
0 7 4 0 - 7 4 5 9 / 1 5 / $ 3 1 . 0 0 © 2 0 1 5 I E E E JULY/AUGUST 2015 | IEEE SOFTWARE 7

Editor: Cesare Pautasso
University of Lugano
c.pautasso@ieee.org

Editor: Olaf Zimmerman
University of Applied Sciences
of Eastern Switzerland, Rapperswil

ozimmerm@hsr.ch

INSIGHTS

SOFTWARE LIFE- CYCLE PROCESSES
provide a structured, disciplined way to
guide the development of complex real-
world software.1,2 These processes can
be primary (acquisition, supply, devel-
opment, operation, and maintenance),
supporting (for example, documenta-
tion, con� guration management, quality
assurance, reviews, audits, or problem
resolution), or organizational (manage-
ment, infrastructure, improvement, and
training).3 Our interests lie in software
design, so we pose this question: Do
software life- cycle processes (henceforth
simply called software processes) bene� t
software design?

The answer is a clear yes! For in-
stance, a software process that recom-
mends periodic architecture and design
reviews to ensure the design quality,
and supports traceability between the

requirements and design elements to en-
sure the design’s completeness, helps en-
sure high- quality design.4,5

However, our experience with design
smells in real- world projects and inter-
views with software engineers from vari-
ous organizations6 have revealed a para-
dox. Sometimes, a design exhibits smells
because a software process (or combi-
nation of processes) has inadvertently
become a signi� cant hindrance to high
design quality, thus negating the ben-
e� ts the process was meant to deliver. In
some cases, a process has actually un-
dermined design quality. In these cases,
an approach that aims to address the de-
sign smells and improve the design qual-
ity can’t merely rely on tactical refactor-
ing of the design artifacts. It also must
refactor the process, remove it, or intro-
duce another process.

Software Process versus
Design Quality
Tug of War?

Girish Suryanarayana, Tushar Sharma, and Ganesh Samarthyam

“Something smells rotten in the state of our design.” This realization
might come despite all good intentions behind choosing and
following the “right” process. Don’t underestimate a process’s
inadvertent effects on the resulting software design’s quality, as
evidenced in two insightful stories from Girish Suryanarayana,

Tushar Sharma, and Ganesh Samarthyam that
are based on their recently published book
on design smells. Enjoy! —Cesare Pautasso
and Olaf Zimmermann, department editors

s4ins.indd 7 6/4/15 1:34 PM

INSIGHTS

8 IEEE SOFTWARE | W W W.COMPUTER.ORG/SOFT WARE | @IEEESOFT WARE

A key insight from these cases is
that software processes and design
quality are inextricably intertwined.
To highlight this interplay, we ex-
amine the following two real- world
cases.

A Suboptimal Change
Approval Process
In a globally distributed software
development project, a central team

(Team A) owned the code base.
Team A included domain experts
who had originally designed the
software. The development was off-
shored to another team (Team B).

When an external consultant an-
alyzed the code base after the release
of the software’s � rst version, he
found smells in the design and code.
For instance, several classes suffered
from the identical- implementation

form of the Duplicate Abstraction
smell (see the sidebar). Surprisingly,
Team B was aware of the extensive
code duplication but had made no ef-
fort to refactor the design.

The consultant discovered that
the lack of refactoring was due to the
process the project followed. To pre-
vent unwarranted modi� cations that
could negatively impact the product’s
functionality, the project relied on a
stringent process to control source
code changes. Team A had to review
any code change made by Team B
before the change could be approved.
This review focused on functional
correctness (from a domain perspec-
tive), not the code’s structural qual-
ity. This change approval process
was long and arduous and required
multiple emails and telephone inter-
actions between the teams.

To reduce the time to ratify
changes that slowed the development
rate, Team B wanted to avoid this
process as much as possible. Because
refactoring (including refactoring to
eliminate code clones) would involve
only structural changes to the code
without impacting the functional-
ity, it seemed logical to avoid refac-
toring to avoid the change approval
process. So, Team B wasn’t keen to
refactor the source code. In this case,
the environment viscosity7 created
by the process led to the software’s
poor design quality. The consultant
shared this � nding in his � nal report
and suggested refactoring the change
approval process.

The project management could
have refactored the change approval
process in several ways. For exam-
ple, they could have incorporated re-
view of code quality into it. Instead,
they refactored it to have Team A
ratify only new class additions and
not every small change that Team B
made. The project management be-

THREE SOFTWARE DESIGN SMELLS

Here we look in more detail at the three design smells mentioned in the main
article. For more on them and other design smells, see Refactoring for Soft-
ware Design Smells.1

DUPLICATE ABSTRACTION
This design smell has two forms. Identical name is when two or more abstrac-
tions have identical names. Identical implementation is when two or more
abstractions have semantically identical member de� nitions, but the design
hasn’t captured and used those implementations’ common elements.

INSUFFICIENT MODULARIZATION
This smell arises when an abstraction hasn’t been completely decomposed
and a further decomposition could reduce its size, implementation complex-
ity, or both. This smell has two forms. Bloated interface is when an abstraction
has many members in its public interface. Bloated implementation is when an
abstraction has many methods in its implementation or has one or more meth-
ods with excessive implementation complexity.

MULTIPATH HIERARCHY
This smell arises when a subtype inherits both directly and indirectly from a
supertype, causing unnecessary inheritance paths in the hierarchy. This com-
plicates the hierarchy and increases developers’ cognitive load, thus reducing
the hierarchy’s understandability. Furthermore, developers might overlook
existing implementations on the redundant paths and try to provide their own
implementation for the realized interface. In this process, they could provide a
considerably different implementation (or no implementation). Such mistakes
can lead to run- time problems. So, this smell can impact reliability.

Reference
 1. G. Suryanarayana, G. Samarthyam, and T. Sharma, Refactoring for Software Design Smells:

Managing Technical Debt, Morgan Kaufmann, 2014.

s4ins.indd 8 6/4/15 1:34 PM

INSIGHTS

JULY/AUGUST 2015 | IEEE SOFTWARE 9

lieved this would eliminate the vis-
cosity (by reducing the number of
times the change approval process
was initiated), which in turn would
improve the design quality.

Upon the release of the software’s
second version, the consultant again
analyzed the design quality. Surpris-
ingly, he found many more instances
of the Insuf� cient Modularization
smell (see the sidebar), compared
to the � rst release. For example,
one class in the source code had ap-
proximately 40,000 LOC, and the
weighted methods per class (the sum
of the cyclomatic complexities8 of a
class’s methods) exceeded 2,000.

The consultant found that part of
the root cause of the many instances
of the Insuf� cient Modularization
smell was still the change approval
process. Toward the software’s sec-
ond release, the project management
at the off- shore location became
concerned about the many bugs (in
the order of hundreds) found dur-
ing testing, which posed a risk for
timely delivery. To ensure that the
software was released on time, the
project management assigned each
developer in Team B a target of � x-
ing four bugs every week.

Fearing that they would be con-
sidered underperforming if they
couldn’t � x four bugs per week, the
members of Team B explored ways
to avoid the change approval process
for new classes that bug � xing might
require. One easy way to avoid in-
troducing classes was to insert new
code in existing classes. Because of
schedule pressures, many developers
adopted this workaround, which re-
sulted in many Insuf� cient Modular-
ization instances.

 Because this workaround was
convenient and the large classes pro-
duced no immediate runtime effects,
it evolved into a bad habit during

development for the third release. It
also explained why Team B didn’t
refactor these large classes immedi-
ately after the release. Refactoring
them would have required introduc-
ing smaller classes, which would
have required going through the
change approval process.

The project management could
have addressed this problem in var-
ious ways. For instance, it could
have refactored existing processes

(for example, refactor the change
approval process to remove bottle-
necks and improve the turnaround
time for change review). Or, it could
have removed them (for example,
remove the bug- target- setting pro-
cess so that developers don’t bypass
change approval). Alternatively, or
in combination with the ways we
just mentioned, the project manage-
ment could have introduced a pro-
cess (for example, introduce a local
change approval process to speed up
approval).

In this case, for the product’s
third release, the project manage-
ment removed the bug targets. They
also adopted a design quality gate
process that required each devel-
oper to run a set of design analyz-
ers on the portion of code he or she
had modi� ed, before checking- in the
code. This helped address the prob-
lem signi� cantly, and the number of
smells drastically decreased during
the third release.

An Ineffective Design
Communication Process
Industrial software systems often
create complex domain objects to
ful� ll complicated business require-
ments. The initialization of such ob-
jects typically involves a sequence of
steps, including preinitialization and
postinitialization. These two steps
are crucial, and software developers
must remember to write an imple-
mentation for them. To ensure this,

a common practice is to create an
interface that encapsulates them and
require developers to realize this in-
terface in the classes corresponding
to the domain objects.

In this context, we share an an-
ecdote in which one of us helped
develop an application for creating
visually attractive user interfaces,
using the concept of gadgets. Figure
1a shows a fragment of the applica-
tion design wherein a TextGadget class
extends its parent class GadgetBase and
realizes an ISupportInitialize interface.
This interface contains two meth-
ods, preInitialize() and postInitialize(), that
must be de� ned by TextGadget.

Over time, the need arose to
support multiple gadgets such as
 GraphicGadget and NumericGadget. The
team realized that the implementa-
tion for preInitialize() and postInitialize()
remained similar across gadgets.
So, the team decided that instead
of each gadget separately realizing
ISupportInitialize, GadgetBase could itself

Software design quality is a function
of the effectiveness of the followed
process in a given context.

s4ins.indd 9 6/4/15 1:34 PM

INSIGHTS

10	 IEEE SOFTWARE | W W W.COMPUTER.ORG/SOFT WARE | @IEEESOFT WARE

realize ISupportInitialize and provide the
default implementation of preInitialize()
and postInitialize() (see Figure 1b).

However, the developer entrusted
with implementing NumericGadget was
on leave when the rest of the team
discussed this new design. By the
time he returned, the old design had
been refactored and the new design
was in place. Unfortunately, no one
told him about this design decision.

This situation occurred because
the project followed an agile method-
ology and subscribed to the principle
that individuals and interactions are
more important than detailed docu-
mentation.9 Specifically, the team
discussed and communicated design

decisions during stand-​up meetings.
It explicitly documented only the ar-
chitectural design decisions10 (such
as introducing a new layer or chang-
ing the middleware being used) in
the architecture specification. In this
case, the team considered that hav-
ing GadgetBase directly implement ISup-
portInitialize wasn’t an architectural de-
cision, so the team didn’t explicitly
document this design change.

Because the developer was un-
aware of the noncritical design de-
cisions, he implemented NumericGadget
using the old paradigm. That is, Nu-
mericGadget extended GadgetBase and re-
alized ISupportInitialize (see Figure 1c).
The resulting design thus suffered

from the Multipath Hierarchy design
smell (see the sidebar).

In short, this design smell arose
because the process used to commu-
nicate design decisions and changes
to all the team members wasn’t ef-
fective. A more potent process
aligned with the agile methodology
would have employed multiple com-
munication modes to convey design
decisions. For example, it would
have additionally used emails or
lightweight knowledge management
systems such as wikis to document
all design decisions so that they were
always available to the entire team.9

T hese two cases highlight
the process–quality para-
dox: software processes

are designed to bring discipline to
software development and intend
to help achieve and maintain high-​
quality software design. However,
some software processes (because
of how they’re implemented or the
project conditions) turn out to be
cumbersome or porous, leading
to situations that can decrease de-
sign quality. Software design qual-
ity is a function of the effectiveness
of the followed process in a given
context. So, such situations require
us to introduce, tune, or refactor
existing processes to achieve and
maintain high design quality. In
conclusion, these cases lead to the
following insights.

First, all the relevant stakeholders
need to recognize the interplay be-
tween software processes and design
quality.

Second, development teams must
periodically evaluate design quality
(for instance, by looking for design
smells). If the quality is poor, teams
must determine whether any soft-
ware process is the cause.

Planned
transformation

Actual
transformation(a)

(b)

(c)

<<Interface>>
lSupportInitialize

+preInitialize()
+postInitialize()

GadgetBase

TextGadget NumericGadget

<<Interface>>
lSupportInitialize

+preInitialize()
+postInitialize()GadgetBase

TextGadget

<<Interface>>
lSupportInitialize

+preInitialize()
+postInitialize()

GadgetBase

TextGadget NumericGadget

FIGURE 1. Planned versus actual transformation in the TextGadget class hierarchy.

(a) A fragment of the original application design wherein TextGadget extends its parent

class GadgetBase and realizes an ISupportInitialize interface. (b) Instead of each gadget

separately deriving from ISupportInitialize, GadgetBase realizes ISupportInitialize and provides

the default implementation in the planned refactoring. (c) However, in the realized design,

NumericGadget extends GadgetBase and unnecessarily realizes ISupportInitialize. This design

fragment suffers from the Multipath Hierarchy design smell.

s4ins.indd 10 6/4/15 1:34 PM

INSIGHTS

	 JULY/AUGUST 2015 | IEEE SOFTWARE � 11

Finally, if the cause of poor de-
sign quality is process-​related, teams
can address it by refactoring or re-
moving an existing process or intro-
ducing a new one, as we mentioned
before. Refactoring a process might
include identifying and removing the
obstacles that directly or indirectly
hamper good quality.

References
	 1.	 N.S. Potter and M.E. Sakry, Making

Process Improvement Work: A Concise
Action Guide for Software Managers and
Practitioners, Addison-​Wesley, 2002.

	 2.	 D. Damian et al., “An Industrial Case
Study of Immediate Benefits of Require-
ments Engineering Process Improve-
ment at the Australian Center for Unisys
Software,” Empirical Software Eng., vol.
9, nos. 1–2, 2004, pp. 45–75.

	 3.	 IEEE/EIA Std. 12207-​2008—ISO/IEC/
IEEE Standard for Systems and Software
Engineering—Software Life Cycle Pro-

cesses, IEEE, 2008.
	 4.	 M.E. Fagan, “Design and Code Inspec-

tions to Reduce Errors in Program Devel-
opment,” IBM Systems J., vol. 38, nos.
2–3, 1999, pp. 258–287.

	 5.	 G. Samarthyam et al., “MIDAS: A Design
Quality Assessment Method for Industrial
Software,” Proc. 2013 Int’l Conf. Soft-
ware Eng. (ICSE 13), 2013, pp. 911–920.

	 6.	 G. Suryanarayana, G. Samarthyam, and T.
Sharma, Refactoring for Software Design
Smells: Managing Technical Debt, Morgan
Kaufmann, 2014.

	 7.	 R.C. Martin, Agile Software Develop-
ment: Principles, Patterns, and Practices,
Addison-​Wesley, 2003.

	 8.	 T.J. McCabe, “A Complexity Measure,”
IEEE Trans. Software Eng., vol. 2, no. 4,
1976, pp. 308–320.

	 9.	 M. Paasivaara, S. Durasiewicz, and C. Las-
senius, “Using Scrum in Distributed Agile
Development: A Multiple Case Study,”
Proc. 4th IEEE Int’l Conf. Global Soft-
ware Eng. (ICGSE 09), 2009, pp. 195–204.

	10.	 O. Zimmermann, “Architectural Decisions
as Reusable Design Assets,” IEEE Soft-
ware, vol. 28, no. 1, 2011, pp. 64–69.

GIRISH SURYANARAYANA is a senior
research scientist at the Corporate Research and
Technologies Center, Siemens Technology and
Services Private Ltd., India. He’s a member of
the IEEE Software advisory board. Contact him at
girish.suryanarayana@siemens.com.

TUSHAR SHARMA is a technical expert at the
Corporate Research and Technologies Center,
Siemens Technology and Services Private Ltd.,
India. Contact him at tusharsharma@ieee.org.

GANESH SAMARTHYAM is an independent
consultant and a corporate trainer. Contact him
at ganesh.samarthyam@gmail.com.

Selected CS articles and columns
are also available for free at
http://ComputingNow.computer.org.

IEEE SOFTWARE CALL FOR PAPERS

Software Engineering for Big Data Systems
Submission deadline: 1 August 2015 • Publication: March/April 2016

This special issue focuses on the software-engineering challenges
of building massively scalable, highly available big data systems.
Such systems are highly distributed and often comprise multiple
architectural styles and open source technologies. Growth in scale
and functionality is often unanticipated and explosive, which
drives organizations to adopt rapid development and deployment
methods to cope with ever-changing requirements, environments,
and data types.

Possible submission topics include, but aren’t limited to,

•	 the engineering of big data systems, including software design
and architecture, software development approaches, and man-
agement methods;

•	architectural adaptation of legacy systems for big data analytics;
•	software engineering techniques that ensure accurate results

from operational data analysis;
•	security and privacy issues in engineering big data applications;
•	novel application software architectures to address the CAP

theorem’s constraints;
•	distributed algorithms and frameworks for scalable data analy-

sis and processing;
•	programming-language support for data parallel processing;
•	quality assurance for big data systems, including run-time

monitoring at scale;
•	data management and evolution for big data systems; and
•	performance, scalability, and capacity planning and analysis.

Questions?
For more information about the focus, contact the guest editors:

•	 Ayse Basar Bener, Ryerson University: ayse.bener@ryerson.ca
•	 Ian Gorton, Software Engineering Institute, Carnegie Mel-

lon University: igorton@sei.cmu.edu
•	 Audris Mockus, University of Tennessee, Knoxville: audris@

utk.edu

Submission Guidelines
Manuscripts must not exceed 4,700 words including figures and
tables, which count for 250 words each. Submissions over these
limits may be rejected without refereeing. Articles deemed within
the theme and scope will be peer-reviewed and subject to editing
for magazine style, clarity, organization, and space. Submissions
should include the special issue’s name.

Articles should be novel, have a practical orientation, and
be written in a style accessible to practitioners. Overly complex,
purely research-oriented, or theoretical treatments aren’t ap-
propriate. IEEE Software doesn’t republish material published
previously in other venues.

Full call for papers: www.computer.org/software/cfp1

Full author guidelines: www.computer.org/software/author.htm

Submission details: software@computer.org

Submit an article: https://mc.manuscriptcentral.com/sw-cs

s4ins.indd 11 6/4/15 1:34 PM

