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Abstract

Sparse coding is a method for finding a representation of data in which
each of the components of the representation is only rarely significantly
active. Such a representation is closely related to redundancy reduction
and independent component analysis, and has some neurophysiological
plausibility. In this paper, we show how sparse coding can be used for de-
noising. Using maximum likelihood estimation of nongaussian variables
corrupted by gaussian noise, we show how to apply a soft-thresholding
(shrinkage) operator on the components of sparse coding so as to reduce
noise. Our method is closely related to the method of wavelet shrinkage,
but it has the important benefit over wavelet methods that the repre-
sentation is determined solely by the statistical properties of the data.
The wavelet representation, on the other hand, relies heavily on certain
mathematical properties (like self-similarity) that may be only weakly
related to the properties of natural data.

1 Introduction

Sparse coding (Barlow, 1994; Field, 1994; Olshausen and Field, 1996; Ol-
shausen and Field, 1997) is a method for finding a neural network represen-
tation of multidimensional data in which only a small number of neurons is
significantly activated at the same time. Equivalently, this means that a given
neuron is activated only rarely. In this paper, we assume that the represen-
tation is linear. Denote by x = (z1,Z2,...,2,)? the observed n-dimensional



random vector that is input to a neural network, and by s = (s1, 82, ..., 5n)7
the vector of the transformed component variables, which are the n linear out-
puts of the network. Denoting further the weight vectors of the neurons by

w;,i = 1,...,n, and by W = (wy,..., w,,)T the weight matrix whose rows are
the weight vectors, the linear relationship is given by

s = Wx (1)

We assume here that that the number of sparse components, i.e., the number
of neurons, equals the number of observed variables, but this need not be the
case in general. The idea in sparse coding is to find the weight matrix W
so that the components s; are as 'sparse’ as possible. A zero-mean random
variable s; is called sparse when it has a probability density function with a
peak at zero, and heavy tails; for all practical purposes, sparsity is equivalent to
supergaussianity (Hyvérinen and Oja, 1997) or leptokurtosis (positive kurtosis)
(Kendall and Stuart, 1958).

Sparse coding is closely related to independent component analysis (ICA)
(Bell and Sejnowski, 1995; Comon, 1994; Hyvérinen and Oja, 1997; Karhunen
et al., 1997b; Jutten and Herault, 1991; Oja, 1997). In the data model used
in ICA, one postulates that x is a linear transform of independent compo-
nents: x = As. Inverting the relation, one obtains (1), with W being the
(pseudo)inverse of A. Moreover, it has been proven that the estimation of the
ICA data model can be reduced to the search for uncorrelated directions in
which the components are as nongaussian as possible (Comon, 1994; Hyvéri-
nen, 1997b). If the independent components are sparse (more precisely, su-
pergaussian), this amounts to the search for uncorrelated projections which
have as sparse distributions as possible. Thus, estimation of the ICA model
for sparse data is roughly equivalent to sparse coding if the components are
constrained to be uncorrelated. This connection to ICA also shows clearly that
sparse coding may be considered as a method for redundancy reduction, which
was indeed one of the primary objectives of sparse coding in the first place
(Barlow, 1994; Field, 1994).

Sparse coding of sensory data has been shown to have advantages from
both physiological and information processing viewpoints (Barlow, 1994; Field,
1994). However, thorough analyses of the utility of such a coding scheme
have been few. In this paper, we introduce and analyze a statistical method
based on sparse coding. Given a signal corrupted by additive gaussian noise,
we attempt to reduce gaussian noise by soft thresholding (’shrinkage’) of the
sparse components. Intuitively, because only a few of the neurons are active
simultaneously in a sparse code, one may assume that the activities of neurons



with small absolute values are purely noise and set them to zero, retaining
just a few components with large activities. This method is then shown to
be very closely connected to the wavelet shrinkage method (Donoho et al.,
1995). In fact, sparse coding may be viewed as a principled, adaptive way for
determining an orthogonal wavelet-like basis based on data alone. Another
advantage of our method is that the shrinkage nonlinearities can be adapted
to the data as well.

This paper is organized as follows. In Section 2, the problem is formulated
as maximum likelihood estimation of nongaussian variables corrupted by gaus-
sian noise. In Section 3, the optimal sparse coding transformation is derived.
Section 4 presents the resulting algorithm of sparse code shrinkage. Section 5
discusses the connections to other methods, and Section 6 contains simulation
results. Some conclusions are drawn in Section 7.

Some preliminary results have appeared in (Hyvérinen et al., 1998b). A
somewhat related method was independently proposed in (Lewicki and Ol-
shausen, 1998).

2 Maximum Likelihood Denoising of Nongaussian
Variables

2.1 Maximum likelihood estimator in one dimension

The starting point of a rigorous derivation of our denoising method is the fact
that the distributions of the sparse components are nongaussian. Therefore, we
shall begin by developing a general theory that shows how to remove gaussian
noise from nongaussian variables, making minimal assumptions on the data.

We consider first only scalar random variables. Denote by s the original
nongaussian random variable, and by v gaussian noise of zero mean and vari-
ance 2. Assume that we only observe the random variable y:

y=stv 2)

and we want to estimate the original s. Denoting by p the probability density
of s, and by f = —logp its negative log-density, the maximum likelihood
method gives the following estimator! for s:

§=argmin = (y — )’ + /() (3)

!This might also be called a maximum a posteriori estimator.



Assuming f to be strictly convex and differentiable, this minimization is equiv-
alent to solving the following equation:

1

—SE-9+/(5) =0 (4)

which gives

§=g(y) (5)

where the inverse of the function g is given by

9 H(u) =u+0’f'(u). (6)

Thus, the ML estimator is obtained by inverting a certain function involving
f', or the score function (Schervish, 1995) of the density of s. For nongaussian
variables, the score function is nonlinear, and so is g.

In general, the inversion required in (6) may be impossible analytically.
Here we show three examples (which will later be shown to have great practical
value) where the inversion can be done easily.

Example 1 Assume that s has a Laplace (or double exponential) distribu-
tion of unit variance (Field, 1994). Then p(s) = exp(—v2|s|)/V2, f'(s) =
V2 sign(s), and g takes the form

g(y) = sign(y) max(0, |y| — v20?). (7)

(Rigorously speaking, the function in (6) is not invertible in this case, but
approximating it by a sequence of invertible functions, (7) is obtained as the
limit). The function in (7) is a shrinkage function that reduces the absolute
value of its argument by a fixed amount, as depicted in Fig 1. Intuitively,
the utility of such a function can be seen as follows. Since the density of a
supergaussian random variable (e.g., a Laplace random variable) has a sharp
peak at zero, it can be assumed that small values of y correspond to pure noise,
i.e., to s = 0. Thresholding such values to zero should thus reduce noise, and
the shrinkage function can indeed be considered a soft thresholding operator.

Example 2 More generally, assume that the score function is approximated
as a linear combination of the score functions of the gaussian and the Laplace
distributions:

f'(s) = as + bsign(s), (8)



with a,b > 0. This corresponds to assuming the following density model for s:

p(s) = Cexp(—as?/2 —bls|), (9)
where C' is an irrelevant scaling constant. Then we obtain
]. . 2

g(u) = 1+m&ngn(u) max (0, |u| — bo*). (10)

This function is a shrinkage with additional scaling, as depicted in Fig 1.

Example 3 Yet another possibility is to use the following strongly supergaus-
sian probability density:

()_i (a+2) [a(a+ 1)/2](@/2+1) (1)
P T Valat D2+ [s/d e

with parameters o, d > 0. When a — o0, the Laplace density is obtained as
the limit. The strong sparsity of the densities given by this model can be seen
e.g. from the fact that the kurtosis (Field, 1994; Hyvérinen and Oja, 1997)
of these densities is always larger than the kurtosis of the Laplace density,
and reaches infinity for a < 2. Similarly, p(0) reaches infinity as a goes to
zero. The resulting shrinkage function given by (6) can be obtained after some
straightforward algebraic manipulations as:

Wl =ad 2 Sl + ad? — 402(a+9) )

g(u) = sign(u) max(0, 5

(12)

where ¢ = Ja(a+1)/2, and g(u) is set to zero in case the square root in
(12) is imaginary. This is a shrinkage function that has a certain thresholding
flavor, as depicted in Fig. 1.

Strictly speaking, the negative log-density of (11) is not convex, and thus
the minimum in (5) might be obtained in a point not given by (12): in this case,
the point 0 might be the true minimum. To find the true minimum, the value
of likelihood at g(y) should be compared with its value at 0, which would
lead to an additional thresholding operation. However, such a thresholding
changes the estimate only very little for reasonable values of the parameters
d and «, and therefore we omit it, using (12) as a simpler and very accurate
approximation of the minimization in (3).

Fig. 2 shows some densities corresponding to the above examples. In the
general case, even if (6) cannot be inverted, the following first-order approxi-
mation of the ML estimator (with respect to noise level) is always possible:

§=y—o’f'(y), (13)



still assuming f to be convex and differentiable. This estimator is derived
from (4) simply by replacing f’(3), which cannot be observed, by the observed
quantity f'(y); these two quantitites are equal to first order. The problem with
the estimator in (13) is that the sign of §* is often different from the sign of y
even for symmetrical zero-mean densities. Such counterintuitive estimates are
possible because f’ is often discontinuous or even singular at 0, which implies
that the first-order approximation is quite inaccurate near 0. To alleviate this
problem of ’overshrinkage’ (Efron and Morris, 1975), one may use the following
modification:

5° = sign(y) max(0, |y| — 02| (y)]). (14)

Thus we have obtained the exact maximum likelihood estimator (5) of a
nongaussian random variable corrupted by gaussian noise, and its two approx-
imations in (13) and (14).

2.2 Analysis of denoising capability

In this subsection, we analyze the denoising capability of the ML estimator
given in (5). We show that, roughly, the more nongaussian the variable s is,
the better gaussian noise can be reduced. Nongaussianity is here measured
by Fisher information. Due to the intractability of the general problem, we
consider here the limit of infinitesimal noise, i.e., all the results are first-order
approximations with respect to noise level.
To begin with, recall the definition of Fisher information (Cover and Thomas,

1991) of a random variable s with density p:

P'(s)2

Ip(s) E{[p(s)] 2 (15)
The Fisher information of a random variable (or, strictly speaking, of its den-
sity) equals the conventional, 'parametric’ Fisher information (Schervish, 1995)
with respect to a hypothetical location parameter (Cover and Thomas, 1991).
Fisher information can be considered as a measure of nongaussianity. It
is well-known (Huber, 1985) that in the set of probability densities of unit
variance, Fisher information is minimized by the gaussian density, and the
minimum equals 1. Fisher information is not, however, invariant to scaling;

for a constant a, we have

In(as) = ;—ZIF(S). (16)

The main result on the performance of the ML estimator is the following
theorem, proven in the Appendix:



Theorem 1 Define by (5) the estimator § = g(y) of s in (2). For small o,
the mean-square error of the estimator § is given by

E{(s = 3’} = 0’[1 — 0”Ir(s)] + o(0"), (17)
where o2 is the variance of the gaussian noise v.

To get more insight into the Theorem, it is useful to compare the noise
reduction of the ML estimator with the best linear estimator in the minimum
mean square (MMS) sense. If s has unit variance, the best linear estimator is
given by
Y

Sin = 1102 (18)
This estimator has the following mean-square error:
2
A \2v_ O
E{(s_slin) }— 1102 (19)

We can now consider the ratio of these two errors, thus obtaining an index that
gives the percentage of additional noise reduction due to using the nonlinear
estimator §:

Ry=1-—

E{(§—s)?
(o) -

E{(51in — 5)?}

The following corollary follows immediately:

Corollary 1 The relative improvement in noise reduction obtained by using
the nonlinear ML estimator instead of the best linear estimator, as measured
by Rs in (20), is given by

Ry = (Ir(s) — 1)o” + o(c®), (21)
for small noise variance o2, and for s of unit variance.

Considering the above-mentioned properties of Fisher information, Theorem 1
thus means that the more nongaussian s is, the better we can reduce noise.
In particular, for sparse variables, the sparser s is, the better the denoising
works. If s is gaussian, R = 0, which follows from the fact that the ML
estimator is then equal to the linear estimator §j;,. This shows again that for
gaussian variables, allowing nonlinearity in the estimation does not improve
the performance, whereas for nongaussian (e.g. sparse) variables, it can lead
to significant improvement?.

2For multivariate gaussian variables, however, improvement can be obtained by Stein
estimators (Efron and Morris, 1975).



2.3 Extension to multivariate case

All the results in the preceding subsection can be directly generalized for n-
dimensional random vectors. Denote by y an n-dimensional random vector,
which is the sum of an n-dimensional nongaussian random vector s and the
noise vector v:

y=s+v. (22)

where the noise v is gaussian and of covariance 02I. We can then estimate the
original s in the same way as above. Denoting by p the n-dimensional proba-
bility density of s, and by f = —logp its negative log-density, the maximum
likelihood method gives the following estimator for s

. 1 2
s = argmin = [ly — /> + /(u) (23)
which gives
s =gly) (24)
where the function g is defined by
g™ (u) =u+0’Vf(u) (25)

The counterpart of Theorem 1 is as follows

Theorem 2 Define by (24) the estimator § = g(y) of s in (22). For small o,
the quadratic error of the estimator § is given by

E{(s —8)(s —8)"} = 0’[1 — 0" Ir(s)] + o(a"), (26)
where the covariance matriz of the gaussian noise v equals o1

The multidimensional Fisher information matrix is defined here as
In(s) = E{Vf(s)Vf(s)"}. (27)

However, the multivariate case seems to be of little importance in practice.
This is because it is difficult to find meaningful approximations of the multi-
variate score function V f; the usual approximation by factorizable densities
would simply be equivalent to considering the components y; separately. More-
over, the inversion of (25) seems to be quite intractable for non-factorizable
densities. Therefore, in the rest of this paper, we use only the 1-D results given
in the previous subsections, applying them separately for each component of
a random vector. If the components of the random vector are independent,
this does not reduce the performance of the method; otherwise, this can be
considered as a tractable approximation of the multivariate ML estimator.



2.4 Parameterization of 1-D densities

Above, it was assumed that the density of the original nongaussian random
variable s is known. In practice, this is often not the case: the density of s
needs to be modelled with a parameterization that is rich enough. In the fol-
lowing we present parametric density models that are especially suitable for our
method. In the main practical applications of the ML estimation, the densities
encountered are supergaussian, so we first describe two parameterizations for
sparse densities, and then a more general method.

2.4.1 Models of sparse densities

We have developed two convenient parameterizations for sparse densities, which
seem to describe very well most of the densities encountered in image denoising.
Moreover, the parameters are easy to estimate, and the shrinkage nonlinearity
g can be obtained in closed form. Both models use two parameters and are
thus able to model different degrees of supergaussianity, in addition to different
scales, i.e. variances. The densities are here assumed to be symmetric and of
7€ero mean.

The first model is suitable for supergaussian densities that are not sparser
than the Laplace distribution, and is given by the family of densities in (9).
Indeed, since the score function (i.e., f') of the gaussian distribution is a linear
function, and the score function of the typical supergaussian distribution, the
Laplace density, is the sign function, it seems reasonable to approximate the
score function of a symmetric, moderately supergaussian density of zero mean
as a linear combination of these two functions. The corresponding shrinkage
function is given by (10).

To estimate the parameters a and b in (9) and (10), we can simply project
the score function (i.e. the derivative of the log-density) of the observed data
on the two functions in (8). To define the projection, a metric has to be chosen;
following (Pham et al., 1992), we choose here the metric defined by the density
p. Thus we obtain (see Section 2.4.2 and Appendix)

s 2,(0)F{s”) — F{lsl}
B{s?} — [E{sI}?

1
a= m[l — E{|s[}0] (28)

where p;(0) is the value of the density function of s at zero. Corresponding
estimators of a and b can be then obtained by replacing the expectations in
(28) by sample averages; ps(0) can be estimated, e.g., using a single kernel



at 0. It is here assumed that one has access to a noise-free version of the
random variable s; this assumption is discussed in the next Section. It is
also a good idea to constrain the values of a and b to belong to the intervals
[0,1/E{s*}] and [0,/2/E{s?}], respectively, since we are here interpolating
the score function between the score function of the gaussian density and the
score function of the Laplace density, and values outside of these ranges would
lead to an extrapolation whose validity may be very questionable.

The second model describes densities that are sparser than the Laplace
density, and is given by (11). A simple method for estimating the parameters
d,a >0 in (11) can be obtained e.g. from the relations

d = \/E{s?}
2 k4 VEE 1)
“= % —1 (29)

with & = d?ps(0)2. The corresponding shrinkage function is given by (12).

Examples of the shapes of the densities given by (9) and (11) are given in
Fig. 2, together with a Laplace density and a gaussian density. For illustration
purposes, the densities in the plot are normalized to unit variance, but these
parameterizations allow the variance to be choosen freely. The corresponding
nonlinearities, i.e. shrinkage functions are given in Fig. 1.

Tests for choosing whether model (9) or (11) should be used are simply to
construct. We suggest that if

VE(s2p,(0) < % (30)

the first model in (9) be used; otherwise use the second model in (11). The
limit case v/E{s?}ps(0) = 1/1/2 corresponds to the Laplace density, which is
contained in both models.

2.4.2 General case

We present here a simple method for modelling the density of s in the general
case, i.e. when the densities are not necessarily sparse and symmetric. In fact,
considering the estimators in (5), (13), and (14), it can be seen that what
one really needs is an model of the score function f’ instead of the density

itself. Assume that we approximate the score function f' = —p'/p as the
linear combination of two functions, one of which is a linear function:
f'(€) = a& +bh(¢) (31)

10



and where h is some function to be specified. To estimate the constants a and
b, we can simply project f’ on the two functions, as above.

Thus, after some quite tedious algebraic manipulations (see Appendix), we
obtain the following values for a and b in (31)

y_ AW ()} B{s*} — E{sh(s)}
E{h(s)?} E{s*} — [E{sh(s)}]?

— E{sh(s)}b] (32)

— 1 [1
“T By
Corresponding estimators of a and b can be obtained by replacing the expec-
tations in (32) by sample averages. In fact, (28) is obtained as a special case
of (32).

3 Finding the Sparse Coding Transformation

3.1 Transforming data to increase denoising capability

In the previous section, it was shown how to reduce additive gaussian noise in
nongaussian random variables by means of ML estimation. Theorem 1 showed
that the possible noise reduction is proportional to the Fisher information
of the distribution of the nongaussian random variable. Fisher information
measures roughly two aspects of the distribution: its nongaussianity, and its
scale. The Fisher information takes larger values for distributions that are not
similar to the gaussian distribution, and have small variances.

Assume now that we observe a multivariate random vector X which is a
noisy version of the nongaussian random vector x:

Xx=x+v. (33)

where the noise v is gaussian and of covariance o?I. As was mentioned in
Section 2.3, the ML method seems to be tractable only in one dimension,
which implies that we treat every component of X separately. However, before
applying the ML denoising method, we would like to transform the data so
that the (component-wise) ML method reduces noise as much as possible. We
shall here restrict ourselves to the class of linear, orthogonal transformations.
This restriction is justified by the fact that orthogonal transformations leave
the noise structure intact, which makes the problem more simply tractable.
Future research may reveal larger classes of transformations where the optimal
transformation can be easily determined. Given an orthogonal (weight) matrix
W, the transformed vector equals

Wx=Wix4+Wlv=s+0. (34)

11



The covariance matrix of  equals the covariance matrix of v, which means
that the noise remains essentially unchanged.

The noise reduction obtained by the ML method is, according to Theo-
rem 1, proportional to the sum of the Fisher informations of the components
8 = WZTX. Thus, the optimal orthogonal transformation W ,; can be obtained
as

n
Wopt = arg max Z Ip(w!x) (35)
i=1

where W is constrained to be orthogonal, and the w; are the rows of W.

To estimate the optimal orthogonal transform W,,;, we assume that we
have access to a random variable z that has the same statistical properties as
x, and can be observed without noise. This assumption is not unrealistic on
many applications: for example, in image denoising it simply means that we
can observe noise-free images that are somewhat similar to the noisy image to
be treated, i.e., they belong to the same environment or context. This simplifies
the estimation of W ,; considerably; the optimal transformation can then be
determined by (35), using z instead of x.

Let us remark that in addition to the above criterion of minimum mean-
square error, the optimal transformation could also be derived using maximum
likelihood estimation of a generative model. We shall not use this alternative
method here; see instead (Hyvérinen et al., 1998a).

3.2 Approximating Fisher information: General case

To use (35) in practice, we need a simple approximation (estimator) of Fisher
information. A rough but computationally simple approximation can be ob-
tained by approximating the score function as a sum of a linear function and
an arbitrary nonlinearity h, as in (31). This gives (see Appendix) the following
approximation of Fisher information:

T4) 1 [E{W (w] 2)} E{(w; 2)*} — E{w] 2 h(w] z)}]"

)N BT (w22 B{(wl %)%} — (B {wTz h(wTz)}P.

PH(36)

Ir(w

The quantity in (36) can be easily estimated by sample averages.

3.3 Approximating Fisher information: Sparse densities

In the case of sparse distributions, a much simpler approximation of Fisher
information is possible. Instead of the general approximation in (36), we can

12



make a local approximation in the vicinity of a known sparse distribution. It
is proven in the Appendix that if the density of w!z is near a given density
po, Ir(wl'z) can be approximated by

Ip(w]'z) = —E{2(log po)" (W] z) + [(log po)' (W 2)]*} + o(p — po)-

" wle l(wlz
= —mB A A oo —po). (31

For example, in the vicinity of the standardized Laplace distribution, we obtain
Ip(wlz) = 4v2 Pyr(0) — 2. (38)

In practice, the probability at zero needed in (38) can be estimated, e.g., by a
gaussian kernel. Thus the estimation of the optimal W becomes

(wi z)?

S) (39

n
Wyt = arg max Z E{exp(—

=1

where W is constrained to be orthogonal, and d is the kernel width.

3.4 Algorithm for finding the sparse coding transform

Next we must choose a practical method to implement the optimization of
(39). Of course, in some cases this step can be omitted, and one can use a
well-known basis that gives sparse components. For example, the wavelet bases
are known to have this property for certain kinds of data (Donoho et al., 1995;
Olshausen and Field, 1996; Bell and Sejnowski, 1997).

We give here a (stochastic) gradient descent for the objective function
in (39). Using the bigradient feedback (Karhunen et al., 1997b; Hyvérinen,
1997b), we obtain the following learning rule for W:

W(k+1) = W(k) + p(k)g(W (k)z(k))=z(k)" + %(I ~ W(k)W (k)" )W (k)

where p(k) is the learning rate sequence, and the nonlinearity
q(u) = —uexp(—u?/d?) is applied separately on every component of the vector
W (k)z(k), with d being a kernel width. The learning rule is very similar® to
some of the ICA learning rules derived in (Hyvérinen, 1997b); indeed, if the
data is preprocessed by whitening, the learning rule in (40) is a special case of
the learning rules in (Hyvérinen, 1997b).

3Note that we use the notation s = Wx, whereas in (Karhunen et al., 1997b; Hyvirinen,
1997b), the notation s = W7x is used.

13



3.5 Modifications for image denoising

In image denoising, the above results need to be slightly modified. These
modifications are necessary because of the well-known fact that ordinary mean-
square error is a rather inadequate measure of errors in images. Perceptually
more adequate measures can be obtained e.g. by weighting the mean-square
error so that components corresponding to lower frequencies have more weight.
Since the variance of the sparse and principal components is larger for lower
frequencies, such a perceptually motivated weighting can be approximated
simply by the following objective function

n

J = Z E{(w"z)*}Ip(w] z). (41)

i=1
Using (16), this can be expressed as

" wlz
J = Ip(—————). 42
AN e 4

This is the normalized Fisher information, which is a scale-invariant measure
of nongaussianity.

To maximize J, one could derive a gradient algorithm that would be sim-
ilar to (40). Instead, we give here a very fast algorithm that requires some
additional approximations, but which we have empirically found to work well
with image data. This consists of first finding a matrix Wy that decomposes
the data z into independent components as s = Wyz. Any algorithm for in-
dependent component analysis (Amari et al., 1996; Bell and Sejnowski, 1995;
Cardoso and Laheld, 1996; Comon, 1994; Hyvérinen and Oja, 1997) can be
used for this purpose. Using ICA algorithms is justified by the fact that max-
imizing J under the constraint of decorrelation of the wz is one way of to
estimating the ICA data model; for the approximation in (39), this has been
proven (Hyvérinen, 1997b). Thus the difference between ICA and the maxi-
mization of J is only a question of different constraints .

After estimating the ICA decomposition matrix Wy, we transform it by

W = Wy (W W) /2 (43)

to obtain an orthogonal transformation matrix. The utility of this method
resides in the fact that there exist algorithms for ICA that are computationally
highly efficient (Hyvérinen, 1997a; Hyvérinen and Oja, 1997). Therefore, the
above procedure enables one to estimate the basis even for data sets of high

14



dimensions. Empirically, we have found that the required approximations do
not significantly deteriorate the statistical properties of the obtained sparse
coding transformation.

4 Sparse Code Shrinkage

Now we summarize the algorithm of sparse code shrinkage as developed in
the preceding sections. In this method, the ML noise reduction is applied
on sparse components, first choosing the orthogonal transformation so as to
maximize the sparseness of the components. This restriction to sparse variables
is justified by the fact that in many applications, such as image processing, the
distributions encountered are sparse. The algorithm is as follows:

1. Using a representative noise-free set of data z that has the same statis-
tical properties as the n-dimensional data x that we want to denoise,
estimate the sparse coding transformation W = W, as explained in
Sections 3.4-3.5.

2. For every i = 1,...,n, estimate a density model for s; = w;frz, using the
models described in Section 2.4.1. Choose by (30) whether model (9) or
(11) is to be used for s;. Estimate the relevant parameters e.g. by (28)
or (29), respectively. Denote by g; the corresponding shrinkage function,
given by (10) or by (12), respectively.

3. Observing x(t),t = 1,...,T, which are samples of a noisy version of x as
in (33), compute the projections on the sparsifying basis:

y(t) = Wx(2). (44)

4. Apply the shrinkage operator g; corresponding to the density model of
s; on every component y;(t) of y(t), for every ¢, obtaining

5i(t) = gi(wi(?)); (45)
where o2 is the noise variance (see below on estimating o?).

5. Transform back to original variables to obtain estimates of the noise-free
data x(t):
%(t) = WTs(t). (46)
If the noise variance o2 is not known, one might estimate it, following (Donoho
et al., 1995), by multiplying by 0.6475 the mean absolute deviation of the y;
corresponding to the very sparsest s;.
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5 Discussion

5.1

Comparison with wavelet and coring methods

The resulting algorithm of sparse code shrinkage is closely related to wavelet
shrinkage (Donoho et al., 1995), with the following differences:

1.

Our method assumes that one first estimates the orthogonal basis us-
ing noise-free training data that has similar statistical properties. Thus
our method could be considered as a principled method of choosing the
wavelet basis for a given class of data: instead being limited to bases that
have certain abstract mathematical properties (like self-similarity), we let
the basis be determined by the data alone, under the sole constraint of
orthogonality.

In sparse code shrinkage, the shrinkage nonlinearities are estimated sep-
arately for each component, using the same training data as for the ba-
sis. In wavelet shrinkage, the form of shrinkage nonlinearity is fixed,
and the shrinkage coefficients are either constant for most of the com-
ponents (and perhaps set to zero for certain components), or constant
for each resolution level (Donoho et al., 1995). (More complex methods
like cross-validation (Nason, 1996) are possible, though.) This difference
stems from the fact that wavelet shrinkage uses minimax estimation the-
ory, whereas our method uses ordinary ML estimation. Note that point 2
is conceptually independent from point 1, and further shows the adaptive
nature of sparse code shrinkage.

Our method, though primarily intended for sparse data, could be directly
modified to work for other kinds of nongaussian data.

An advantage of wavelet methods is that very fast algorithms have been
developed to perform the transformation (Mallat, 1989), avoiding multi-
plication of the data by the matrix W (or its transpose).

Of course, wavelet methods avoid the computational overhead, and espe-
cially the need for additional, noise-free data required for estimating the
matrix W in the first place. The requirement for noise-free training data
is, however, not an essential part of our method. Future research will
probably provide methods that enable the estimation of the sparsifying
matrix W and the shrinkage nonlinearities even from noisy data.

The connection is especially clear if one assumes that both steps 1 and 2 of
sparse code shrinkage in Section 4 are omitted, using a wavelet basis and the
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shrinkage function (10) with a; = 0 and a b; that is equal for all i (except
perhaps some i for which it is zero). Such a method would be essentially
equivalent to wavelet shrinkage.

A related method is Bayesian wavelet coring, introduced by Simoncelli and
Adelson (1996) . In Bayesian wavelet coring, the shrinkage nonlinearity is es-
timated from the data to minimize mean-square error. Thus the method is
more adaptive than wavelet shrinkage, but still uses a predetermined sparsify-
ing transformation.

5.2 Connection to independent component analysis

Let us consider the estimation of the generative data model of independent
component analysis (ICA) in the presence of noise. The noisy version of the
conventional ICA model is given by

x=As+v (47)

where the latent variables s; are assumed to be independent and nongaussian
(usually supergaussian), A is a constant mixing matrix, and v is a gaussian
noise vector. Now, a reasonable method for denoising x would be to some-
how find estimates §; of the (noise-free) independent components, and then
reconstruct x as X = A8. Such a method (Lewicki and Olshausen, 1998) is
closely related to sparse code shrinkage. In (Hyvirinen, 1998) it was proven
that if the covariance matrix of the noise and the mixing matrix fulfill a certain
relation, the estimate § can be obtained by applying a shrinkage nonlinearity
on the components of A~1x. This relation is fulfilled, e.g. if A is orthogonal,
and noise covariance is proportional to identity, and is thus true for the noise
covariance and the transformation matrix W in sparse code shrinkage. Thus
our method can be considered as a computationally efficient approximation of
the estimation of the noisy ICA model, consisting of replacing the constraint of
independence of the sparse components by the constraint of the orthogonality
of the sparsifying matrix. Without this simplification, the computation of the
sparse components would require an optimization procedure (gradient descent
or a linear program) for every sample point (Hyvérinen, 1998; Lewicki and
Olshausen, 1998).
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6 Simulation results

6.1 Maximum likelihood estimation in one dimension

First we did simulations to illustrate the capability of the ML estimation to
reduce gaussian noise in scalar nongaussian random variables. The mean-
square error of the nonlinear ML estimator in (5) was compared to the mean-
square error of the optimal (MMS) linear estimator using the index R, defined
in (20). This index shows how much the mean-square error was decreased by
taking into account the nonlinear nature of the ML estimator.

Fig. 3 shows the estimated index for a Laplace random variable with dif-
ferent noise variances (the Laplace variable had unit variance). For small noise
variances, the index increases in line with Theorem 1 and its corollary. The
maximum attained is approximately 2%. After the maximum, the index starts
decreasing. This decrease is not predicted by Theorem 1, which is valid for
small noise levels only.

In Fig. 4, the same results are shown for a very supergaussian random
variable, obtained by taking the cube of a gaussian variable. The optimal esti-
mator was approximated using the method of Section 2.4.1, using the density
in (11). Due to the strong nongaussianity of s, noise reductions of 30% are
possible. The qualitative behavior was rather similar to Figure 3.

Next we illustrated how the ratio changes with increasing nongaussian-
ity. We took a family of nongaussian variables defined as powers of gaussian
variables:

__ siga()lolf

v E{lv[*?}

where v is a standardized gaussian random variable, and the division by the
denominator is done to normalize s to unit variance. The parameter § > 1
controls the sparseness of the distribution; sparseness increases with increasing
(. The density model used was chosen for each value of 8 according to (30).
The ratio Ry, for different values of (3, is plotted in Figure 5. This shows clearly
how the denoising capability increases with increasing sparsity.

(48)

6.2 Experiments on image data

Here we present some examples of applications of sparse code shrinkage to
image data. More detailed experiments will be described in (Hyvérinen et al.,
1998a).
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6.2.1 Data

The data consisted of 10 real-life images, mainly natural scenes, not unlike
those used by other researchers (Olshausen and Field, 1996; Karhunen et al.,
1997a). Most of the images were obtained directly from PhotoCDs, thus avoid-
ing artifacts created by any supplementary processing. Two examples are given
in Fig. 6.

The images were randomly divided into two sets. The first set was used for
learning of the weight matrix W that gives the sparse coding transformation,
as well as for estimating the shrinkage nonlinearities. The second set was used
as a test set. It was artificially corrupted by Gaussian noise, and the sparse
code shrinkage method in Section 4 was used to reduce the noise.

6.2.2 Methods

The images were used in the method in the form of subwindows of 8 x 8 pixels.
Such windows were presented as 64-dimensional vectors of gray-scale values.
The DC value, i.e., the mean of the gray-scale values, was subtracted from each
vector as a preprocessing step. This resulted in a linear dependency between
the components of the observed data, and therefore the dimensionality of the
data was reduced by one dimension, using PCA to get rid of the component
of zero variance. Thus one obtained the vectors x(t) used in the algorithm. In
the results shown below, an inverse of these preprocessing steps was performed
after the main algorithm.

After preprocessing, the sparse code shrinkage algorithm, as described in
Section 4 was applied to the noisy images. The sparse code transformation W
was computed by first using the fast fixed-point algorithm for ICA (Hyvérinen
and Oja, 1997; Hyvérinen, 1997a), and then transforming as in (43). The
obtained transformation matrix was qualitatively similar to the ICA or sparse
coding matrices as estimated in (Bell and Sejnowski, 1997; Karhunen et al.,
1997a; Olshausen and Field, 1996), for example. The variance of the noise was
assumed to be known. The densities encountered were all modelled by (11),
due to their strong sparsities.

6.2.3 Results

The results are shown for the two images depicted in Fig. 6. In Fig. 7, a
first series of results is shown. An image which was artificially corrupted with
Gaussian noise with standard deviation 0.5 (the standard deviations of the
original images were normalized to 1), is shown in the upper left-hand corner.
The result of applying our denoising method on that image is shown in the
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upper right-hand corner. For comparison, the corresponding denoising result
using Wiener filtering is depicted in the lower row. Wiener filtering is in
fact a special case of our framework, obtained when the distributions of the
components are assumed to be all gaussian.

Visual comparison of the images in Fig. 7 shows that our sparse code shrink-
age method cancels noise quite effectively. In comparison to Wiener (low-pass)
filtering and related methods, one sees that contours and other sharp details
are conserved better, while the overall reduction of noise is much stronger.
This result is in line with those obtained by wavelet shrinkage (Donoho et al.,
1995) and Bayesian wavelet coring (Simoncelli and Adelson, 1996).

The second experiment in Fig. 8 shows the corresponding results for a dif-
ferent image. The results are essentially similar to those of the first experiment.

In Figs. 9 and 10, corresponding results for a higher noise level (noise vari-
ance —1) are shown. In the presence of such a strong noise, the performance of
the method cannot be expected to be very satisfactory. Nevertheless, compar-
ison with the depicted Wiener filtering results show that at least the method
reduced noise much better than Wiener filtering. It could be argued, though,
that the image is too distorted for the results to be useful; the validity of such
considerations depends on the practical application situation.

7 Conclusion

We derived the method of sparse code shrinkage using maximum likelihood
estimation of nongaussian random variables corrupted by gaussian noise. In
the method, we first determine an orthogonal basis in which the components
of given multivariate data have the sparsest distributions possible. The sparse-
ness of the components is utilized in ML estimation of the noise-free compo-
nents; these estimates are then used to reconstruct the original noise-free data
by inverting the transformation. In the general case, it was shown that the
noise reduction is proportional to the sum of the Fisher informations of the
sparse components (for small noise levels). Sparse code shrinkage is closely
connected to wavelet shrinkage; in fact, it can be considered as a principled
way of choosing the orthogonal wavelet-like basis based on data alone, as well
as an alternative way of choosing the shrinkage nonlinearities.
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A  Proof of Theorems 1 and 2

We prove here directly the vector case, i.e. Theorem 2. Theorem 1 is just a
special case.
From (5) we have

§=x—0’Vf(x)+ O(c?) (49)
where V f is the gradient of the density f. Thus we obtain
§—s=v—0’Vfx)+ 0(c?) = v —d?[Vf(s) + Vif(s)v] + O(c?) (50)
and

E{(s —s)(8—s)"}
= E{uv"} + " B{Vf(s)Vf(s)"} — 20° E{ww" }E{V*f(s)} + o(0")
= 0’1 — o'Ip(s) + o(c*) (51)

where we have used the property (Schervish, 1995)

E{V*f(s)} = Ir(s) (52)

B Proof of (28) and (32)

The estimators in (28) are obtained as a special case of the estimators (32), so
we only prove (32) in the following.

In (Pham et al., 1992) it was shown that for any function r, the inner
product of r with the score function f’ with respect to the metric defined by
p is obtained as:

<f'r>= [pOF©r© = B{r' () (53)
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which has the benefit that it can be simply estimated as the corresponding
sample average. Using (53), we obtain the inner products, denoting by ¢ the
identity function:

<flii>=1, <f' h>=E{l(s)}, (54)
<i,h>=E{sh(s)}, <i,i>=E{s’}, (55)
< h,h >= E{h(s)}. (56)

Now we can compute a function ho that is orthogonal to i:

(&) =) - T e 57)

with

_[Bishs)? 59

< hg, hy >= E{h(s)?} B

Projecting f' on i and hg, we obtain finally

vy L1 1
PO~ gratt s
1 ) E{sh(s)}

- E{SQ}[ < hg, hy >

B9} - Tt ) - Tl

B9} - T e

1 ! E{Sh(s)}
+W[E{h(3)}— E{s?} 1h(&) (59)

which gives (32).

C Proof of (36)

Using the orthogonal decomposition in Section B, in particular Eq. (59), one
obtains:

[P P ~a® [ 1€+ [ Fen(e)ds +20b [ FEEh(€)de

S L / E{sh(s)}
= B <> D)~ Ty
__1 [E{n'(s)} E{s?} — E{sh(s)}]”
=B BB - B
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D Proof of (37)

Denote pe = p — po. Assume that terms of order o(pl) are of order o(p); in
other words, we are considering a Sobolev neighbourhood of pg. We obtain

Jr0

)+2p0 PL(E) + olpo)
f/ )+2p0 ()+o(€>”l5

R
= [per e + 2 / B8 (¢ae —2 [ L )¢ +ofp). (60
Using partial integration the second term can be modified:
[ o p(©)'pl€0de = — [ (ogpo(€)"pe(6)de. (62)
On the other hand,
[ (tog 20(€))"po(€)ds + [ 10108 po()) Ppol€)ee = 0. (63)
Thus we obtain
[roEEya
- [r© B8 a2 [ s t0gm©)de — 2 [ OB de + o

= /p(é)[—((logpo)'(&))2 —2(log po)" (§)]d¢ + o(pe).  (64)
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Figure 1: Plots of the shrinkage functions. The effect of the functions is to re-
duce the absolute value of its argument by a certain amount which depends on
the noise level. Small arguments are set to zero. This reduces gaussian noise
for sparse random variables. Solid line: shrinkage corresponding to Laplace
density as in (7). Dashed line: typical shrinkage function obtained from (10).
Dash-dotted line: typical shrinkage function obtained from (12). For compar-
ison, the line x = y is given by dotted line. All the densities were normalized
to unit variance, and noise variance was fixed to .3.
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Figure 2: Plots of densities corresponding to models (9) and (11) of the sparse
components. Solid line: Laplace density. Dashed line: a typical moderately
supergaussian density given by (9). Dash-dotted line: a typical strongly su-
pergaussian density given by (11). For comparison, gaussian density is given
by dotted line.
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Figure 3: Tlustration of the denoising capability of ML estimation in one
dimension. The index of noise reduction R is plotted for a Laplace random

variable of unit variance, for different values of noise variance o2.
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Figure 4: Illustration of the denoising capability of ML estimation in one di-
mension. The index of noise reduction Ry is plotted for a highly supergaussian
random variable of unit variance, for different values of noise variance o2.
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Figure 5: The denoising capability of ML estimation depends on nongaus-
sianity. The index of noise reduction R, is plotted for different supergaussian
random variables of unit variance, parameterized by § as in (48). Noise vari-
ance o2 = (.2 was constant. Supergaussianity increases with the value of the
parameter (3, and so does Rj.
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Figure 6: Two of the images used in the experiments.
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Figure 7: The first experiment in image denoising. Upper left: original image
corrupted with noise. Upper right: the recovered image after applying sparse
code shrinkage. Below: for comparison, the same image Wiener-filtered.
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Figure 8: The second experiment in image denoising. Upper left: original
image corrupted with noise. Upper right: the recovered image after applying
sparse code shrinkage. Below: for comparison, the same image Wiener-filtered.
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Figure 9: The third experiment in denoising, with a higher noise level than
above. Upper left: original image corrupted with noise. Upper right: the
recovered image after applying sparse code shrinkage. Below: for comparison,
the same image Wiener-filtered.
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Figure 10: The fourth experiment in denoising, with a higher noise level than
above. Upper left: original image corrupted with noise. Upper right: the
recovered image after applying sparse code shrinkage. Below: for comparison,
the same image Wiener-filtered.
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