluations7. Here we
report on the performance of other state-of-the-art MaxSAT solvers, using the following solvers.

• Eva500 solver [82], obtained from http://www.maxsat.udl.cat/14/solvers/.

6We remind the reader that, apart from the first point into the first cluster constraint, symmetry breaking was not applied in the
other experiments reported on in this article.

7http://www.maxsat.udl.cat/14/results/index.html#wpms-crafted

31

 0

 5000

 10000

 15000

 20000

 25000

 30000

Io
n
.1

0
0
%

O
rl
.1

0
0
%

U
m

is
t.
1
0
0
%

P
ro

1
.1

0
0
%

P
ro

t2
.1

0
0
%

P
ro

t3
.1

0
0
%

P
ro

t4
.1

0
0
%

Io
n
.5

0
%

O
rl
.5

0
%

U
m

is
t.
5
0
%

P
ro

1
.5

0
%

P
ro

t2
.5

0
%

P
ro

t3
.5

0
%

P
ro

t4
.5

0
%

S
o
lv

in
g
 T

im
e
 (

s
)

Base
RemoveSlack

Timeout

Figure 16: Effect of different symmetry breaking techniques on the solving time of MaxSAT. The percentage in the instance name is
the expected number of nonzero entries (compared to the full instance). Solving times reported for MaxHS and the binary encoding.

• MsUnCore bcd2 version [49, 48] obtained from http://www.csi.ucd.ie/staff/jpms/
soft/soft.php.

• OpenWBO [83, 84] version 1.1.1. obtained from http://sat.inesc-id.pt/open-wbo/.

• The ILP2013 solver [56]. We implemented the conversion to an integer program ourselves and used
CPLEX to solve the resulting instances.

The first three in the list are core guided solvers (recall Section 5.2). Eva500 uses the identified cores and
a restricted form of MaxSAT resolution [85] to relax the MaxSAT instance in a controlled way. MsUnCore
performs binary search over the cost function and also maintains a set of already identified disjoint cores
and relaxes each core separately whenever a new one is found. OpenWBO uses an incremental approach
that allows it to pertain the state of the internal SAT solver more efficiently between the iterations. ILP2013
encodes the whole MaxSAT instances as an integer linear program and then calls an ILP solver. Since
MsUnCore, OpenWBO and Eva500 accept only integral weights, for running these solvers we multiplied
all similarity values by 1013 (the highest possible multiplier with which the trivial cost upper bound required
as input by the solvers still stays within the 263 range) and rounded afterwards to integers. Table 2 gives a
performance comparison of the solvers. MaxHS scales significantly better than the other solvers. All in all,
MaxHS solved 121 instances within the timeout while the second-best performing Eva500 solved 65. The
other solvers in the comparison timed out on most instances. Note that, apart from the first point into the
first cluster constraint, symmetry breaking was not applied in this experiment.

10. Related work

We continue with a survey on related work.

32

Table 2: Comparison of MaxSAT solvers
Solver Number of solved instances Number of timeouts
MaxHs 121 19
Eva500 65 75
ILP2013 7 133
MsUnCore 7 133
OpenWBO 0 140

10.1. Correlation Clustering

While the notion of producing good clusterings under inconsistent advice first appeared in [11], the for-
mal definition of correlation clustering was proposed in [4] and shown to be NP-hard on complete graphs
with each edge labeled with + or −; or, in terms of the general problem definition considered in this
work, on symmetric similarity matrices W where W (i, j) = {−1, 1} for all i and j. NP-hardness moti-
vated early work on approximative algorithms for the problem. Approximation algorithms for correlation
clustering typically address one of three different objectives for the problem: minimizing disagreements,
maximizing agreements, or maximizing correlation. Given a similarity matrix W over a set of data points
V = {v1, . . . , vN}, minimizing disagreements refers to minimizing the number of point pairs vi, vj whose
cluster assignment does not agree with their similarity value W (i, j), or more precisely, to finding a cluster-
ing cl minimizing∑

i<j
∞>W (i,j)>0

I[cl(vi) 6= cl(vj)]W (i, j) +
∑
i<j

−∞<W (i,j)<0

I[cl(vi) = cl(vj)]|W (i, j)|. (7)

Maximizing agreements refers to maximizing the number of pairs of points vi, vj whose cluster assignment
agrees with their similarity value W (i, j), or more precisely, to finding a clustering cl maximizing∑

i<j
∞>W (i,j)>0

I[cl(vi) = cl(vj)]W (i, j) +
∑
i<j

−∞<W (i,j)<0

I[cl(vi) 6= cl(vj)]|W (i, j)|. (8)

Maximizing correlation refers to maximizing the difference between agreements and disagreements, i.e.,
using the objective function obtained by substracting Equation 7 from Equation 8.

A polynomial-time approximation scheme for maximizing agreements on complete symmetric matrices
with {−1, 1} similarity values was presented in [4]. No such scheme is likely to exist for minimizing
disagreements as the problem is APX-hard [86]. On general matrices, maximizing agreements is also APX-
hard [6], except for when the ratio between the smallest and largest absolute value in the matrix is bounded
by a constant [33]. To the best of our knowledge, the SDPC algorithm proposed in [34] and detailed below
is the best known approximation algorithm for maximizing correlation.

The two approximative algorithms for correlation clustering we experimented with in this work are
based on different techniques. KwickCluster [5] is a greedy combinatorial approximation algorithm that
at each iteration picks one of the still unassigned nodes to be the pivot node, and forms a new cluster
containing the pivot node and all still unassigned nodes that are similar to the pivot node (recall that nodes
vi and vj are similar if W (i, j) > 0 in the similarity matrix under consideration). The algorithm terminates
when all points have been assigned to some cluster. The same algorithm also appears in [67] under the
name PivotAlg. As shown in [5, 67], KwickCluster is a factor-3 approximation algorithm for minimizing

33

disagreements under the assumption that W (i, j) ∈ {−1, 1} for all i and j, and a factor-5 approximation
algorithm under the assumption that −1 ≤W (i, j) ≤ 1 for all i, j.8

SDPC [34] is based on rounding solutions to a semidefinite program that itself is a relaxation of the
quadratic programming formulation of correlation clustering restricted to two clusters. Restricting the cor-
relation clustering problem search space to clusterings only containing two clusters, the quadratic program
in Equation 4 (recall Section 4) can be formulated equivalently as

MAXIMIZE

N∑
i=1

N∑
j=i+1

(W (i, j)zizj)

where zi ∈ {−1, 1} for all i, (9)

where N is the number of data points, and the value in the solution of the variable zi indicates whether point
vi is assigned to cluster 1 or −1. This quadratic program can be relaxed into the semidefinite program

MAXIMIZE

N∑
i=1

N∑
j=i+1

(W (i, j)ui · uj)

where |ui| = 1 for all i

ui ∈ RN for all i, (10)

where each zi binary variable from Equation 9 is represented by a vector ui on the unit sphere in RN . The
relaxation of the quadratic program (Equation 9) into the semidefinite program (Equation 10) is standard,
being similar to the SDP relaxation for MaxCut presented in [87].

In [34] an algorithm that rounds a solution obtained to Equation 10 into a well-defined clustering is
presented and shown to achieve a Ω

(
log(N)−1

)
approximation factor for maximizing correlation. The

algorithm compares clusterings obtained from rounding the semi-definite program with the (unique) cost of
the trivial clustering in which all data points are assigned to different clusters, and returns the better solution
out of these two.

In [33] the authors develop a PTAS for maximizing agreements on general matrices under the assumption
that the ratios between weights in the input matrices are bounded by a constant, which implies that the
matrices cannot contain 0-entries, i.e. the available similarity information has to be complete. The PTAS is
developed by using the smooth polynomial programming technique on the QIP formulation, which results
in strong approximation bounds for the maximization problem on matrices satisfying the assumption.

In [88] a more restricted version of the approximative correlation clustering algorithm of [4] is presented,
with experiments on identifying and resolving noun co-reference in texts. In [89] a greedy randomized
adaptive search procedure (GRASP) based approximative algorithm is presented, with the motivation that
the obtained solutions can be used as a criterion for determining the balance in social networks. Also, in [10]
correlation clustering is used for crosslingual link detection between google news groups. The authors
build on the results of [86] and present an algorithm based on relaxing the ILP formulation of correlation
clustering into a linear program and then using region growing techniques for rounding of the solution of
the linear program. As such, their algorithm is also approximative in nature and, in contrast to our approach,
cannot provide optimality guarantees. The authors also provide some results on exactly solving the ILP
with added must-link and cannot-link constraints9. As noted in [10] and supported by our experiments, the

8Recall that a factor α approximation algorithm on a minimization (maximization) problem is guaranteed to return a solution of
cost lower (higher) than α times the cost of the optimal solution.

9Unfortunately, the authors were unable to provide an implementation of their algorithm.

34

ILP-based approach to correlation clustering suffers from the fact that the number of constraints is cubic in
the number of data points, leading to memory problems in practice. The authors of [10] approach the issue
by splitting the LP into smaller chunks and processing the chunks separately. In contrast, our experimental
results suggest that using MaxSAT for solving correlation clustering is more memory-efficient without extra
tuning. There has also been some work done on a variant of correlation clustering in which the the search is
further restricted to cl : V → {1, . . .K} for some K < N [8]. As explained in Sections 7 and 8, both the
binary and the unary encoding can be used in this setting as well.

A few generalizations of correlation clustering have been proposed. In [12] the authors experiment
with correlation clustering allowing overlapping clusters. The proposed solution to overlapping correlation
clustering is a local search algorithm that locally adjusts the solution clustering as long as the cost func-
tion decreases. Out of the MaxSAT encodings presented in this work, the unary encoding extends naturally
to overlapping clustering by changing the cardinality constraint EXACTLYONE(i) of each point to a more
general

∑K
k=1 y

k
i ≤ p, where p is the maximum number of clusters a single point can be assigned to. The

resulting encoding can be shown to produce globally optimal solutions to the overlapping clustering prob-
lem. Another proposed generalization to correlation clustering is chromatic correlation clustering [13]. In
the basic form of correlation clustering, there are two possible relationships between pairs of data points. A
pair of data points can either be similar, dissimilar (or neither). Chromatic correlation clustering generalizes
this by allowing more than two different categories of relationships. This can be visualized as an undirected
graph in which each edge is colored. The task is then to find a clustering that maximizes color purity of
edges within clusters. Our MaxSAT encodings can be extended to cover Chromatic Correlation Clustering
by introducing variables which represent the principal color of each cluster.

10.2. Constrained Clustering
As exemplified in Section 9.3, the MaxSAT-based approach allows for obtaining solution which are

guaranteed to satisfy additional hard constraints on the clusterings of interest. This includes both instance-
level and, as exemplified in Section 9.3.2, even some distance-based cluster-level constraints which have
been previously studied in the context of constrained clustering [90, 23]. The idea of adding constraints
to the clustering problem was first introduced in [27, 28]. The introduction of constraints to the clustering
problem allows the addition of domain knowledge to the problem and has been shown to increase cluster-
ing accuracy [27]. Much of the early work on constrained clustering concentrated on modifying existing
heuristics and clustering algorithms in order to allow the addition of constraints. Examples include k-means
and COB-WEB [27, 28], EM [91], hierarchical [92] and spectral clustering [93]. The problem of deciding
if there exists a clustering satisfying a given set of must and cannot-link constraints was shown to be NP
hard in [37]. In fact, many of the modified approximative algorithms are not even guaranteed to return a
clustering satisfying all user constraints. The algorithms also have difficulties in handling too many extra
constraints, they are easily over-constrained, preventing the algorithms from converging at all [37].

An alternative approach to constrained clustering is to cast the task as a constraint optimization problem,
allowing for a very natural incorporation of added constraints. This is the approach which we employ in
this work. A similar idea was proposed in [23] in a different clustering setting. The authors show that
a satisfiability-based framework is well-suited for constrained clustering in the sense that constraints are
easily added, the solutions returned are guaranteed to be globally optimal and satisfy all given constraints,
and the search algorithm is not as easily over-constrained. Our approach to solving constrained correlation
clustering is similar, but more generic as we do not restrict ourselves to only allowing two distinct clusters,
which is a polynomial time special case of the general clustering problem. Furthermore, our encoding are
on the MaxSAT-level (optimization instead of pure SAT), and employ a MaxSAT solver instead of a pure
SAT solver.

35

Constrained clustering has also been approached via integer programming. In [94, 95] a variety of
different possible constraints and optimization functions are considered. However, in practice their approach
might be difficult to use as it requires a predetermined set of candidate clusters from which the algorithm
searches for the best subset. In [90, 96] the authors use an integer programming and column generation
based approach in order to exactly solve the minimum sum of squares clustering problem. Constrained
clustering has also been approached, again in a different clustering setting, by constraint programming
(CP) [97, 24]10. In [97] different optimization criteria for clustering are studied and solved by casting the
clustering problems as constraint programming problems. A SAT-based framework of constrained clustering
has also been proposed for example in [31], but optimization criteria are not applied in their experiments.
In [24] a general framework for K-pattern set mining under constraints is introduced. The authors present a
general framework and explore the strengths and limitations of using constraint programming. Yet another
recent example of using declarative programming in the context of clustering is [26], in which an ILP
formulation of hierarchical clustering, with an explicit objective function that is globally optimized, was
presented; that approach would similarly allow for satisfying hard constraints over the solution space.

11. Conclusions

This work contributes to the research direction of harnessing constraint solving for developing novel
types of generic data analysis techniques. The focus of our study is the applicability of state-of-the-art
Boolean optimization procedures to cost-optimal correlation clustering in both unconstrained and con-
strained settings. To this end, we presented a novel MaxSAT-based framework for solving correlation clus-
tering. Our approach is based on casting the clustering problem declaratively as weighted partial maximum
satisfiability, and using a generic MaxSAT solver for finding cost-optimal clusterings. We studied three
different encodings of correlation clustering as MaxSAT, and reported on an experimental evaluation, com-
paring both the time required to solve the resulting MaxSAT instances, and the quality of the clusterings
obtained. We compared the MaxSAT-based approach to previously proposed both exact (integer linear and
quadratic programming based) and approximative (specialized local search and approximation algorithms
and semi-definite programming) approaches on real-world datasets. The MaxSAT approach scales better
than the exact integer linear and quadratic programming approaches, and provides clusterings of signifi-
cantly lower cost than the approximative algorithms, especially when the input data is sparse. Due to the
intrinsic computational hardness of correlation clustering, we acknowledge that a potential issue with our
approach is scalability, especially scaling the MaxSAT-based approach to very large datasets (with tens of
thousands of data points). Nevertheless, the approach can provide cost-optimal clusterings on real-world
datasets with close to a thousand points. The approach is also flexible when it comes to satisfying user-
specified constraints, i.e., in constrained correlation clustering. The running times of the approach can
notably decrease in a constrained setting, allowing for solving larger datasets faster compared to the non-
constrained setting. This is in stark contrast with local search algorithms which easily suffer from over-
constraining in constrained settings. It is conceivable that our approach can be improved also by foreseeable
improvements to generic MaxSAT solvers and by developing domain-specific parallelization schemes, as
well as by specialized constraint optimization techniques and heuristics for the problem domain. Yet an-
other interesting direction would be to study the applicability of Large Neighborhood Search which combine
local search strategies for fixing a subspace of the search space to which to apply exact search techniques.

10The term constraint programming refers here to the declarative language as opposed to a general term of the paradigm.

36

References

[1] J. Berg, M. Järvisalo, Optimal correlation clustering via MaxSAT, in: Proc. 2013 IEEE ICDM Work-
shops, IEEE Press, 2013, pp. 750–757.

[2] D. H. Fisher, Knowledge acquisition via incremental conceptual clustering, Mach. Learn. 2 (2) (1987)
139–172.

[3] A. K. Jain, M. N. Murty, P. J. Flynn, Data clustering: A review, ACM Comput. Surv. 31 (3) (1999)
264–323.

[4] N. Bansal, A. Blum, S. Chawla, Correlation clustering, Machine Learning 56 (1-3) (2004) 89–113.

[5] N. Ailon, M. Charikar, A. Newman, Aggregating inconsistent information: Ranking and clustering, J.
ACM 55 (5).

[6] M. Charikar, V. Guruswami, A. Wirth, Clustering with qualitative information, J. Comput. Syst. Sci.
71 (3) (2005) 360–383.

[7] R. Shamir, R. Sharan, D. Tsur, Cluster graph modification problems, Discr. Appl. Math. 144 (1-2)
(2004) 173–182.

[8] I. Giotis, V. Guruswami, Correlation clustering with a fixed number of clusters, Theory of Computing
2 (1) (2006) 249–266.

[9] E. D. Demaine, D. Emanuel, A. Fiat, N. Immorlica, Correlation clustering in general weighted graphs,
Theor. Comput. Sci. 361 (2-3) (2006) 172–187.

[10] J. V. Gael, X. Zhu, Correlation clustering for crosslingual link detection, in: Proc. IJCAI, 2007, pp.
1744–1749.

[11] A. Ben-Dor, R. Shamir, Z. Yakhini, Clustering gene expression patterns, Journal of Computational
Biology 6 (3/4) (1999) 281–297.

[12] F. Bonchi, A. Gionis, A. Ukkonen, Overlapping correlation clustering, in: Proc. ICDM, IEEE, 2011,
pp. 51–60.

[13] F. Bonchi, A. Gionis, F. Gullo, A. Ukkonen, Chromatic correlation clustering, in: Proc. KDD, ACM,
2012, pp. 1321–1329.

[14] N. Cesa-Bianchi, C. Gentile, F. Vitale, G. Zappella, A correlation clustering approach to link clas-
sification in signed networks, in: Proc. COLT, Vol. 23 of JMLR Procedings, JMLR.org, 2012, pp.
34.1–34.20.

[15] P. Bonizzoni, G. D. Vedova, R. Dondi, T. Jiang, Correlation clustering and consensus clustering, in:
Proc. ISAAC, Vol. 3827 of Lecture Notes in Computer Science, Springer, 2005, pp. 226–235.

[16] V. Filkov, S. Skiena, Integrating microarray data by consensus clustering, Int J Artif Intell T 13 (4)
(2004) 863–880.

[17] V. Filkov, S. Skiena, Heterogeneous data integration with the consensus clustering formalism, in:
Proc. DILS, Vol. 2994 of Lecture Notes in Computer Science, Springer, 2004, pp. 110–123.

37

[18] R. Giancarlo, F. Utro, Speeding up the consensus clustering methodology for microarray data analysis,
Algorithms for Molecular Biology 6 (2011) 1.

[19] Z. Yu, H.-S. Wong, H.-Q. Wang, Graph-based consensus clustering for class discovery from gene
expression data, Bioinformatics 23 (21) (2007) 2888–2896.

[20] T. Guns, S. Nijssen, L. D. Raedt, Itemset mining: A constraint programming perspective, Artif. Intell.
175 (12-13) (2011) 1951–1983.

[21] S. Nijssen, T. Guns, L. D. Raedt, Correlated itemset mining in ROC space: a constraint programming
approach, in: Proc. KDD, ACM, 2009, pp. 647–656.

[22] L. D. Raedt, T. Guns, S. Nijssen, Constraint programming for data mining and machine learning, in:
Proc. AAAI, AAAI Press, 2010.

[23] I. Davidson, S. S. Ravi, L. Shamis, A SAT-based framework for efficient constrained clustering, in:
Proc. SDM, SIAM, 2010, pp. 94–105.

[24] T. Guns, S. Nijssen, L. D. Raedt, K-pattern set mining under constraints, IEEE Trans. Knowl. Data
Eng. 25 (2) (2013) 402–418.

[25] B. Négrevergne, A. Dries, T. Guns, S. Nijssen, Dominance programming for itemset mining, in:
Proc. ICDM, IEEE, 2013, pp. 557–566.

[26] S. Gilpin, S. Nijssen, I. N. Davidson, Formalizing hierarchical clustering as integer linear program-
ming, in: Proc. AAAI, AAAI Press, 2013.

[27] K. Wagstaff, C. Cardie, Clustering with instance-level constraints, in: Proc. ICML, Morgan Kaufmann,
2000, pp. 1103–1110.

[28] K. Wagstaff, C. Cardie, S. Rogers, S. Schrödl, Constrained K-means clustering with background
knowledge, in: Proc. ICML, Morgan Kaufmann, 2001, pp. 577–584.

[29] I. Davidson, S. S. Ravi, Intractability and clustering with constraints, in: Proc. ICML, ACM, 2007, pp.
201–208.

[30] A. Biere, M. J. H. Heule, H. van Maaren, T. Walsh (Eds.), Handbook of Satisfiability, IOS Press, 2009.

[31] J.-P. Métivier, P. Boizumault, B. Crémilleux, M. Khiari, S. Loudni, Constrained clustering using SAT,
in: Proc. IDA, Vol. 7619 of Lecture Notes in Computer Science, Springer, 2012, pp. 207–218.

[32] C. M. Li, F. Manyà, MaxSAT, hard and soft constraints, in: Handbook of Satisfiability, IOS Press,
2009, pp. 613–631.

[33] P. Bonizzoni, G. D. Vedova, R. Dondi, T. Jiang, On the approximation of correlation clustering and
consensus clustering, J. Comput. Syst. Sci. 74 (5) (2008) 671–696.

[34] M. Charikar, A. Wirth, Maximizing quadratic programs: Extending grothendieck’s inequality, in: Proc.
FOCS, IEEE Computer Society, 2004, pp. 54–60.

38

[35] D. Klein, S. D. Kamvar, C. D. Manning, From instance-level constraints to space-level constraints:
Making the most of prior knowledge in data clustering, in: Proc. ICML, Morgan Kaufmann, 2002, pp.
307–314.

[36] I. Davidson, S. S. Ravi, Clustering with constraints: Feasibility issues and the k-means algorithm, in:
Proc. SDM, SIAM, 2005, pp. 138–149.

[37] I. Davidson, S. S. Ravi, The complexity of non-hierarchical clustering with instance and cluster level
constraints, Data Min. Knowl. Discov. 14 (1) (2007) 25–61.

[38] M. Kr̆ivánek, J. Morávek, NP-hard problems in hierarchical-tree clustering, Acta Informatica 23 (3)
(1986) 311–323.

[39] Y. Chen, S. Safarpour, J. Marques-Silva, A. G. Veneris, Automated design debugging with maximum
satisfiability, IEEE Trans. on CAD of Integrated Circuits and Systems 29 (11) (2010) 1804–1817.

[40] C. S. Zhu, G. Weissenbacher, S. Malik, Post-silicon fault localisation using maximum satisfiability and
backbones, in: Proc. FMCAD, FMCAD Inc., 2011, pp. 63–66.

[41] M. Jose, R. Majumdar, Cause clue clauses: error localization using maximum satisfiability, in:
Proc. PLDI, ACM, 2011, pp. 437–446.

[42] J. Guerra, I. Lynce, Reasoning over biological networks using maximum satisfiability, in: Proc. CP,
Vol. 7514 of Lecture Notes in Computer Science, Springer, 2012, pp. 941–956.

[43] J. Berg, M. Järvisalo, B. Malone, Learning optimal bounded treewidth bayesian networks via maxi-
mum satisfiability, in: Proc. AISTATS, Vol. 33, JMLR, 2014, pp. 86–95.

[44] M. Järvisalo, D. Le Berre, O. Roussel, L. Simon, The international SAT solver competitions, AI Mag-
azine 33 (1) (2012) 89–92.

[45] C. M. Li, F. Manyà, N. O. Mohamedou, J. Planes, Exploiting cycle structures in Max-SAT, in:
Proc. SAT, Vol. 5584 of Lecture Notes in Computer Science, Springer, 2009, pp. 467–480.

[46] M. Koshimura, T. Zhang, H. Fujita, R. Hasegawa, QMaxSAT: A partial Max-SAT solver, JSAT 8 (1/2)
(2012) 95–100.

[47] J. Marques-Silva, J. Planes, Algorithms for maximum satisfiability using unsatisfiable cores, in:
Proc. DATE, IEEE, 2008, pp. 408–413.

[48] A. Morgado, F. Heras, J. Marques-Silva, Improvements to core-guided binary search for MaxSAT, in:
Proc. SAT, Vol. 7317 of Lecture Notes in Computer Science, Springer, 2012, pp. 284–297.

[49] F. Heras, A. Morgado, J. Marques-Silva, Core-guided binary search algorithms for maximum satisfia-
bility, in: Proc. AAAI, AAAI Press, 2011.

[50] C. Ansótegui, M. L. Bonet, J. Levy, SAT-based MaxSAT algorithms, Artif. Intell. 196 (2013) 77–105.

[51] A. Morgado, F. Heras, M. H. Liffiton, J. Planes, J. Marques-Silva, Iterative and core-guided MaxSAT
solving: A survey and assessment, Constraints 18 (4) (2013) 478–534.

39

[52] Z. Fu, S. Malik, On solving the partial MaxSAT problem, in: Proc. SAT, Vol. 4121 of Lecture Notes in
Computer Science, Springer, 2006, pp. 252–265.

[53] V. M. Manquinho, J. P. M. Silva, J. Planes, Algorithms for weighted boolean optimization, in:
Proc. SAT, Vol. 5584 of Lecture Notes in Computer Science, Springer, 2009, pp. 495–508.

[54] A. Morgado, C. Dodaro, J. Marques-Silva, Core-guided MaxSAT with soft cardinality constraints, in:
Proc. CP, Vol. 8656 of Lecture Notes in Computer Science, Springer, 2014, pp. 564–573.

[55] J. Davies, F. Bacchus, Exploiting the power of MIPs solvers in MaxSAT, in: Proc. SAT, Vol. 7962 of
Lecture Notes in Computer Science, Springer, 2013, pp. 166–181.

[56] C. Ansótegui, J. Gabàs, Solving (weighted) partial MaxSAT with ILP, in: Proc. CPAIOR, Vol. 7874 of
Lecture Notes in Computer Science, Springer, 2013, pp. 403–409.

[57] J. P. Marques-Silva, I. Lynce, Towards robust CNF encodings of cardinality constraints, in: Proc. CP,
Vol. 4741 of Lecture Notes in Computer Science, Springer, 2007, pp. 483–497.

[58] I. Abío, R. Nieuwenhuis, A. Oliveras, E. Rodríguez-Carbonell, A parametric approach for smaller and
better encodings of cardinality constraints, in: Proc. CP, Vol. 8124, Springer, 2013, pp. 80–96.

[59] S. Prestwich, CNF encodings, in: Handbook of Satisfiability, IOS Press, 2009, Ch. 2, pp. 75–97.

[60] C. Sinz, Towards an optimal CNF encoding of boolean cardinality constraints, in: Proc. CP, Vol. 3709
of Lecture Notes in Computer Science, 2005, pp. 827–831.

[61] F. Heras, A. Morgado, J. Marques-Silva, An empirical study of encodings for group MaxSAT, in:
Proc. Canadian Conference on AI, Vol. 7310 of Lecture Notes in Computer Science, Springer, 2012,
pp. 85–96.

[62] T. Nepusz, R. Sasidharan, A. Paccanaro, SCPS: a fast implementation of a spectral method for detect-
ing protein families on a genome-wide scale, BMC Bioinformatics 11 (2010) 120.

[63] S. Altschul, W. Gish, W. Miller, E. Myers, D. Lipman, Basic local alignment search tool, J. Mol. Bio.
215 (3) (1990) 403–410.

[64] J. Davies, F. Bacchus, Solving MaxSAT by solving a sequence of simpler SAT instances, in: Proc. CP,
Vol. 6876 of Lecture Notes in Computer Science, Springer, 2011, pp. 225–239.

[65] J. Davies, F. Bacchus, Postponing optimization to speed up maxsat solving, in: Proc. CP, Vol. 8124 of
Lecture Notes in Computer Science, Springer, 2013, pp. 247–262.

[66] T. Achterberg, T. Berthold, T. Koch, K. Wolter, Constraint integer programming: A new approach to
integrate CP and MIP, in: Proc. CPAIOR, Vol. 5015 of Lecture Notes in Computer Science, Springer,
2008, pp. 6–20.

[67] A. Wirth, Correlation clustering, in: Encyclopedia of Machine Learning, Springer, 2010, pp. 227–231.

[68] J. Sturm, Using SeDuMi 1.02, a MATLAB toolbox for optimization over symmetric cones,
Optimization Methods and Software 11–12 (1999) 625–653, version 1.05 available from
http://fewcal.kub.nl/sturm.

40

[69] C. Buchheim, M. D. Santis, L. Palagi, A fast branch-and-bound algorithm for non-convex quadratic
integer optimization subject to linear constraints using ellipsoidal relaxations, Operations Research
Letters 43 (4) (2015) 384–388.

[70] D. Cohn, R. Caruana, A. McCallum, Semi-supervised clustering with user feedback, Tech. rep. (2003).

[71] I. Davidson, S. S. Ravi, M. Ester, Efficient incremental constrained clustering, in: P. Berkhin, R. Caru-
ana, X. Wu (Eds.), KDD, ACM, 2007, pp. 240–249.

[72] W. Rand, Objective criteria for the evaluation of clustering methods, Journal of the American Statistical
Association 66 (336) (1971) 846–850.

[73] A. Belov, A. Morgado, J. Marques-Silva, SAT-based preprocessing for MaxSAT, in: Proc. LPAR, Vol.
8312 of Lecture Notes in Computer Science, Springer, 2013, pp. 96–111.

[74] J. Berg, P. Saikko, M. Järvisalo, Improving the effectiveness of SAT-based preprocessing for MaxSAT,
in: Proceedings of the 24th International Joint Conference on Artificial Intelligence (IJCAI 2015),
AAAI Press, 2015.

[75] A. Belov, M. Järvisalo, J. Marques-Silva, Formula preprocessing in MUS extraction, in: Proc. TACAS,
Vol. 7795 of Lecture Notes in Computer Science, Springer, 2013, pp. 108–123.

[76] N. Manthey, Coprocessor 2.0 - a flexible CNF simplifier (tool presentation), in: Proc. SAT, Vol. 7317
of Lecture Notes in Computer Science, Springer, 2012, pp. 436–441.

[77] N. Eén, A. Biere, Effective preprocessing in SAT through variable and clause elimination, in:
Proc. SAT, Vol. 3569 of Lecture Notes in Computer Science, Springer, 2005, pp. 61–75.

[78] M. Järvisalo, A. Biere, M. Heule, Blocked clause elimination, in: Proc. TACAS, Vol. 6015 of Lecture
Notes in Computer Science, Springer, 2010, pp. 129–144.

[79] M. Heule, M. Järvisalo, A. Biere, Clause elimination procedures for CNF formulas, in: Proc. LPAR,
Vol. 6397 of Lecture Notes in Computer Science, Springer, 2010, pp. 357–371.

[80] M. Heule, M. Järvisalo, A. Biere, Efficient CNF simplification based on binary implication graphs, in:
Proc. SAT, Vol. 6695 of Lecture Notes in Computer Science, 2011, pp. 201–215.

[81] M. Järvisalo, A. Biere, Reconstructing solutions after blocked clause elimination, in: Proc. SAT, Vol.
6175 of Lecture Notes in Computer Science, Springer, 2010, pp. 340–345.

[82] N. Narodytska, F. Bacchus, Maximum satisfiability using core-guided MaxSAT resolution, in: Proc.
AAAI, AAAI Press, 2014, pp. 2717–2723.

[83] R. Martins, V. M. Manquinho, I. Lynce, Open-WBO: A modular MaxSAT solver„ in: Proc. SAT, Vol.
8561 of Lecture Notes in Computer Science, Springer, 2014, pp. 438–445.

[84] R. Martins, S. Joshi, V. M. Manquinho, I. Lynce, Incremental cardinality constraints for MaxSAT, in:
Proc. CP, Vol. 8656 of Lecture Notes in Computer Science, Springer, 2014, pp. 531–548.

[85] J. Larrosa, F. Heras, Resolution in Max-SAT and its relation to local consistency in weighted CSPs, in:
Proc. IJCAI, Professional Book Center, 2005, pp. 193–198.

41

[86] E. D. Demaine, N. Immorlica, Correlation clustering with partial information, in: Proc. RANDOM-
APPROX, Vol. 2764 of Lecture Notes in Computer Science, Springer, 2003, pp. 1–13.

[87] M. X. Goemans, D. P. Williamson, Improved approximation algorithms for maximum cut and satisfi-
ability problems using semidefinite programming, J. ACM 42 (6) (1995) 1115–1145.

[88] A. McCallum, B. Wellner, Conditional models of identity uncertainty with application to noun coref-
erence, in: Proc. NIPS, 2004, pp. 905–912.

[89] L. M. de A. Drummond, R. M. V. Figueiredo, Y. Frota, M. Levorato, Efficient solution of the correlation
clustering problem: An application to structural balance, in: Proc. OTM Workshops, Vol. 8186 of
Lecture Notes in Computer Science, Springer, 2013, pp. 674–683.

[90] B. Babaki, T. Guns, S. Nijssen, Constrained clustering using column generation, in: Proc. CPAIOR,
Vol. 8451 of Lecture Notes in Computer Science, Springer, 2014, pp. 438–454.

[91] A. Bar-Hillel, T. Hertz, N. Shental, D. Weinshall, Learning distance functions using equivalence rela-
tions, in: Proc. ICML, AAAI Press, 2003, pp. 11–18.

[92] I. Davidson, S. S. Ravi, Using instance-level constraints in agglomerative hierarchical clustering: the-
oretical and empirical results, Data Min. Knowl. Discov. 18 (2) (2009) 257–282.

[93] T. Coleman, J. Saunderson, A. Wirth, Spectral clustering with inconsistent advice, in: Proc. ICML,
ACM, New York, NY, USA, 2008, pp. 152–159.

[94] M. Mueller, S. Kramer, Integer linear programming models for constrained clustering, in: Proc. DS,
Vol. 6332 of Lecture Notes in Computer Science, Springer, 2010, pp. 159–173.

[95] J. Schmidt, E. M. Brändle, S. Kramer, Clustering with attribute-level constraints, in: Proc. ICDM,
IEEE, 2011, pp. 1206–1211.

[96] D. Aloise, P. Hansen, L. Liberti, An improved column generation algorithm for minimum sum-of-
squares clustering, Math. Program. 131 (1-2) (2012) 195–220.

[97] T.-B.-H. Dao, K.-C. Duong, C. Vrain, A declarative framework for constrained clustering, in:
Proc. ECML-PKDD, 2013, pp. 419–434.

Appendix A. Proofs

We provide detailed proofs of the fact that any similarity matrix can be symmetrized without affecting
the set of optimal clusterings, as discussed in Section 2.2, and the correctness of the three encodings of
correlation clustering as MaxSAT, presented in Sections 6, 7 and 8.

Appendix A.1. Proof of Theorem 1

Assume that V = {v1 . . . vN} is a set ofN data points andW ∈ RN×N is an asymmetric similarity ma-
trix. Let H ′ be the non-simplified cost function of correlation clustering (Equation 2) and H the simplified
cost function (Equation 1). We will assume wlog that none of the considered matrices include contradicting
infinite values.

The proof of Theorem 1 consists of considering the two different possible sources of asymmetries. The
first are pairs of indices i and j for which W (i, j) < 0 < W (j, i). Any such pair will always incur a cost of

42

at least min(|W (i, j)|,W (j, i)) to any clustering. Thus the absolute value of both W (i, j) and W (j, i) can
be decreased by this minimum without affecting the set of optimal clusterings. Notice that after this either
W (i, j) = 0 or W (j, i) = 0. This observation is formalized in Lemma 1.

Based on the above, we can assume that all pairs W (i, j) and W (j, i) have the same sign. Now the
existence of the symmetric WS follows from the following observations. If both W (i, j) and W (j, i) are
non-positive, the points vi and vj either incur a cost of |W (i, j)| + |W (j, i)| or 0 to H ′(W, cl) under any
clustering cl. Analogously, if both are non-negative, then the points either incur a cost of W (i, j) +W (j, i)
or 0. Hence, by letting WS(i, j) = W (i, j) +W (j, i), cl will incur the same cost under WS (as measured
by H) as under W (as measured by H ′). This discussion is formalized in the proof of Theorem 1 given after
the proof of Lemma 1.

Lemma 1. There is a similarity matrix W T such that W T (i, j) ·W T (j, i) ≥ 0 (i.e., both have the same
sign) for all i and j and argmincl(H

′(W, cl)) = argmincl(H
′(W T , cl)).

Proof. W T can be constructed by repeatedly applying Lemma 2 to each pair of indices corresponding to
elements of opposing signs in W .

Lemma 2. Let i and j be any pair of indices for which W (i, j) < 0 < W (j, i). There exists a similarity
matrix W t for which W t(i, j) ·W t(j, i) = 0 and argmincl(H

′(W, cl)) = argmincl(H
′(W t, cl)).

Proof. Construct W t as

W t(i, j) = W (i, j) + min(|W (i, j)|,W (j, i)),

W t(j, i) = W (j, i)−min(|W (i, j)|,W (j, i)) and

W t(i′, j′) = W (i′, j′) whenever i 6= i′ or j 6= j′.

Now either W t(i, j) = 0 or W t(j, i) = 0, and hence W t(i, j) ·W t(j, i) = 0. Notice also that W t includes
exactly the same infinite values as W . This means that the set of feasible clusterings is the same for both
matrices. We prove the second part of the lemma by showing that

H ′(W, cl) = H ′(W t, cl) + min(|W (i, j)|,W (j, i)) (A.1)

for any feasible clustering cl of V . The fact that the set of optimal clusterings under W is the same as under
W t follows from min(|W (i, j)|,W (j, i)) being independent of cl.

First, if either W (i, j) or W (j, i) is infinite, then it is infinite in W t. Furthermore, the other element is
0 in W t. Hence the pair i, j will incur cost min(|W (i, j)|,W (j, i)) under W and 0 under W t. As all other
elements are equal in both matrices, we have H ′(W, cl) = H ′(W t, cl) + min(|W (i, j)|,W (j, i)).

Assume now that both W (i, j) and W (j, i) are finite. As the transformation from W to W t maintains
signs of all elements, Equation A.1 is equivalent to

I[cl(vi) = cl(vj)] · |W (i, j)|+ I[cl(vj) 6= cl(vi)] ·W (j, i)

= I[cl(vi) = cl(vj)] · |W t(i, j)|+ I[cl(vj) 6= cl(vi)] ·W t(j, i) + min(|W (i, j)|,W (j, i)).

This can be verified by considering the possible cases separately.

Proof. (of Theorem 1) By Lemma 1 we can assume thatW (i, j)·W (j, i) ≥ 0 for all i and j. LetWS(i, j) =
W (i, j) + W (j, i). It is clear that WS is symmetric. It remains to be shown that argmincl(H(WS , cl)) =
argmincl(H

′(W, cl)). First note that WS(i, j) = ±∞ iff either W (i, j) = ±∞ or W (j, i) = ±∞, so the
set of feasible clusterings is the same for both matrices.

43

Let i < j and cl be any feasible clustering of V . We show that H(WS , cl) = H ′(W, cl). By decompos-
ing both H and H ′ as in the proof of Lemma 1, is enough to show that

I[−∞ < W (i, j) < 0] · |W (i, j)|+ I[−∞ < W (j, i) < 0] · |W (j, i)|
= I[−∞ < WS(i, j) < 0] · |WS(i, j)|

and

I[∞ > W (i, j) > 0] ·W (i, j) + I[∞ > W (j, i) > 0] ·W (j, i)

= I[∞ > WS(i, j) > 0] ·WS(i, j),

corresponding to the two possible scenarios, cl(vi) = cl(vj) and cl(vi) 6= cl(vj), respectively. Both equa-
tions follow from the fact that the transformation from W to WS preserves the signs of all elements. Thus
|WS(i, j)| = |W (i, j) +W (j, i)|.

Appendix A.2. Correctness of the MaxSAT encodings

Next we move on to prove the correctness of the three MaxSAT encodings presented in this work,
in other words, we prove Theorems 2, 3 and 4. Again, let V = {v1, . . . vN} be a set of data points,
W ∈ RN×N a symmetric similarity matrix, and K an upper bound on the available clusters. Note that we
allow K = N , so the proofs presented here cover the problem definition of [4, 12] and [9] as well as [8].
We first consider general conditions for correct MaxSAT encodings of correlation clustering. Recall that H
is the cost function, Equation 1, of correlation clustering under minimization.

Proposition 1. Let F be a MaxSAT instance and assume that a clustering clτ : V → {1 . . .K} can be
constructed from any solution τ to F . Further assume the following.

1. clτ is well-defined for all solutions τ to F .
2. For each solution τ to F , clτ respects the infinite values of W .
3. For each clustering cl that respects the infinite values of W , there exists some solution τ to F for

which H(W, cl) = H(W, clτ).

4. COST(F, τ) = H(W, clτ) for any solution τ to F .

Now, if τ∗ is an optimal solution to F , then clτ∗ is an optimal clustering of V .

Proof. First note that Condition 1 ensures that clτ∗ is well-defined and Condition 2 ensures that clτ∗ is
indeed a solution to the constrained problem. Now let cl be any clustering that respects the infinite values of
W . Then by Condition 3 there exists a solution τ to F such that H(W, clτ) = H(W, cl). By the optimality
of τ∗ and condition Condition 4 it follows that

H(W, cl) = H(W, clτ) = COST(F, τ) ≥ COST(F, τ∗) = H(W, clτ∗),

and hence clτ∗ is optimal.

Next we prove Theorems 2, 3 and 4 by showing that the instances generated with the transitive, unary
and binary encodings fulfill the assumptions of Proposition 1.

44

Appendix A.2.1. Correctness of the Transitive Encoding
Let F 1 = (F 1

h , F
1
s , c) be a MaxSAT instance generated by the transitive encoding, and clτ be the

clustering constructed from a solution τ to F 1 by the procedure described in Section 6.4. The proof of
Theorem 2, i.e., the fact that the transitive encoding produces optimal clusterings, follows from the following
lemmas.

Lemma 3. For any solution τ to F 1 and any i < j, we have τ(xij) = 1⇔ clτ (vi) = clτ (vj).

Proof. Assume clτ (vi) = k. The lemma follows from the two possible scenarios that can occur when
constructing clτ at iteration k.

(i) i is the smallest not yet assigned index. Then clearly τ(xij) = 1⇔ clτ (vi) = k = clτ (vj).
(ii) Some other index t < i for which τ(xti) = 1 is the smallest non assigned index. Now τ(xij) = 1⇔

τ(xtj) = 1 ⇔ clτ (vi) = k = clτ (vj). The first equivalence follows from τ being a solution to F 1. Thus
τ((¬xij ∨¬xti ∨ xtj)) = 1, implying τ(xij) = 1⇒ τ(xtj) = 1, and τ((¬xti ∨¬xtj ∨ xij)) = 1, implying
τ(xij) = 0⇒ τ(xtj) = 0.

Lemma 4. (Condition 1 of Proposition 1) clτ is well-defined for all solutions τ to F 1.

Proof. Trivial, as each point is assigned to at most one cluster by the procedure in Section 6.4 and the
procedure only terminates after all points have been assigned to a cluster.

Lemma 5. (Condition 2 of Proposition 1) clτ respects the infinite values of W for all solutions τ to F 1.

Proof. First notice that, due to the hard unit clauses (xij) and (¬xij), τ(xij) = 1 for all W (i, j) =∞, and
τ(xij) = 0 for all W (i, j) = −∞. The rest follows from Lemma 3.

Lemma 6. (Condition 3 of Proposition 1) For each clustering cl that respects the infinite values of W there
exists some solution τ to F for which H(W, cl) = H(W, clτ).

Proof. We construct such a τ as follows:

τ(xij) =

{
1 if cl(vi) = cl(vj)

0 else
.

Notice that τ satisfies all hard transitivity clauses since cl is well-defined. Furthermore, τ satisfies all unit
hard clauses since cl respects the infinite values of W . Finally, the claim H(W, cl) = H(W, clτ) follows
from Lemma 3 and the construction of τ as cl(vi) = cl(vj)⇔ τ(xij) = 1⇔ clτ (vi) = clτ (vj).

Lemma 7. (Condition 4 of Proposition 1) COST(F 1, τ) = H(W, clτ) holds for any solution τ to F 1.

Proof. We consider the part H(W, clτ) ≤ COST(F 1, τ). The other direction is almost identical. A similar
pair of points vi and vj incurs a cost W (i, j) to H(W, clτ) iff clτ (vi) 6= clτ (vj). By Lemma 3, τ(xij) = 0,
and hence τ does not satisfy the unit soft clause (xij) of weight W (i, j). Similarly, a dissimilar pair of
points vi, vj incurring a cost W (i, j) to H(W, clτ) corresponds to one unsatisfied soft clause (¬xij) of the
same weight.

45

Appendix A.2.2. Correctness of the Unary Encoding
Let F 2 be a MaxSAT instance generated with the unary encoding and, given a solution τ to F 2, let clτ

be the clustering constructed form τ by the procedure described in Section 7.5. The proof of Theorem 3
follows from the following lemmas.

Lemma 8. (Condition 1 of Proposition 1) clτ is a well-defined clustering.

Proof. Follows directly from the fact that, for any point vi, τ(EXACTLYONE(i)) = 1, and hence there exists
exactly one 1 ≤ k ≤ K for which τ(yki) = 1.

Lemma 9. (Condition 2 of Proposition 1) clτ respects the infinite values of W for all solutions τ to F 2.

Proof. Let vi be an arbitrary data point. Assume clτ (vi) = k. It follows that τ(yki) = 1. The hard clause
(¬yki ∨ ykj) included for all j s.t. W (i, j) = ∞. This implies τ(ykj) = 1 and clτ (vj) = k = clτ (vi). The
hard clause (¬yki ∨ ¬ykj) included for all j s.t. W (i, j) = −∞. This implies τ(ykj) = 0 and clτ (vj) 6= k =
clτ (vi).

Lemma 10. (Condition 3 of Proposition 1) Let cl : V → {1, 2, . . . ,K} be any clustering of V that respects
the infinite values of W . There is a solution τ to F 2 such that cl = clτ .

Proof. We construct such a τ . For each 1 ≤ i ≤ N and 1 ≤ k ≤ K, let

τ(yki) =

{
1 if cl(vi) = k

0 else
, τ(Akij) =

{
1 if cl(vi) = cl(vj) = k

0 else
and

τ(Dij) =

{
1 if cl(vi) = cl(vj)

0 else
.

Clearly cl = clτ as long as τ is a solution to F 2. We show that it is by considering the different types of
hard constraints present in F 2.

1. Since cl is well-defined, there is exactly one k for which cl(vi) = k for each vi. Hence τ(EXACTLYONE(i)) =
1 for all vi ∈ V .

2. By construction τ(Akij) = τ(yki ∧ ykj) for all similar vi, vj and k.
Hence τ(HARDSIMILAR(i, j, k)) = 1.

3. If τ(yki) = 0 or τ(ykj) = 0 for a dissimilar pair of points vi, vj , then τ(¬yki ∨ ¬ykj ∨ Dij) = 1. If
τ(yki) = τ(ykj) = 1, then cl(vi) = cl(vj). Hence τ(Dij) = 1 and τ(¬yki ∨ ¬ykj ∨ Dij) = 1. Thus
τ(HARDDISSIMILAR(i, j, k)) = 1 for all dissimilar vi, vj and k.

4. For allW (i, j) =∞, we have that cl(vi) = cl(vj). Hence there exists a k for which τ(yki) = τ(ykj) =

1. since τ(EXACTLYONE(vi)) = τ(EXACTLYONE(vj)) = 1, τ(yk
′
i) = τ(yk

′
j) = 0 for all other k′.

Hence τ(yki ↔ ykj) = 1 holds for all k and τ(MLU (vi, vj)) = 1.
5. For all W (i, j) = −∞ we have that cl(vi) 6= cl(vj). Hence either cl(vi) 6= k or cl(vj) 6= k for all k.

By the construction of τ it follows that τ(¬yki ∨ ¬ykj) = 1 and τ(CLU (vi, vj)) = 1.

Lemma 11. (Condition 4 of Proposition 1) COST(F 2, τ) = H(W, clτ) for any solution τ to F 2.

46

Proof. We consider the part H(W, clτ) ≤ COST(F 2, τ). The other direction is almost identical. A similar
pair of points vi, vj incurs a cost W (i, j) to H(W, clτ) iff clτ (vi) 6= clτ (vj). Either τ(yki) = 0 or τ(ykj) = 0

(or both) for all k, and hence τ(Akij) = 0 for all k. Thus τ does not satisfy the soft clause SOFTSIMILAR(i, j)
with weight W (i, j). Similarly a dissimilar pair of points vi vj incurs cost |W (i, j)| to H(W, clτ) iff
clτ (vi) = clτ (vj). There is a k for which τ(yki ∧ ykj) = 1. Thus τ does not satisfy the unit soft clause
(¬Dij) with weight |W (i, j)|.

Appendix A.2.3. Correctness of the Binary Encoding
Let F 3 be a MaxSAT instance generated with the binary encoding and, given a solution τ to F 3, let clτ

be the clustering constructed from τ by the procedure described in Section 8.4. We prove the correctness
of the binary encoding for an arbitrary K. Let k = dlog2Ke and assume that the encoding contains k bit
variables for each data point. For any number a ∈ N, let an denote the nth bit in the bit representation of
a. For any set of bits bk, . . . , b1m denote by (bk . . . b1)2 the value of the bit vector interpreted as a binary
number, least significant bit to the right. Finally, let bn∗i = bni if Kn = 1 and bn∗i = ¬bni if Kn = 0. The
proof of Theorem 4, i.e., of the fact that the binary encoding produces optimal clusterings, follows from the
following lemmas.

Lemma 12. (Condition 1 of Proposition 1) clτ is a well-defined clustering.

Proof. Follows from the fact that for any point vi, τ has to assign all the values τ(bki), . . . , τ(b1i) in some
unique way. Hence the value clτ (vi) is uniquely defined. What remains to be shown is that 1 ≤ clτ (vi) ≤ K.
Assume for contradiction that clτ (vi) = A for some A > K. Then K − 1 < A− 1 = (τ(bki), . . . , τ(b1i))2.
Based on the properties of binary numbers, we know that (A − 1)j = 1 and (K − 1)j = 0 at the most
significant bit j where the values differ. As τ(DEFB(i, j′)) = 1, we have τ(Bk

i) = 0, a contradiction.

Lemma 13. (Condition 2 of Proposition 1) clτ respects the infinite values of W for all solutions τ to F 3.

Proof. If W (i, j) = ∞, then τ has to assign τ(bni) = τ(bnj) for each n = 1..k in order to satisfy the
hard clauses corresponding to bni ↔ bnj . Hence τ(bni) = τ(bnj) for all bits and clτ (vi) = clτ (vj). If
W (i, j) = −∞, then τ(EQnij) = 0 for some n = 1..k due to the hard clause (¬EQ1

ij ∨ . . . ∨ ¬EQkij). It
follows that τ(bni ↔ bnj) = 0. Thus τ(bni) 6= τ(bnj) and clτ (vi) 6= clτ (vj).

Lemma 14. (Condition 3 of Proposition 1) Let cl : V → {1, 2, . . . ,K} be any clustering of V that respects
the infinite values of W . There is a solution τ to F 3 such that cl = clτ .

Proof. Construct such τ as

τ(bni) = (cl(vi)− 1)n

τ(EQnij) =

{
1 if (cl(vi)− 1)n = (cl(vj)− 1)n

0 else

τ(Sij) =

{
1 if (cl(vi)− 1)t = (cl(vj)− 1)t for all 1 ≤ t ≤ k
0 else

τ(B1
i) =

{
1 if K1 = 1 and (cl(vi)− 1)1 = 0

0 else

τ(Bn
i) =

{
1 if Kn = 1, (cl(vi)− 1)n = 0 or (cl(vi)− 1)m = Km and τ(Bn−1

i) = 1

0 else
.

47

Clearly clτ = cl as long as τ is a solution to F 3, so it remains to be shown that τ(F 3
h) = 1. Consider the

different types of hard constraints present in F 3.

1. For any vi ∈ V and any bit n, the fact that τ(DEFB(i, n)) = 1 follows directly from the definition
given in Equation 6, recalling that (cl(vi)−1)n = τ(bni). Furthermore, cl(vi) ≤ K ⇔ cl(vi)−1 < K.
Hence there is a bit position n for which Kn = 1, (cl(vi)− 1)n = 0 and (cl(vi)− 1)m = Km for all
n < m ≤ k. Thus τ(Bn

i) = 1 and τ(CLUSTERSLESSTHAN(i,K)) = 1.
2. For any W (i, j) <∞ , W (i, j) 6= 0, and any bit n position, it holds that

τ(EQnij) = 1⇔ (cl(vi)− 1)n = (cl(vj)− 1)n ⇔ τ(bni) = τ(bnj).

Hence τ(EQUALITY(i, j,m)) = 1.
3. For any W (i, j) 6= 0 and W (i, j) ∈ R, it holds that

τ(Sij) = 1⇔ τ(bti) = (cl(vi)− 1)t = (cl(vj)− 1)t = τ(btj) 1 ≤ t ≤ k ⇔
τ(EQtij) = 1 1 ≤ t ≤ k.

Hence τ(SAMECLUSTER(i, j)) = 1.
4. For allW (i, j) =∞, cl(vi) = cl(vj), and hence cl(vi)−1 = cl(vj)−1. By the construction of τ , we

have τ(bni) = τ(bnj) for all n. Thus τ(yni ↔ ynj) = 1 for all bit positions, and τ(MLB(vi, vj)) = 1.
5. For all W (i, j) = −∞, cl(vi) 6= cl(vj) and cl(vi) − 1 6= cl(vj) − 1. Hence there is a bit position n

for which (cl(vi) − 1)n 6= (cl(vj) − 1)n. By the construction of τ , τ(EQnij) = 0 and τ(¬EQ1
ij ∨

. . . ∨ ¬EQkij) = 1. As we already demonstrated that τ(EQUALITY(i, j,m)) = 1 holds for all m, we
conclude that τ(CLB(vi, vj)) = 1.

Lemma 15. (Condition 4 of Proposition 1) COST(F 3, τ) = H(W, clτ) for any solution τ to F 3.

Proof. As the semantics of the Sij variables exactly match the xij variables from the transitive encoding, the
proof of this lemma is almost identical to the proof of the corresponding result for the transitive encoding.
The key observation is that any pair of points vi and vj increases the cost of a MaxSAT solution by |W (i, j)|
iff it also increases the cost of clτ by |W (i, j)|.

48

