
Lecture 11: Range-Minimum Queries

Lecturer: Travis

February 24th, 2015



Today we’ll see how to use succinct representations of trees to
build another useful succinct data structure, one that supports
range-minimum queries (RMQs). After that, we’ll briefly go over
what you should know for the exam. On Thursday we’ll talk about
the Projects course.



The query RMQ(i , j) on an array A[1..n] can be defined to return
either the value of the minimum element in A[i ..j ], the position of
one of its occurrences, or both.

There’s a folklore data structure for RMQs that takes O(n log n)
words of memory and answers queries in O(1) time:



For each position p ≤ n and power q ≤ blg nc, we store the value
of the minimum element in A[p..p + 2q − 1] and the position of
one of its occurrences there; given a range [i ..j ], we choose the
largest power q of 2 at most j − i + 1 and return the smaller of the
the minimum elements in the ranges A[i ..i + 2q − 1] and
A[j − 2q + 1..j ], and the position of one of its occurrences in A[i ..j ].



This data structure is a (lg n)-factor larger than A itself, which is
all we need if we don’t care about query time. Several researchers
proposed earlier linear-space data structures, but the best-known
one is by Farach and Bender (2000), who reduced RMQs to
lowest-common-ancestor (LCA) queries in Cartesian trees.



To build a Cartesian tree for A[1..n], we choose an occurrence of
the minimum element, say in position p, and make it the root. We
then make its two subtrees the Cartesian trees for A[1..p − 1] and
A[p + 1..n].

PAUSE WHILE TRAVIS DRAWS A CARTESIAN TREE ON THE
BOARD.



If the ith node is an ancestor of the jth node in the Cartesian tree
for A, then A[i ] is the minimum element in A[i ..j ]. (WHY?) If the
jth node is an ancestor of the ith nodes, then A[j ] is the minimum
element.

Otherwise, the ith and jth nodes are in the left and right subtrees
of some node v — their lowest common ancestor. Notice that v ’s
parent is either to the left of the ith node or to the right of the
jth, so v is the highest node between the ith and the jth.
Therefore, if v is the mth node from the left, then A[m] is the
minimum element in A[i ..j ].

PAUSE WHILE TRAVIS WAVES HIS ARMS IN FRONT OF THE
TREE ON THE BOARD.



So, how can we support fast LCA queries? Well, suppose we write
the balanced-parentheses representation of the shape of the
Cartesian tree for A and, for each parenthesis, write the depth of
the node it corresponds to.

PAUSE WHILE TRAVIS DOES THIS FOR THE TREE ON THE
BOARD.

Notice that all the nodes with the smallest depth between the ith
and jth nodes are children of their LCA. Therefore, if we can find
RMQ for the depths between the parentheses for the ith and jth
nodes, then we can find their LCA, so we can find RMQ(i , j).



This seems pretty circular, but notice the depths for consecutive
parentheses differ only by 1. Let’s consider the special case of
supporting RMQs on a sequence in which consecutive values differ
by 1.

We can store such a sequence as a binary string. Suppose we break
this string into blocks of length proportional to lg n.

For each block, we store the number of 1s and 0s until the
beginning of the block (or we can store o(n) bits to be able to
answer rank queries), the minimum value in that block, and the
position of an occurrence of that minimum.



Consider the O(n/ log n)-element sequence of the blocks’ minima.
Using the folklore solution, we can build a O(n)-word RMQ data
structure for this sequence. With this, given i and j , we can find
an occurrence of the element strictly between the two blocks
containing the ith elements and jth element.



Suppose we can somehow find in O(1) time the minimum element
in the prefix or suffix of a block. Then in O(1) time we can find
the minimum element between the ith and the jth elements. That
is, we can find in O(1) time a parenthesis with minimum depth
between the closing parenthesis for the ith node and the opening
parenthesis for the jth node.



How do we find the minimum element in a suffix or prefix of a
block? Well, the blocks have length O(log n), so we can split them
each into O(1) mini-blocks of length lg(n)/2, and use a universal
table of size 2lg(n)/2 logO(1) n ⊆ O

(
n1/2+ε

)
.



So, given i and j , we find a parenthesis with minimum depth
between the parentheses for the ith and jth nodes in the Cartesian
tree, find the parent v of the node corresponding to that
parenthesis, look up v ’s rank r using succinct-tree tricks (that
Simon may have showed you), and return A[r ] and r .



Theorem

We can store an array A[1..n] in O(n) words such that given i and
j, in O(1) time we can return the value of the minimum element in
A[i ..j ] and the position of one of its occurrences there.



That’s pretty cool but notice that, if we only want the position of
an occurrence of the minimum element and not its value, then we
need only the shape of the Cartesian tree, which we can encode in
2n bits.



Suppose we don’t store A and that, instead of using the folklore
solution, we use the solution we just developed to support RMQs
on the blocks’ minima. That takes O(n/ log n) words, or O(n) bits.

For any positive constant ε there exists another constant c such
that, if we make the blocks each c lg n bits long, then everything
apart from the balanced parentheses representation takes εn bits.

(This slows the queries down by a factor proportional to 1/ε, which
disappears in the asymptotic notation.)



Theorem

We can store (2 + ε)n +O(1) bits such that, given i and j, in O(1)
time we can return the position of a minimum element in A[i ..j ].

(Actually, it’s possible to improve the space bound to 2n + o(n)
bits, which is optimal to within lower order terms, but we’re not
going to do that in this course.)


