
Answer Set Solver Backdoors

Emilia Oikarinen1 and Matti Järvisalo2

1 HIIT & Department of Information and Computer Science, Aalto University, Finland
2 HIIT & Department of Computer Science, University of Helsinki, Finland

Abstract. The concept of backdoor variables offers a generic notion for provid-
ing insights to the surprising success of constraint satisfaction solvers in solving
remarkably complex real-world instances of combinatorial problems. We study
backdoors in the context of answer set programming (ASP), and focus on study-
ing the relative size of backdoors in terms of different state-of-the-art answer set
solving algorithms. We show separations of the ASP solver families in terms of
the smallest existing backdoor sets for the solvers.

1 Introduction
Answer set programming (ASP) [28,4] offers an expressive rule-based declarative lan-
guage for conveniently modelling hard combinatorial problems, together with highly ef-
ficient solver technology for finding solutions (answer sets) to the rule-based constraint
models. Answer set solver technology [21,30,31,2,19,26,22,15,1] builds on the suc-
cess of Boolean satisfiability (SAT) [3] solving techniques (DPLL [8,7], CDCL [6,27])
and implements additional inference mechanisms for native reasoning over answer set
programs, most notably, well-foundedness checking. While advances in ASP and SAT
solvers have improved our ability to efficiently solve and reason over a remarkably wide
range of important real-world problems, our understanding for the fundamental reasons
for this success, however, is still somewhat lacking. The concept of backdoor variables,
as introduced originally by Williams, Gomes, and Selman [32], offers a generic no-
tion for providing insights to the surprising success of constraint satisfaction solvers in
solving remarkably large and complex real-world instances of combinatorial problems.
Informally, a backdoor set B of variables is a subset of the variables in a problem in-
stance, such that a systematic search procedure needs to non-deterministically assign
values (branch) only on the variables in B in order to decide the instance. Given that
a search procedure has a small backdoor to a problem instance, the procedure can in
principle decide the instance efficiently.

In this paper, we study backdoors in the context of answer set programming. While
several other extensions of the basic definition of backdoors have been proposed and
studied [9,10,29], only recently there has been work on backdoors in the context of
ASP, and mainly from the parameterized complexity perspective [13]. In contrast, we
focus on studying the relative size of backdoors in terms of practical state-of-the-art an-
swer set solving algorithms. Closely following the techniques implemented in different
solvers, we formalize different solver variants in terms of three dimensions: (i) well-
foundedness, (ii) conflict-learning, and (iii) branching. As explained later, these dimen-
sions reflect algorithmic choices in answer set solvers [21,30,2,31,25,19,26,22,15,1].

Importantly, different choices along the three dimensions allow for a more fine-grained
analysis than that possible in the context of SAT solvers [10], especially due to the
fact that dimensions (i) and (iii) do not have direct counterparts in SAT solving. As the
basis of our analysis, we define answer set solver backdoors extending related back-
doors concepts from SAT along the three dimensions, opening a new point of view to
analysing the effectiveness on different answer set solving techniques in terms of prob-
lem structure. As the main results, we show up to exponential separations of the ASP
solver families characterized by different choices along the three dimensions in terms of
the smallest existing backdoor sets for the solvers, both on satisfiable and unsatisfiable
families of answer set programs.

2 Preliminaries

Answer Set Semantics A normal logic program (or an answer set program in this
context) Π over a finite setP of atoms consists of a finite set of rules of the form r :
h← p1, . . . , pm,∼pm+1, . . . ,∼pn, where 0 < m ≤ n, h ∈ P ∪ {⊥} (where ⊥ stands
for falsity), and, for each i = 1..n, pi ∈ P . A rule r consists of a head, head(r) = h,
and a body, body(r) = {p1, . . . , pm,∼pm+1, . . . ,∼pn}. The symbol “∼” is default
negation. A default literal is an atom p or its default negation ∼p. The set of atoms
appearing in programΠ is denoted by atom(Π). The set of bodies (resp. heads) inΠ is
body(Π) = {body(r) | r ∈ Π} (resp. head(Π) = {head(r) | r ∈ Π}). For each atom
p ∈ head(Π), let body(p) = {body(r) | r ∈ Π, head(r) = p} to represent the set of
rules bodies that share the same head p. For a rule r, let body(r)+ = {p1, . . . , pm} and
body(r)− = {pm+1, . . . , pn} denote the sets of positive and negative (default negated)
atoms in body(r), respectively.

In ASP, we are interested in stable models [17] (or answer sets) of a given program
Π . A truth assignment for an answer set program Π is a function τ that maps atoms
in Π to {0, 1}. An assignment τ extends implicitly to default literals by requiring that
τ(∼p) = 1 − v for each atom p such that τ(p) = v ∈ {0, 1}. An assignment τ can be
extended over a set of literals β: τ(β) = 1 if τ(p) = 1 for all p ∈ β+ and τ(p) = 0
for each p ∈ β−; otherwise τ(β) = 0. τ satisfies a rule r ∈ Π iff τ(body(r)) = 1
implies τ(head(r)) = 1. An assignment τ that satisfies all rules of a program Π is an
answer set of Π if and only if there is no complete assignment τ ′ distinct from τ such
that (i) τ(p) = 0 implies τ ′(p) = 0, and (ii) τ ′ satisfies each rule in the program

Relation to Boolean Satisfiability (SAT) For a Boolean variable x, there are two liter-
als, the positive literal x and the negative literal ¬x. A clause is a disjunction of literals
and a CNF formula a conjunction of clauses. A truth assignment for a CNF formula F
is a function τ that maps variables in F to {0, 1}. An assignment τ extends implicitly to
literals by requiring that τ(¬x) = 1−v for each variable x such that τ(x) = v ∈ {0, 1}.
A clause C is satisfied by τ if τ(l) = 1 for some literal l ∈ C. An assignment τ satisfies
F if it satisfies every clause in F .

Clark [5] defines the completion of a given answer set program Π , mapping Π to a
CNF formula comp(F) as follows. For a body β = {p1, . . . , pm,∼pm+1, . . . ,∼pn} ∈
body(Π), let B(β) stand for β ↔ p1 ∧ · · · ∧ pm ∧¬pm+1 ∧ · · · ∧ ¬pn interpreted as a

2

CNF formula where β and all pi’s are viewed as Boolean variables.3 B(β) characterizes
that (i) the body of a rule is 1 if all its literals are 1, and (ii) some literal in the body
must be 0 if the head is 0 For an atom p ∈ head(Π) with body(p) = {β1, . . . , βk},
H(p) stands for p ↔ β1 ∨ · · · ∨ βk, characterizing that (i) a head atom must be 0
if all of the bodies of the rules defining it are 0, and (ii) the head atom must be 1 if
there is a rule such that the body is 1. The completion of Π is then the CNF formula
comp(Π) =

∧
β∈body(Π)B(β) ∧

∧
p∈head(Π)H(p). For any Π , the satisfying assign-

ments of comp(Π) capture the supported models of Π . In general, every answer set of
Π is also a supported model. However, the supported models coincide with answer sets
only when Π is tight4 [12,11]. If Π is tight, an assignment τ satistying comp(Π) cor-
responds to the answer set Aτ (p) = τ(p) if and only if p ∈ atom(Π) of Π , obtained
basically by restricting τ to atom(Π).

In case Π is non-tight, Aτ might not be an answer set of Π . This is due to loops
in Π that induce cyclic support among atoms assigned to 1 in τ . Loop formulas can be
used to prohibit such cyclic support. For a given program Π and a set U ⊆ atom(Π) of
atoms, the set of external bodies of U in Π , denoted by EB(U,Π), is {body(r) | r ∈
Π, head(r) ∈ U, body(r)+ ∩ U = ∅}. The loop formula induced by U for Π , where
EB(U,Π) = {β1, . . . , βk}, is L(U,Π) =

∧
p∈U (p → β1 ∨ · · · ∨ βk). For any non-

tight programΠ and satisfying truth assignment τ for comp(Π), we know thatAτ is an
answer set of Π if and only if τ satisfies the loop formulas induced by each non-empty
U ⊆ atom(Π), i.e., all loop formulas for Π: L(Π) =

∧
∅⊂U⊆atom(Π) L(U,Π). There

is an exponential number of loop formulas in the worst-case [24], which makes the
direct approach of answer set solving Π by satisfiability checking comp(Π)∧L(U,Π)
infeasible in practice.

3 Search for Answer Sets

We now describe formalizations of answer set solver variants, closely related to actual
available answer set solver implementations, which we analyze in terms of the rela-
tive size of backdoors. We base the formalization on the fact that, for any program Π ,
the answer sets of Π correspond to the satisfying assignments for comp(Π) ∧ L(Π).5

Indeed, the various answer set solvers available today can be characterized as imple-
menting variants of the classical the Davis–Putnam–Logemann–Loveland (DPLL) pro-
cedure [8,7] or the conflict-driven clause learning (CDCL) algorithm [6,27], with addi-
tional propagation techniques for performing well-foundedness checks over L(Π).

DPLL implements a standard backtracking depth-first search for satisfiability, with
unit propagation over clauses for extending deterministically the current partial assign-
ment τ making decisions (branching) on variables. Unit propagation over F and τ refers
applying the following rules until fixpoint: if there is a clause (l∨ l1∨· · ·∨ lk) such that
τ(li) = 0 for all i = 1..k, let τ(l) = 1. Unit propagation on the completion comp(Π)
and loop formulas L(Π) of an answer set program Π is tightly connected with native

3 When clear, we liberally refer to atoms and Boolean variables interchangeably.
4 A logic program Π is tight iff its dependency graph has no positive cycles.
5 L(Π) is not generated explicitly by solvers: the native propagation rules equivalent to unit

propagation on L(Π) and τ can be applied on Π to check for conflicts.

3

propagation rules [16] on the level of the answer set program. For a thorough discussion
characterizing ASP propagation in terms of unit propagation, see [14].

CDCL search is also based on making decisions and employing unit propagation.
However, CDCL in contrast to DPLL does not implement standard backtracking, but
rather uses a conflict analysis scheme for learning conflict clauses from seen conflict-
ing assignments, and performs non-chronological backtracking after learning a conflict
clause to erase more than one decision from the current assignment. For detailed ac-
counts on conflict-driven answer set solving, see [23,15], and e.g. [18,20] for accounts
on the relation of ASP and SAT solving.

Concretely, given a program Π as input, our formalizations of answer set solvers
differ in three dimensions:

1. whether well-foundedness checks over the loop formulas L(Π) are performed ea-
gerly (EWF) after each decision during search under the current partial assignment
τ , or lazily (LWF) after reaching a satisfying assignment for comp(Π));

2. whether a form of conflict learning is employed (CL), in analogy with CDCL, or
not (noCL), in analogy with DPLL;

3. whether the solver makes decisions on all atoms in comp(Π) (B), or only on atoms
in atom(Π) (noB), i.e., not on the atoms of the form β, which would correspond
to making decision on the bodies of rules);

yielding eight solvers variants {(X,Y, Z) whereX ∈ {EWF,LWF}, Y ∈ {CL,noCL},
andZ ∈ {B,noB}. The different variants are closely related to techniques implemented
in state-of-the-art answer set solvers. For examples, the DLV [21] and Smodels [30] sys-
tems relate with (EWF,noCL,noB); Nomore++ [2] with (EWF,noCL,B); Smodelscc [31]
(a conflict-learning variant of Smodels) with (EWF,CL,noB); the SAT-based answer
set solvers ASSAT [25], Cmodels [19], and SUP [22], incorporating variants of LWF,
relate with (LWF,CL,B); and finally, Clasp [15] relates most closely with (EWF,CL,B),
together with WASP [1] and SAG [26], both of which employ forms of (partial) EWF.

4 Backdoors
We continue by defining backdoors in the context of answer set solving. In general,
backdoors are defined in terms of tractable (polynomial-time decidable) subclasses C,
which may either syntactically-defined classes such as Horn programs or 2-SAT, or,
more closely related to solvers, subclasses defined via subsolvers, such as unit propa-
gation in the context of SAT. Here our focus is on the latter type of backdoors in the
context of answer set solving.

We start with the traditional definition for backdoors w.r.t. using unit propagation
as the subsolver. This definition fits with the non-conflict-learning DPLL-style solvers.
Given a CNF formula F on variables X , a subset of variables B ⊆ X , and a (partial)
truth assignment τ : B → {0, 1}, let F |τ denote the simplified formula obtained by
assigning values to variables in B according to τ .

Definition 1. [32] Given a CNF formula F on variables X , a subset B ⊆ X of vari-
ables is a strong unit-propagation backdoor if for every truth assignment τ : B →
{0, 1}, unit propagation on F and τ returns a satisfying assignment for F or concludes
that F |τ is unsatisfiable.

4

We will from now on refer to strong unit-propagation backdoors simply as strong
backdoors. Due to the differences in how DPLL and CDCL solvers explore search trees,
the traditional definition of backdoors does not as such fit with CDCL. Hence in [10] a
more natural definition of learning-sensitive backdoors was proposed for the context of
CDCL solvers.

Definition 2. [10] Given a CNF formula F on variables X , a subset of variables B ⊆
X is a learning-sensitive (unit-propagation) backdoor for F if there exists a search tree
exploration order such that a CDCL SAT solver branching only on the variables in B,
with this order and with unit propagation as the sub-solver at the leaves of the search
tree, either finds a satisfying assignment for F or proves that F is unsatisfiable.

Backdoors in ASP As natural counterparts of strong backdoors and learning-sensitive
backdoors in SAT, we now define (X,noCL, Z)-backdoors and (X,CL, Z)-backdoors,
respectively, in the context of ASP. We start with (X,noCL, Z)-backdoors, which serve
as the counterparts of strong backdoors. Similarly as for CNF formulas, Π|τ denotes
the simplified program obtained by assigning values to atoms according to τ .

Definition 3. Given an answer set program Π , a subset B ⊆ atom(Π) ∪ body(Π)
is a (X,noCL, Z)-backdoor, where X ∈ {EWF,LWF} and Z ∈ {B,noB}, if the
following conditions hold:

– If X = EWF, then for every truth assignment τ : B → {0, 1}, unit propagation on
comp(Π)∧L(Π) and τ returns a satisfying assignment for Π|τ or concludes that
Π|τ is unsatisfiable.

– If X = LWF, then for every truth assignment τ : B → {0, 1}, unit propagation
on comp(Π) and τ returns a satisfying assignment for comp(Π) or concludes that
Π|τ is unsatisfiable.

– If Z = noB, then B ⊆ atom(Π).

Since comp(Π) over-approximates the answer sets of Π , in the case X = LWF,
unit propagation can restricted to comp(Π) without loss of generality: If unit propaga-
tion on comp(Π) and τ determines that comp(Π)|τ is unsatisfiable, then Π|τ is also
unsatisfiable. If unit propagation on comp(Π) and τ returns a satisfying assignment for
comp(Π), we know that the assignment is either an answer set ofΠ , or unit propagation
on comp(Π) ∧ L(Π) and τ concludes unsatisfiability.

We continue by defining (X,CL, Z)-backdoors as natural counterparts of learning-
sensitive backdoors in SAT.

Definition 4. Given an answer set program Π , a subset B ⊆ atom(Π) ∪ body(Π)
is a (X,CL, Z)-backdoor for Π if there exists a search tree exploration order for the
(X,CL, Z)-solver such that the following conditions hold:

– The solver branches only on the variables in B.
– The solver uses unit propagation on comp(Π)∧L(Π) when all variables in B are

assigned.
– The solver either finds a satisfying assignment for Π or proves Π unsatisfiable.

5

– IfX = LWF, then the solver uses L(Π) for unit propagation only when the current
assignment is complete over atom(Π) ∪ body(Π).

– If Z = noB, then B ⊆ atom(Π).

Notice that, in contrast to (X,noCL, Z)-backdoors, here the additional unit prop-
agation enabled by L(Π) can play a critical role in terms of causing a conflict, which
would then allow the solver to learn from the conflict. Thus, in connection with the
lazy well-foundedness checking employed in SAT-based ASP solvers which employ
CDCL SAT-solvers, in case X = LWF unit propagation on L(Π) is postponed until a
complete assignment is reached on comp(Π) alone.

5 Analysis
As the main results of this paper, we will now analyze the relative size of (X,Y, Z)-
backdoors that exist for different answer set solver variants. We begin with relatively
simple observations.

Proposition 1. The following claims hold for any programΠ ,B ⊆ atom(Π)∪body(Π),
and X ∈ {EWF,LWF}, Y ∈ {CL,noCL}, Z ∈ {B,noB}.

(a) If B is a (LWF, Y, Z)-backdoor for Π , then it is a (EWF, Y, Z)-backdoor for Π .
(b) If B is a (X,noCL, Z)-backdoor, then it is a (X,CL, Z)-backdoor for Π .
(c) If B is a (X,Y,noB)-backdoor, then it is a (X,Y,B)-backdoor for Π .

Proposition 2. For any tight programΠ ,B ⊆ atom(Π)∪body(Π), and Y ∈ {CL,noCL},
Z ∈ {B,noB}, it holds that B is a (LWF, Y, Z)-backdoor for Π if and only if B is a
(EWF, Y, Z)-backdoor for Π .

In many cases, bounds on the sizes of backdoors in SAT can be mapped into bounds
on the sizes of backdoors in ASP. For this, we use a straightforward encoding cnf2asp(F)
of a CNF formula F as

{⊥ ← ∼x1, . . . ,∼xm, xm+1, . . . , xn | (x1 ∨ ... ∨ xm ∨ ¬xm+1 ∨ ... ∨ ¬xn) ∈ F} ∪
{x← ∼x̂ | variable x occurs in F} ∪ {x̂← ∼x | variable x occurs in F},

where the first set of rules encode the clauses in F , and the latter two enforce the clas-
sical semantics over the variables (atoms) using a new atom x̂ for each x.

Proposition 3. Let F be a CNF formula and B a subset of variables in F .

(a) IfB is a strong backdoor forF , thenB is a (X,noCL, Z)-backdoor for cnf2asp(F)
for any X ∈ {EWF,LWF} and Z ∈ {B,noB}.

(b) If B is a learning-sensitive backdoor for F , then B is a (X,CL, Z)-backdoor for
cnf2asp(F) for any X ∈ {EWF,LWF} and Z ∈ {B,noB}.

Proposition 4. For any CNF formula F , if the smallest strong (resp. learning-sensitive)
backdoors forF are of size k, then the smallest (X,noCL, Z)-backdoors (resp. (X,CL, Z)-
backdoors) for cnf2asp(F) are of size at least k for any X ∈ {EWF,LWF} and
Z ∈ {B,noB}.

6

In addition to being able to carry over results from SAT to ASP, in particular cases—
especially, when conflict-learning is not enabled—results for unsatisfiable programs
carry over to satisfiable programs, using the following transformation:

trsat(Π) = {e← ∼d} ∪ {d← ∼e} ∪ {head(r)← body(r),∼d | r ∈ Π}.

This translation essentially encodes an exclusive-or choice between d and e, and each
of the rules in Π is conditioned on ∼d.

Theorem 1. For any unsatisfiable program Π for which the smallest (X,noCL, Z)-
backdoors are of size k, it holds that (i) trsat(Π) has an answer set, and that (ii) the
smallest (X,noCL, Z)-backdoors for trsat(Π) are at least of size k, for any X ∈
{EWF,LWF} and Z ∈ {B,noB}.

Proof. (sketch) It is straightforward to verify that the assignment τ such that τ(d) = 1
and τ(a) = 0 for all a ∈ atom(trsat(Π)) \ {d} is the unique answer set of trsat(Π).
However, the smallest (X,noCL, Z)-backdoors for trsat(Π) can be shown to be at
least of size k. ut

We will next focus on analyzing the effects of different choices forX ∈ {EWF,LWF}
and Y ∈ {CL,noCL} on the relative sizes of (X,Y, Z)-backdoors. We begin by fo-
cusing on unsatisfiable programs. First, we exploit a result from [10] for backdoors in
SAT via the connections between backdoors in SAT and ASP we established in Sect. 5.

Theorem 2. [10] There are unsatisfiable CNF formulas for which the smallest learning-
sensitive backdoor are exponentially smaller than the smallest strong backdoors.

This result carries over to ASP as follows.

Proposition 5. There are unsatisfiable programs for which the smallest (LWF,CL,noB)-
backdoors are exponentially smaller than the smallest (EWF,noCL,B)-backdoors.

Proof. Take any CNF formula F witnessing Theorem 2. By Proposition 3, any smallest
learning-sensitive backdoor B for F is a (LWF,CL,noB)-backdoor for cnf2asp(F).
By Theorem 2 and Proposition 4, the smallest (EWF,noCL,B)-backdoors are expo-
nentially larger than B. ut

To compare the differences between lazy and eager propagation, we need to con-
sider non-tight programs, thus involving a more fine-grained analysis than what is pos-
sible in the context of SAT. Interestingly, there are programs which have exponentially
smaller (EWF,noCL,noB)-backdoors than (LWF,CL,noB)-backdoors; that is, lazy
well-foundedness checking can cause an exponential blow-up in the size of backdoor.

Theorem 3. There are unsatisfiable programs for which the smallest (EWF,noCL,noB)-
backdoors are exponentially smaller than the smallest (LWF,noCL,B)-backdoors.

Proof. (sketch) Consider the unsatisfiable program

Πn = {f ← ∼f,∼pi,1, . . . ,∼pi,n−1 | 1 ≤ i ≤ n} ∪
{f ← ∼f, pi,k, pj,k | 1 ≤ i, j ≤ n, 1 ≤ k ≤ n− 1, i 6= j} ∪
{pi,k ← pi,k | 1 ≤ i ≤ n, 1 ≤ k ≤ n− 1},

7

from [18], where n = 2m for somem. Notice that there is no external support for atoms
pi,k (only rule with an atom pi,k in the head is a self-loop). This and the first rule cause
the unsatisfiability of the program. Now {f} is a (EWF,noCL,noB)-backdoor for Πn

(note that τ(pi,j) = 0 for all i, j can directly be propagated with EWF).
However, for (LWF,CL,B)-backdoor, in order to check the loops of the form

pi,k ← pi,k, one must first have a complete truth assignment, which can be shown
to require assigning at least n atoms. Thus, a (LWF,noCL,B)-backdoor has to be at
least of size n. ut

We now turn our attention to backdoors for satisfiable programs.

Theorem 4. [10] There are satisfiable CNF formulas for which there are learning-
sensitive backdoors are smaller than the smallest strong backdoors.

Proposition 6. There are satisfiable programs for which there are (LWF,CL,noB)-
backdoors that are smaller than the smallest (EWF,noCL,B)-backdoors.

Proof. Like Proposition 5, follows from Theorem 4 and Propositions 3 and 4. ut

Theorem 5. There are satisfiable programs for which the smallest (EWF,noCL,noB)-
backdoors are exponentially smaller than the smallest (LWF,CL,noB)-backdoors.

Proof. (sketch) Consider the program Πn = P0 ∪ P1 ∪ · · · ∪ Pn such that P0 = {d←
∼d, c} and Pi = {ai ← bi. bi ← ai. ei ← ∼ai,∼bi,∼c} for all 1 ≤ i ≤ n, where
n = 2m for some m. The assignment τ(ei) = 1 for all 1 ≤ i ≤ n and τ(a) = 0
for all a ∈ atom(Πn) \ {e1, . . . , en} is the unique answer set of Πn. Now, {d} is
a (EWF,noCL,noB)-backdoor for Πn. However, the smallest (LWF,noCL,noB)-
backdoors and (LWF,CL,noB)-backdoors can be shown to be of size n+ 1. ut

It turns out that a simple modification of the program Πn in the proof of Theorem 5
gives an analogous results for unsatisfiable programs.

Theorem 6. There are unsatisfiable programs for which the smallest (EWF,noCL,noB)-
backdoors are exponentially smaller than the smallest (LWF,CL,noB)-backdoors.

Proof. Consider the programΠ ′n = Πn∪{⊥ ← e1, . . . , en,∼a1, . . . ,∼an,∼b1, . . . ,∼bn,
∼c,∼d}. The additional rule disallows in a naive way exactly the only satisfying as-
signment forΠn, being equivalent with the clause

∨n
i=1 ¬ei∨

∨n
i=1 ai∨

∨n
i=1 bi∨c∨d.

This rule has 3n+2 atoms in the body. Hence under any assignment over no more than
3n atoms, unit propagation cannot derive anything based on the rule. It follows that the
arguments in the proof of Theorem 5 are valid also for Π ′n. ut

Finally, we look at the question of whether allowing solvers to branch on the bodies
of rules (i.e., on the β variables in comp(Π)), or put another way, whether restricting
solvers to branch only on atoms, has an effect on the size of smallest backdoors. It turns
out that such a restriction can cause exponential separations.

Theorem 7. There are unsatisfiable programs for which the smallest (LWF,noCL,B)-
backdoors are exponentially smaller than the smallest (EWF,noCL,noB)-backdoors.

8

Proof. (sketch) Consider the tight program Πn
k = {f ← ∼f} ∪ Pn1 ∪ · · · ∪ Pnk , where

Pni = {f ← Bi | Bi = {∼ai,1, . . . ,∼ai,n}}∪{ai,j ← Bi,j | Bi,j = Bi\{∼ai,j}, 1 ≤ j ≤ n}

and n = 2k. There are (LWF,noCL,B)-backdoors of size k for Πn
k : Consider any set

BD = {f,B1, . . . , Bj−1, Bj+1, Bk}, a set that contains f and all except one bodies
Bi from Πn

k . On the other hand, it can be shown that the smallest (EWF,noCL,noB)-
backdoor are of size at least (k−1)·(n−1)+1. !! IS THIS THE RIGHT CONSTANT,
LOOK INTO iffalse ut

Additionally, we establish that in connection with eager well-foundedness check-
ing, conflict-learning even when restricting branching on atoms can have exponentially
exponentially smaller backdoors than without conflict-learning.

Theorem 8. There are unsatisfiable programs for which the smallest (LWF,CL,noB)-
backdoors are exponentially smaller than the smallest (EWF,noCL,B)-backdoors.

Proof. Consider the CNF formula F3 from [10, Proof of Theorem 3] with k+3·2k vari-
ables, having a learning-sensitive backdoor of size k. Now, by Proposition 3 the transla-
tion cnf2asp(F3), which is a tight program, has a (LWF,CL,noB)-backdoor of size k.
On the other hand, as shown in [10, Proof of Theorem 3], the smallest strong backdoors
for F3 are at least of size 2k+k. Thus, by Proposition 4 the smallest (EWF,noCL,B)-
backdoors of cnf2asp(F3) are at least of size 2k + k. ut

6 Conclusions
Closely following the techniques implemented in different solvers, we introduced an-
swer set solver backdoors defined with respect to three dimensions of answer set solv-
ing techniques. As the main results, we showed up to exponential separations of the
resulting notions of answer set solver backdoors, which we believe to highlight intrin-
sic differences of the solver variants in terms of their behavior w.r.t. problem structure.
Specific question related to this work remain open for future work. For example, not all
of our separations are exponential; can the sub-exponential separations be strengthened
into exponential ones?

Acknowledgements Work funded by Academy of Finland, grants 251170 (Centre of
Excellence in Computational Inference Research), 250518 (EO), and 276412 (MJ).

References

1. Alviano, M., Dodaro, C., Faber, W., Leone, N., Ricca, F.: WASP: A native ASP solver based
on constraint learning. In: Proc. LPNMR. LNCS, vol. 8148, pp. 54–66. Springer (2013)

2. Anger, C., Gebser, M., Linke, T., Neumann, A., Schaub, T.: The nomore++ system. In:
Proc. LPNMR. LNCS, vol. 3662, pp. 422–426. Springer (2005)

3. Biere, A., Heule, M., van Maaren, H., Walsh, T. (eds.): Handbook of Satisfiability, Frontiers
in Artificial Intelligence and Applications, vol. 185. IOS Press (2009)

9

4. Brewka, G., Eiter, T., Truszczynski, M.: Answer set programming at a glance. Commun.
ACM 54(12), 92–103 (2011)

5. Clark, K.: Negation as failure. In: Readings in nonmonotonic reasoning, pp. 311–325. Mor-
gan Kaufmann Publishers (1987)

6. Darwiche, A., Pipatsrisawat, K.: Complete algorithms. In: Biere et al. [3], pp. 99–130
7. Davis, M., Logemann, G., Loveland, D.: A machine program for theorem proving. Commu-

nications of the ACM 5(7), 394–397 (1962)
8. Davis, M., Putnam, H.: A computing procedure for quantification theory. Journal of the ACM

7(3), 201–215 (1960)
9. Dilkina, B.N., Gomes, C.P., Malitsky, Y., Sabharwal, A., Sellmann, M.: Backdoors to com-

binatorial optimization: Feasibility and optimality. In: Proc. CPAIOR. LNCS, vol. 5547, pp.
56–70. Springer (2009)

10. Dilkina, B.N., Gomes, C.P., Sabharwal, A.: Tradeoffs in the complexity of backdoors to
satisfiability: dynamic sub-solvers and learning during search. Ann. Math. Artif. Intell. 70(4),
399–431 (2014)

11. Erdem, E., Lifschitz, V.: Tight logic programs. Theory and Practice of Logic Programming
3(4-5), 499–518 (2003)

12. Fages, F.: Consistency of Clark’s completion and existence of stable models. Journal of
Methods of Logic in Computer Science 1, 51–60 (1994)

13. Fichte, J.K., Szeider, S.: Backdoors to normality for disjunctive logic programs. In:
Proc. AAAI. AAAI Press (2013)

14. Gebser, M., Schaub, T.: Characterizing ASP inferences by unit propagation. In: ICLP Work-
shop on Search and Logic: Answer Set Programming and SAT, Seattle, August 16, 2006. pp.
41–56 (2006)

15. Gebser, M., Kaufmann, B., Schaub, T.: Conflict-driven answer set solving: From theory to
practice. Artif. Intell. 187, 52–89 (2012)

16. Gebser, M., Schaub, T.: Tableau calculi for logic programs under answer set semantics. ACM
Trans. Comput. Log. 14(2), 15 (2013)

17. Gelfond, M., Lifschitz, V.: The stable model semantics for logic programming. In: Proc.
ICLP/SLP’88. pp. 1070–1080. MIT Press (1988)

18. Giunchiglia, E., Leone, N., Maratea, M.: On the relation among answer set solvers. Ann.
Math. Artif. Intell. 53(1-4), 169–204 (2008)

19. Giunchiglia, E., Lierler, Y., Maratea, M.: Answer set programming based on propositional
satisfiability. Journal of Automated Reasoning 36(4), 345–377 (2006)

20. Järvisalo, M., Oikarinen, E.: Extended ASP tableaux and rule redundancy in normal logic
programs. Theory and Practice of Logic Programming 8(5–6), 691–716 (2008)

21. Leone, N., Pfeifer, G., Faber, W., Eiter, T., Gottlob, G., Perri, S., Scarcello, F.: The DLV
system for knowledge representation and reasoning. ACM Transactions on Computational
Logic 7(3), 499–562 (2006)

22. Lierler, Y.: Abstract answer set solvers. In: Proc. ICLP. LNCS, vol. 5366, pp. 377–391.
Springer (2008)

23. Lierler, Y.: Abstract answer set solvers with backjumping and learning. TPLP 11(2-3), 135–
169 (2011)

24. Lifschitz, V., Razborov, A.: Why are there so many loop formulas? ACM Transactions on
Computational Logic 7(2), 261–268 (2006)

25. Lin, F., Zhao, Y.: ASSAT: Computing answer sets of a logic program by SAT solvers. Artifi-
cial Intelligence 157(1–2), 115–137 (2004)

26. Lin, Z., Zhang, Y., Hernandez, H.: Fast SAT-based answer set solver. In: Proc. AAAI. pp.
92–97. AAAI Press (2006)

27. Marques-Silva, J.P., Lynce, I., Malik, S.: Conflict-driven clause learning SAT solvers. In:
Biere et al. [3], pp. 131–153

10

28. Niemelä, I.: Logic programs with stable model semantics as a constraint programming
paradigm. Annals of Mathematics and Artificial Intelligence 25(3–4), 241–273 (1999)

29. Samer, M., Szeider, S.: Backdoor sets of quantified boolean formulas. In: Proc. SAT. LNCS,
vol. 4501, pp. 230–243. Springer (2007)

30. Simons, P., Niemelä, I., Soininen, T.: Extending and implementing the stable model seman-
tics. Artificial Intelligence 138(1–2), 181–234 (2002)

31. Ward, J., Schlipf, J.: Answer set programming with clause learning. In: Proc. LPNMR.
LNCS, vol. 2923, pp. 302–313. Springer (2004)

32. Williams, R., Gomes, C.P., Selman, B.: Backdoors to typical case complexity. In: Proc. IJ-
CAI. pp. 1173–1178. Morgan Kaufmann (2003)

11

	Answer Set Solver Backdoors

