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Abstract
We present complexity results and algorithms for
optimal status enforcement in abstract argumenta-
tion. Status enforcement is the task of adjusting
a given argumentation framework (AF) to support
given positive and negative argument statuses, i.e.,
to accept and reject specific arguments. We study
optimal status enforcement as the problem of find-
ing a structurally closest AF supporting given ar-
gument statuses. We establish complexity results
for optimal status enforcement under several cen-
tral AF semantics, develop constraint-based algo-
rithms for NP and second-level complete variants
of the problem, and empirically evaluate the proce-
dures.

1 Introduction
Argumentation is a central topic in modern Artificial Intel-
ligence research [Bench-Capon and Dunne, 2007], motivated
by a range of applications in domains such as legal reasoning,
multi-agent systems, and decision support [Bench-Capon et
al., 2009; McBurney et al., 2012; Amgoud and Prade, 2009].
Argumentation frameworks (AFs) [Dung, 1995] have become
the graph-based formal model of choice for many approaches
to argumentation in AI, with semantics defining sets of jointly
acceptable arguments, i.e., extensions.

Computational approaches with system implementations
for reasoning over AFs have recently received notable atten-
tion. Two central AF reasoning problems are skeptical and
credulous acceptance, i.e., determining if a given argument
is supported by a given AF and AF semantics in terms of
the argument belonging to all resp. some extensions of the
AF. These problems are static (or “non-dynamic”), i.e., de-
fined over a fixed AF. As argumentation is inherently a dy-
namic process, understanding AF dynamics is an important
research problem [Baumann, 2012a; Baumann and Brewka,
2015; Bisquert et al., 2013; Coste-Marquis et al., 2014a;
2014b; Delobelle et al., 2015; Diller et al., 2015]. Cen-
tral to AF dynamics is the question of how a given AF it-
self should be adjusted—in analogy with belief change—in
light of new knowledge on the arguments the AF should sup-
port. Computational approaches to reasoning about AF dy-
namics are currently at an early stage of development com-

pared to systems for static AF reasoning problems. Exten-
sion enforcement [Baumann, 2012b; Bisquert et al., 2013;
Coste-Marquis et al., 2015; Wallner et al., 2016]—where,
given an AF and a subset of arguments, the task is to find
a structurally closest AF that contains the specified subset as
(part of) an extension—is one of few AF dynamics problems
for which first computational approaches have been recently
proposed [Coste-Marquis et al., 2015; Wallner et al., 2016].

In this work we focus on status enforcement, a form of
AF reasoning that brings together concepts from static credu-
lous/skeptical acceptance and AF dynamics, most closely, ex-
tension enforcement. Status enforcement is the task of adjust-
ing a given argumentation framework (AF) to support given
positive and negative argument statuses, i.e., adjusting an AF
to accept and reject—credulously or skeptically—specific ar-
guments. Intuitively, by enforcing credulously sets of positive
and negative argument statuses, any solution AF to the status
enforcement problem supports a “point of view” in terms of
the positive arguments, at the same time ruling out support
for the negative arguments. In the skeptical counterpart, the
positive arguments must be supported without any conflicting
“points of views”. In this work we take on the task of optimal
status enforcement, i.e., finding a structurally closest AF wrt
changes to the attack structure of the AF, supporting given
argument statuses. Our main contributions are the following.

(i) For understanding status enforcement, we establish fun-
damental properties of the problem with connections to ex-
tension enforcement and static acceptance problems.

(ii) We establish the computational complexity of optimal
status enforcement under central AF semantics (conflict-free,
admissible, stable, complete, grounded, and preferred) and
parameterizations wrt negative statuses of arguments. Specif-
ically, we identify polynomial-time solvable and NP- and
second-level ΣP2 -complete variants of the problem.

(iii) We give algorithms for optimal status enforcement, in-
cluding direct constraint encodings for the NP-complete vari-
ants, and counterexample-guided abstraction refinement al-
gorithms based on constrained optimization solvers for vari-
ants complete for the second-level of the polynomial hierar-
chy; and empirically evaluate a prototype implementation of
the approaches. Our status enforcement system implementa-
tion together with benchmarks used in this paper, as well as
full formal proofs of our complexity results, are available via
http://www.cs.helsinki.fi/group/coreo/pakota/.



2 Preliminaries
We recall argumentation frameworks (AFs) [Dung, 1995] and
main acceptability AF semantics [Baroni et al., 2011].

Definition 1. An argumentation framework (AF) is a pair
F = (A,R) where A is a finite set of arguments and R ⊆
A× A is the attack relation. The pair (a, b) ∈ R means that
a attacks b. An argument a ∈ A is defended (in F ) by a set
S ⊆ A if, for each b ∈ A such that (b, a) ∈ R, there exists a
c ∈ S such that (c, b) ∈ R.

Example 1. Let F = (A,R) be an AF with A = {a, b, c, d}
and R = {(a, b), (b, c), (c, d)}. The corresponding graph
representation is shown in Figure 1a.

Semantics for AFs are defined through functions σ which
assign to each AF F = (A,R) a set σ(F ) ⊆ 2A of ex-
tensions. We consider for σ the functions stb, adm , com ,
grd , and prf , which stand for stable, admissible, complete,
grounded, and preferred, respectively.

Definition 2. Given an AF F = (A,R), the characteristic
function FF : 2A → 2A of F is FF (S) = {a ∈ A |
a is defended by S}. Moreover, for a set S ⊆ A, the range
of S is S+

R = S ∪ {b | (a, b) ∈ R, a ∈ S}.

Definition 3. Let F = (A,R) be an AF. A set S ⊆ A
is conflict-free (in F ), if there are no a, b ∈ S, such that
(a, b) ∈ R. We denote the collection of conflict-free sets of F
by cf (F ). For a conflict-free set S ∈ cf (F ), it holds that

• S ∈ stb(F ) iff S+
R = A;

• S ∈ adm(F ) iff S ⊆ FF (S);

• S ∈ com(F ) iff S = FF (S);

• S ∈ grd(F ) iff S is the least fixed-point of FF ;

• S ∈ prf (F ) iff S ∈ adm(F ) and there is no T ∈
adm(F ) with S ⊂ T .

For any AF F it holds that cf (F ) ⊇ adm(F ) ⊇
com(F ) ⊇ prf (F ) ⊇ stb(F ). We use σ-extension to refer
to an extension under a semantics σ.

As for enforcement operators [Baumann, 2012b; Coste-
Marquis et al., 2015; Wallner et al., 2016], strict enforce-
ment requires that the given set P of arguments has to be a
σ-extension, while in non-strict enforcement P is required to
be part of a σ-extension. We denote the set of attack struc-
tures that strictly enforce P under σ for F by enf σs (F, P ) =
{R′ | F ′ = (A,R′), P ∈ σ(F ′)}, and by enf σns(F, P ) =
{R′ | F ′ = (A,R′), ∃E ∈ σ(F ′) st E ⊇ P} the non-strict
enforcement. The number of changes of an enforcement is
the symmetric difference |R∆R′| of two attack structures R
and R′, i.e., |R \ R′| + |R′ \ R|. The optimization problem
for extension enforcement is then as follows.

Extension enforcement (x ∈ {s, ns})
Input: AF F = (A,R), P ⊆ A, and semantics σ.
Task: Find an AF F ∗ = (A,R∗) with

R∗ ∈ arg min
R′∈enf σx(F,P )

|R∆R′|.

3 Optimal Status Enforcement
In this section we define and give properties of the optimal
status enforcement problem.

The operators underlying status enforcement modify the
attack structure of a given AF F based on two given sets of
arguments, P and N , where P ∩ N = ∅. From here on, we
will consistently use P andN to denote the sets of arguments
that are to be so-called positively and negatively enforced,
respectively. We will consider both credulous and skeptical
variants of the status enforcement problem. For the credu-
lous case, the pair (P,N) is said to be enforced in an AF F ′
if (i) each argument in P is credulously accepted in F ′; and
(ii) each argument in N is not credulously accepted in F ′. In
the dual, skeptical case, for (P,N) to be enforced in F ′ we
require that (i) each argument in P is skeptically accepted in
F ′; and (ii) each argument in N is not skeptically accepted,
in F ′. In status enforcement, we are given an AF F and the
two subsets of its arguments, P and N , and the task is to find
an AF F ′ that is structurally close to F and in which (P,N)
is enforced.

Formally, we define the modified attack structures for a
given AF F = (A,R) for credulous status enforcement as
follows. We denote by cred(F, P,N, σ) the set

{R′ | F ′ = (A,R′), P ⊆
⋃
σ(F ′), N ∩

⋃
σ(F ′) = ∅}.

In words, in the modified AF F ′, all arguments in P are cred-
ulously accepted (in the union of all σ-extensions), and each
argument in N is not credulously accepted (excluded from
the union of σ-extensions).

For skeptical status enforcement, we denote by
skept(F, P,N, σ) the set

{R′ | F ′ = (A,R′), P ⊆
⋂
σ(F ′), N ∩

⋂
σ(F ′) = ∅}.

In words, in all modified attack structures each argument in
P is contained in all σ-extensions, while each argument in
N is excluded from at least one σ-extension. Note that, by
definition, A ⊆

⋂
σ(F ′) if σ(F ′) = ∅. From the considered

semantics in this paper, only the stable semantics may admit
no extensions for a given AF. This means that ifN = ∅, every
positive set P ⊆ A can be skeptically enforced under stable
semantics by an AF F ′ that has no stable extensions. In light
of this, we require for skeptical enforcement from here on
that σ(F ′) 6= ∅, i.e., the modified AF admits at least one σ-
extension. In summary, optimal status enforcement is defined
as follows.

Optimal Credulous Status Enforcement
Input: AF F = (A,R), P,N ⊆ A, and semantics σ.
Task: Find an AF F ∗ = (A,R∗) with

R∗ ∈ arg min
R′∈cred(F,P,N,σ)

|R∆R′|.

Optimal Skeptical Status Enforcement
Input: AF F = (A,R), P,N ⊆ A, and semantics σ.
Task: Find an AF F ∗ = (A,R∗) with

R∗ ∈ arg min
R′∈skept(F,P,N,σ)

|R∆R′|.
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Figure 1: Examples: (a) An AF; (b)–(e) Status enforcement under preferred semantics: enforcing P = {d} (b) credulously,
(c) skeptically; enforcing P and N = {a} (d) credulously, (e) skeptically.

Example 2. In AF F in Figure 1a, the set {a, c} is the unique
preferred extension. By introducing an attack from b to a
(Figure 1b) which yields AF F ′, we change the preferred
extensions to prf (F ′) = {{a, c}, {b, d}}. Thus, under pre-
ferred semantics, d is credulously accepted in F ′. To enforce
a positive skeptical status to d under preferred semantics, one
can introduce an attack from a to c in F (Figure 1c).

For enforcing P = {d} and N = {a} under preferred se-
mantics, Figure 1d illustrates credulous status enforcement.
Here the attack from b to a ensures that there is an admissible
set containing d, and the self-attack on a enforces that this
argument is not contained in any conflict-free set. For skepti-
cal status enforcement with the same sets P andN , Figure 1e
shows an optimal modification. In this AF we have two pre-
ferred extensions {a, d} and {b, d}, which implies that d is
skeptically accepted under preferred semantics, while a is not
skeptically accepted under preferred semantics, although a is
still contained in one preferred extension.

We now show fundamental properties of the status enforce-
ment operators. We begin with connecting them to exten-
sion enforcement. First, in case of so-called unique-status
semantics, i.e., semantics σ that admit exactly one extension
for each AF F (|σ(F )| = 1), non-strict extension enforce-
ment and enforcing credulous and skeptical statuses coincide
when N = ∅. From the semantics considered in this pa-
per, grounded semantics is a unique-status semantics. Fur-
ther, strict extension enforcement coincides with enforcing
credulous and skeptical statuses when N = A \ P .
Proposition 1. Let F = (A,R) be an AF, P ⊆ A, N =
A \ P , and σ a unique-status semantics. It holds that
• enf σns(F, P ) = cred(F, P, ∅, σ) = skept(F, P, ∅, σ);
• enf σs (F, P ) = cred(F, P,N, σ) = skept(F, P,N, σ).
A further observation is that if we enforce P to be con-

tained in (or equal to) a σ-extension by an AF F ′, then F ′
also enforces positive credulous statuses to arguments in P .
Further, if we enforce a positive skeptical status to a set of
arguments P by an AF F ′, then F ′ also enforces a positive
credulous status to all arguments in P . Recall that we re-
quire for enforcing positive skeptical statuses that at least one
σ-extension exists in the modified AF.
Proposition 2. The following inclusions hold for any AFF =
(A,R), P ⊆ A, N = A \ P , x ∈ {ns, s}, and semantics σ.
• enf σx(F, P ) ⊆ cred(F, P, ∅, σ);
• enf σs (F, P ) ⊆ skept(F, ∅, N, σ);
• skept(F, P, ∅, σ) ⊆ cred(F, P, ∅, σ).
An important question is which pairs of (P,N) can be en-

forced credulously or skeptically. For all the semantics we

consider, there is always an enforcing AF for credulous sta-
tus enforcement, while for enforcing skeptical statuses, there
always exists a solution under complete, grounded, and pre-
ferred semantics.
Proposition 3. Let F = (A,R) be an AF, P,N ⊆ A
two disjoint sets, σ ∈ {cf , adm, com, grd , prf , stb}, and
σ′ ∈ {com, grd , prf }. It holds that cred(F, P,N, σ) 6= ∅
and skept(F, P,N, σ′) 6= ∅.

Proof. (sketch) For enforcing credulous statuses, it holds that
for AF F ′ = (A,R′) with R′ = {(n, n) | n ∈ N} we have
R′ ∈ cred(F, P,N, σ), except in the case with σ = stb and
N ⊂ A. In that case, let x0 ∈ (A \ N) be an arbitrary but
fixed argument. It holds that R′′ ∈ cred(F, P,N, stb) for
F ′′ = (A,R′′) with R′′ = {(x0, n) | n ∈ N}.

For enforcing skeptical statuses under complete, grounded,
and preferred semantics, note that A \N is the grounded and
unique complete and preferred extension of F ′.

Enforcing skeptical statuses is trivial under conflict-free,
admissible, and other semantics that always admit the empty
extension. To see this, note that

⋂
σ(F ) = ∅ if ∅ ∈ σ(F ).

Proposition 4. Let F = (A,R) be an AF, P,N ⊆ A
two disjoint sets, and σ a semantics. Further, let R =
skept(F, P,N, σ). If σ admits the empty extension for all
AFs, i.e. for all AFs F ′ we have ∅ ∈ σ(F ′), then R = 2A×A

if P = ∅, andR = ∅ otherwise.
For stable semantics, the possibility of enforcing skeptical

statuses depends on whether we have N = A or not. This
is because if E ∈ stb(F ), then E contains at least one argu-
ment (except for the trivial AF with A = ∅). Thus, enforcing
a negative skeptical status to all arguments in a framework
under stable semantics is not possible. Otherwise, if N ⊂ A,
one can construct an AF with only attacks originating from
an arbitrary argument in A \N to all arguments in N .
Proposition 5. Let F = (A,R) be an AF. It holds that
skept(F, ∅, A, stb) = ∅. If P,N ⊆ A are two disjoint sets
with N ⊂ A, then skept(F, P,N, stb) is non-empty.

As is the case for credulous and skeptical acceptance in
the static, non-dynamic case, enforcing credulous statuses for
admissible sets and complete and preferred semantics coin-
cides. Further, enforcing credulous and skeptical statuses un-
der grounded semantics coincides with enforcing skeptical
statuses under complete semantics.
Proposition 6. Let F = (A,R) be an AF, P,N ⊆ A two
disjoint sets. It holds that
cred(F, P,N, adm)=cred(F, P,N, com)=cred(F, P,N, prf )
and
cred(F, P,N, grd)=skept(F, P,N, grd)=skept(F, P,N, com).



4 Complexity
Considering the computational complexity of optimal status
enforcement, we focus on the following decision problems.
Given an AF F = (A,R), two disjoint sets P,N ⊆ A,
a semantics σ, and an integer k ≥ 0, the question is to
decide whether there is an R′ ∈ cred(F, P,N, σ) (resp.
R′ ∈ skept(F, P,N, σ)) s.t. F ′ = (A,R′) and |R∆R′| ≤ k,
i.e., whether there is an enforcing AF with at most k modi-
fications to the attack structure. We distinguish between the
general status enforcement problem and the restricted case
where N = ∅, i.e., without negative status to be enforced.
Table 1 summarizes our results.

We begin with status enforcement for conflict-free sets,
which corresponds simply to addition or removal of self-
attacks on the given sets of arguments.

Proposition 7. Optimal credulous status enforcement for
conflict-free sets is polynomial-time solvable.

Skeptical status enforcement for conflict-free and admissi-
ble sets is trivial, since the empty set is always conflict-free
and admissible (see also Proposition 4).

Credulous and skeptical status enforcement coincides un-
der grounded semantics, which in turn coincides with non-
strict extension enforcement under grounded semantics if
N = ∅ (Proposition 1). For complexity of status enforcement
under grounded semantics, the following result is a corollary
of a previously established NP-completeness result for exten-
sion enforcement [Wallner et al., 2016, Theorem 3].

Corollary 8. Credulous and skeptical status enforcement un-
der grounded semantics is NP-complete, even if N = ∅.

As a further corollary, skeptical status enforcement under
complete semantics is NP-complete (see Proposition 6).

Corollary 9. Skeptical status enforcement under complete
semantics is NP-complete, even if N = ∅.

For credulous status enforcement, it turns out that for the
remaining semantics the complexities of the general case and
the restricted case withN = ∅ are presumably different. Intu-
itively, hardness for the restricted case follows from the fact
that checking whether an argument is credulously accepted
without modifications is NP-hard for these semantics.

Proposition 10. Credulous status enforcement with N = ∅
is NP-complete under admissible, complete, stable, and pre-
ferred semantics.

Proof. (sketch) Let F = (A,R) be an AF and P ⊆ A. Mem-
bership follows from guessing a new AF F ′, for each argu-

Table 1: Complexity results for status enforcement.

N = ∅ N unrestricted
σ credulous skeptical credulous skeptical

Conflict-free in P trivial in P trivial
Admissible NP-c trivial ΣP

2 -c trivial
Stable NP-c ΣP

2 -c ΣP
2 -c ΣP

2 -c
Complete NP-c NP-c ΣP

2 -c NP-c
Grounded NP-c NP-c NP-c NP-c
Preferred NP-c in ΣP

3 ΣP
2 -c in ΣP

3

ment p ∈ P a set of arguments Ep with p ∈ Ep, and check-
ing whether each guessed set Ep is a σ-extension. Verifying
whether a set is a σ-extension can be checked in polynomial
time for all considered semantics except preferred semantics,
for which it suffices to check whether the set is admissible.

Hardness follows in all cases from a straightforward re-
duction from the static credulous acceptance problem for an
argument a (an NP-complete problem for all considered se-
mantics [Dimopoulos and Torres, 1996]), and constructing an
instance for credulous status enforcement with P = {a}, and
allowing zero modifications (k = 0).

In contrast, credulous status enforcement under stable, ad-
missible, complete, and preferred semantics is ΣP2 -complete
if N 6= ∅. Intuitively, the jump in complexity is due to coNP-
completeness of verifying that an argument is not credulously
accepted in a given AF. Thus the problem can be decided by
a non-deterministic guess of a new attack structure and veri-
fying that all negative statuses are credulously enforced.
Theorem 11. Credulous status enforcement under stable, ad-
missible, complete, and preferred semantics is ΣP2 -complete.

Complexity of skeptical status enforcement under stable
semantics is established similarly as for credulous status en-
forcement under that semantics. Here second-level hardness
comes from the fact that verifying skeptical acceptance in a
fixed AF is coNP-complete under stable semantics.
Corollary 12. Skeptical status enforcement under stable se-
mantics is ΣP2 -complete, even if N = ∅.

For skeptical status enforcement under preferred semantics
we show membership in ΣP3 , which is due to the fact that
checking skeptical acceptance in a fixed AF under preferred
semantics is ΠP

2 -complete [Dunne and Bench-Capon, 2002].
Proposition 13. Enforcing skeptical acceptance under pre-
ferred semantics is in ΣP3 .

5 Algorithms
We present declarative encodings of optimal status enforce-
ment for NP variants of the problem, and, based on the en-
codings, develop counterexample-guided abstraction refine-
ment (CEGAR) [Clarke et al., 2003] algorithms based on
maximum satisfiability (MaxSAT) and SAT solvers for op-
timally solving ΣP2 –complete variants of status enforcement.
In detail, we provide MaxSAT encodings for N = ∅ under
admissible and stable semantics, and CEGAR for ΣP2 credu-
lous status enforcement for arbitrary N under admissible and
stable, as well as skeptical status enforcement under stable
semantics. This covers all the non-trivial problem variants
considered (except for grounded) by Proposition 6.

For background on MaxSAT, recall that for a Boolean vari-
able x, there are two literals, x and ¬x. A clause is a disjunc-
tion (∨) of literals. A truth assignment τ is a function from
variables to true (1) and false (0). Satisfaction is defined as
usual. A Partial MaxSAT (or simply MaxSAT) instance con-
sists of hard clauses ϕh and soft clauses ϕs. An assignment τ
is a solution to a MaxSAT instance (ϕh, ϕs) if τ satisfies ϕh.
The cost of τ , c(τ), is the number of clauses in ϕs not satis-
fied by τ . A solution τ to a MaxSAT instance ϕ is optimal if
c(τ) ≤ c(τ ′) for any solution τ ′ to ϕ.



Let F = (A,R) be an AF, and P,N ⊆ A disjoint sets of
arguments whose statuses are to be enforced under a seman-
tics σ. To encode the credulous status enforcement problem
in MaxSAT, we define variables xpa for each a ∈ A and p ∈ P
and ra,b for each a, b ∈ A. Now τ(xpa) = 1 corresponds to
a ∈ Ep, whereEp is any σ-extension containing the enforced
argument p. Likewise, τ(ra,b) = 1 iff (a, b) ∈ R′, where R′
is a solution attack structure. For skeptical status enforce-
ment, instead of variables xpa, we define variables xna for each
a ∈ A and n ∈ N as indicators for a ∈ En, where En is any
σ-extension that does not include the argument n.

For both credulous and skeptical status enforcement, the
soft clauses encode modifications to the attack structure by
ϕs =

∧
a,b∈A αa,b, where

αa,b =

{
ra,b if (a, b) ∈ R,
¬ra,b if (a, b) 6∈ R.

For credulous status enforcement, the hard clauses are

ψ(cred , F, P,N, σ) =
∧
p∈P

(
ϕpσ(F ) ∧ xpp ∧

∧
n∈N
¬xpn

)
,

where ϕpσ(F ) encodes semantics σ so that the xpa variables
correspond to Ep ∈ σ(F ′) with F ′ = (A,R′) and R′ defined
via the attack variables ra,b. For conflict-freeness, we have

ϕpcf (F ) =
∧
a,b∈A

(
¬ra,b ∨¬xpa ∨¬x

p
b

)
, for admissible sets

we use formula ϕpadm(F ) defined as

ϕpcf (F ) ∧
∧
a,b∈A

(
(xpa ∧ rb,a)→

∨
c∈A

(xpc ∧ rc,b)
)
,

and for stable semantics

ϕpstb(F ) = ϕpcf (F ) ∧
∧
a∈A

(
¬xpa →

∨
b∈A

(xpb ∧ rb,a)
)
.

If N = ∅, each satisfying assignment to ψ(cred , F, P, ∅, σ)
corresponds to an R′ ∈ cred(F, P, ∅, σ) and vice versa, for
σ ∈ {adm, com, prf , stb}.

Note that the encodings allow for capturing several refine-
ments of the problem. For example, refinements of the opti-
mality criterion, e.g., more elaborate cost models for express-
ing relative “strength” of, or “confidence” in, attacks can be
accounted for by using non-unit weights on the soft clauses;
similarly, hard constraints on changes to the attack structure
can be enforced by making the corresponding soft clauses
hard. Also, enforcing the existence of σ-extensions attacking
certain arguments is possible. Furthermore, e.g., a bounded
number of additional arguments can also be allowed.

For N 6= ∅, due to second-level hardness, we propose
a CEGAR approach described as Algorithm 1 which relies
on iterative (Max)SAT calls to solve status enforcement opti-
mally. We first apply MaxSAT to ψ(cred , F, P,N, σ) to gen-
erate a candidate solution (Line 3), which optimally solves
the subproblem of enforcing each argument in P to be ac-
cepted credulously, at the same time enforcing that each gen-
erated witness extension does not include arguments in N .
We then check whether this candidate is also a solution for the
status enforcement problem by asking whether in the modi-
fied AF there exists a σ-extension containing some n ∈ N via

Algorithm 1 CEGAR-based status enforcement for AF F =
(A,R), P,N ⊆ A, σ ∈ {adm, stb}, M ∈ {cred , skept}

1: χ← ψ(M,F, P,N, σ)
2: while true do
3: (c, τ)← MAXSAT(χ, ϕs)
4: result ← SAT(CHECK(M,A, τ, P,N, σ))
5: if result = unsatisfiable then return (c, τ)
6: else χ← χ∧REFINE(τ )

a SAT-check in Line 4. If no such σ-extension exists, τ repre-
sents an optimal solution to the credulous status enforcement
instance. Otherwise we refine the initial formula by exclud-
ing the current candidate attack structure and ask for another
modification to the AF.

For checking whether there is a σ-extension containing an
n ∈ N in the AF F ′ = (A,R′), with R′ defined via truth as-
signment τ , we use formulas CHECK(cred , A, τ, P,N, σ) =
φσ(A, τ) ∧

∨
n∈N xn. Formula φσ(A, τ) encodes cred-

ulous acceptance in the static case with φcf (A, τ) =∧
τ(ra,b)=1(¬xa ∨¬xb) for conflict-free sets. Here, variables

xa for a ∈ A encode that a is in the σ-extension. For admis-
sible sets and stable extensions we define

φadm(A, τ) = φcf (A, τ) ∧
∧

τ(rb,a)=1

(
xa →

∨
τ(rc,b)=1

xc

)
;

φstb(A, τ) = φcf (A, τ) ∧
∧
a∈A

(
¬xa →

∨
τ(rb,a)=1

xb

)
.

If a candidate is not successfully verified, we refine formula
χ of Algorithm 1 with

REFINE(τ) = ¬
( ∧
τ(ra,b)=1

ra,b, ∧
∧

τ(ra,b)=0

¬ra,b
)
.

For skeptical status enforcement under stable semantics we
slightly adapt Algorithm 1 by using

ψ(skept , F, P,N, σ) =
∧
n∈N

(
ϕnσ(F ) ∧ ¬xnn ∧

∧
p∈P

xnp

)
,

CHECK(skept , A, τ, P,N, stb) = φstb(A, τ) ∧
∨
p∈P ¬xp.

For the special case N = ∅, we enforce a stable extension
containing P via ψ.

6 Experiments
We have implemented the MaxSAT encodings and the
CEGAR-procedures, obtaining the first system for optimal
status enforcement. Here we present an overview of an em-
pirical evaluation of the system.

We generated benchmark instances following essentially
a standard model for random directed graphs.1 For each
|A| ∈ {20, 40, . . . , 200} and p ∈ {0.05, 0.1, . . . , 0.35}2, we

1Based on an initial evaluation, the ICCMA’15 argumentation
system competition [Thimm et al., 2016] instances are currently too
large in terms of the number of arguments to be suitable as basis for
status enforcement benchmarks.

2Non-trivial instances arose mainly with p ≤ 0.35.
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Figure 2: Credulous admissible (N = ∅) (left), CEGAR on credulous (N 6= ∅) and skeptical stable (right).

generated ten random AFs with |A| arguments by includ-
ing individual attacks with probability p. For each AF, we
randomly picked 5 arguments, of which we enforced |P | ∈
{1, 2, . . . , 5} positively, and finally picked |N | ∈ {0, 1, 2, 5}
arguments from the set A \ P to be enforced negatively. We
used OpenWBO [Martins et al., 2014] as the MaxSAT solver,
and ran the experiments on 2.83-GHz Intel Xeon E5440 4-
core nodes with 32-GB RAM and Debian GNU/Linux 8 un-
der 900-second per-instance timeout.

We provide results for two central AF semantics, admis-
sible and stable, for both credulous and skeptical variants of
optimal status enforcement. Mean runtimes with timeouts in-
cluded as 900s are shown in Figure 2 for the NP problems of
credulous status enforcement with |N | under admissible se-
mantics (left) and for the ΣP2 skeptical and credulous status
enforcement problems under stable semantics (right). In sum-
mary, the procedures generally scale up to at least 100 argu-
ments. As expected, increasing the size of P makes the prob-
lem harder (left); with |P | = 2, the approach still scales to
200 arguments and beyond. For the harder case |P | = 5, most
(65/70) instances are solved at |A| = 80, after which timeouts
start increasing linearly, with 68/70 timeouts at |A| = 200.
For the CEGAR approach (right), credulous status enforce-
ment is easier than skeptical under stable semantics. Interest-
ingly, the empirical hardness of skeptical status enforcement
under stable semantics is not significantly affected by differ-
ent choices for size of P and N .

7 Related Work
A majority of argumentation system implementations for
AFs [Cerutti et al., 2014; Dvořák et al., 2014; Egly et al.,
2010; Nofal et al., 2014] focus on the static problems of skep-
tical and credulous acceptance under different semantics; the
ICCMA’15 argumentation system competition [Thimm et
al., 2016] also focused on these problems. Status enforce-
ment, as focused on in this work, adopts the notions of skep-
tical and credulous acceptance into a dynamic setting.

There is recent work focusing on different revision opera-
tors for AFs [Baumann, 2012a; Baumann and Brewka, 2015;
Bisquert et al., 2013; Booth et al., 2013; Coste-Marquis
et al., 2014a; 2014b; Delobelle et al., 2015; Diller et al.,
2015; Liao et al., 2011]. Operators giving rise to compu-
tational problems concerning dynamics of AFs can be cate-
gorized into ones based on semantical [Booth et al., 2013;
Coste-Marquis et al., 2014a; 2014b; Diller et al., 2015]
and structural [Baumann, 2012b; Delobelle et al., 2015;
Coste-Marquis et al., 2015; Wallner et al., 2016] notions
of distance between AFs. Status enforcement falls into
the structural distance category. As for the problem state-
ment of optimal status enforcement, [Doutre et al., 2014;
Kontarinis et al., 2013] suggest a similar problem setting
(though in the latter in terms of subset-minimal instead of
optimal structural changes). However, no algorithms for op-
timal status enforcement are proposed.

Only few systems exist for enforcement problems;
for extension enforcement, two have been recently pro-
posed [Coste-Marquis et al., 2015; Wallner et al., 2016].
The closest to this work is [Wallner et al., 2016], with
CEGAR-style algorithms for second-level extension enforce-
ment problems.

8 Conclusions
We presented properties, complexity analysis, and algorithms
for optimal status enforcement as a form of AF dynamics
in abstract argumentation. Complexity of optimal status en-
forcement ranges from polytime-solvable to (at least) com-
pleteness for the second level of the polynomial hierarchy.
We also proposed and evaluated a first prototype system for
optimal status enforcement via employing MaxSAT solvers.
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Appendix
Proof of Theorem 11 and Corollary 12. For membership, re-
call that verifying credulous acceptance of an argument un-
der admissible, complete, preferred, and stable semantics is
in NP. This means that verifying whether an argument is not
credulously accepted is in coNP. Verifying whether an argu-
ment is skeptically accepted in an AF under stable semantics
is in coNP. This implies that verifying whether an argument is
not skeptically accepted under stable semantics is in NP. To
see membership for all problems mentioned in the theorem
and corollary, consider a non-deterministic guess of a modi-
fied attack structure with at most k changes. Further, for each
subproblem in NP (i.e., credulous acceptance or non skepti-
cal acceptance), we guess corresponding sets of arguments of
the new framework and verify whether they are σ-extensions.
Finally, we verify the coNP subproblems (non credulous ac-
ceptance and skeptical acceptance) with a coNP oracle. This
concludes membership in ΣP2 .

For hardness, we use a reduction from the ΣP2 -complete
problem of deciding whether a given quantified Boolean for-
mula φ = ∃X∀Y ψ in prenex normal form is valid. W.l.o.g.
we assume that ψ is in disjunctive normal form. Let C be the
set of conjunctions in ψ. Further, we define Z = {z | z ∈ Z}
as a renaming of elements in a set. Also, let n = |X|, and
D = {dxi | x ∈ X, 1 ≤ i ≤ n + 1}. We construct an AF
F = (A,R) with

A =X ∪X ∪ Y ∪ Y ∪ C ∪D ∪ {q, q′, q}
R ={(x, x), (x, x), (x, x), (x, x) | x ∈ X} ∪
{(y, y), (y, y) | y ∈ Y } ∪
{(z, c) | z ∈ X ∪ Y, c ∈ C,¬z ∈ c} ∪
{(z, c) | z ∈ X ∪ Y, c ∈ C, z ∈ c} ∪
{(c, q) | c ∈ C} ∪
{(x, dxi ), (x, dxi ), (dxi , q

′) | x ∈ X, 1 ≤ i ≤ n+ 1} ∪
{(q, q)}.

W.l.o.g. we assume that X , X , Y , Y , C, D, and {q, q′, q}
are disjoint sets. An illustration of the reduction is shown in
Figure 3 with conjunctions c = ¬x ∧ ¬y and c′ = x ∧ y.

Let F̂ = {F ′ | F ′ = (A,R′), |R∆R′| ≤ n}. We show
that the following statements are equivalent.

1. ∃F ′ ∈ F̂ s.t. ∃E ∈ adm(F ′) with q, q′ ∈ E and ∀E′ ∈
adm(F ′) we have q /∈ E′;

2. ∃F ′ ∈ F̂ s.t. ∃E ∈ stb(F ′) with q, q′ ∈ E and ∀E′ ∈
stb(F ′) we have q /∈ E′;

x x y y

c c′
q

q

dx1 dx2q′

Figure 3: Illustration of hardness proof of Theorem 11.

3. ∃F ′ ∈ F̂ s.t. stb(F ′) 6= ∅ and ∀E′ ∈ stb(F ′) we have
q, q′ ∈ E′;

4. φ = ∃X∀Y ψ(X,Y ) is valid.
We begin with showing that the fourth item implies each of

the other three. Assume φ is valid. Then there exists a truth
assignment τ on X s.t. for all truth assignments τ ′ that assign
the same value as τ to variables in X we have τ ′ |= ψ. Let τ
and τ ′ be such a truth assignments. Let

X ′ = {x ∈ X | τ ′(x) = 1},

X
′

= {x ∈ X | τ ′(x) = 0},
Y ′ = {y ∈ Y | τ ′(y) = 1},

and
Y
′

= {y ∈ Y | τ ′(y) = 0}.

Further, let R′ = R \ {(z, z) | z ∈ X ′ ∪X ′}, i.e., we remove
self-attacks from arguments in X ′ resp. from x where x /∈
X ′. It follows that for F ′ = (A,R′) we have F ′ ∈ F̂ . We
now construct a stable extension E ∈ stb(F ′) s.t. q, q′ ∈ E.
This implies the first condition of the first three items in the
list above.

Consider the arguments in C that are defended by X ′ ∪
X
′ ∪ Y ′ ∪ Y ′ = E′, i.e., FF ′(E′) ∩ C = C ′. From the

assumption that τ ′ |= ψ we can conclude that C ′ 6= ∅, since

c ∈ C ′ (1)

iff c ∈ (FF ′(E′) ∩ C) (2)

iff ∀(b, c) ∈ R′∃a ∈ E′ s.t. (a, b) ∈ R′ (3)

iff z ∈ c implies z ∈ E′ and (4)

¬z ∈ c implies z ∈ E′ (5)

iff z ∈ c implies τ ′(z) = 1 and (6)

¬z ∈ c implies τ ′(z) = 0 (7)

iff τ ′ |= c. (8)

By assumption ∃c ∈ C s.t. τ ′ |= c, and thus C ′ 6= ∅. It
immediately follows from construction of F ′ and previous
observations that {q, q′} ∪ E′ ∪ C ′ is stable in F ′.

Next, we show that ∀E ∈ adm(F ′) we have q /∈ E. This,
together with previous results, implies that the fourth item in
the list implies all other three. Suppose ∃E ∈ adm(F ′) s.t.
q ∈ E. Then q ∈ FF ′(E) and C ∩ E = ∅.

∃E ∈ adm(F ′) s.t. q ∈ E′ (9)

only if ∀c ∈ C∃b ∈ E s.t. (b, c) ∈ R′ (10)
iff ∀c ∈ C∃z ∈ X ∪ Y s.t. (11)
z ∈ c implies z ∈ E (12)
¬z ∈ c implies z ∈ E (13)

only if ∃τ ′′ s.t. ∀x ∈ X (14)

τ ′′(x) = 1 implies x ∈ E, (15)

τ ′′(x) = 0 implies x ∈ E and (16)

∀c ∈ C, τ ′′ 6|= c. (17)

Notice that τ ′′ is compatible with τ in the sense that ∀x ∈ X
we have τ ′′(x) = 1 implies τ(x) = 1 and τ ′′(x) = 0. Thus



the partial assignment τ ′′ can be completed to one that assigns
the same variables to X as τ and does not satisfy ψ. But this
implies φ is not valid, which is a contradiction.

The previous proof directly implies that the fourth item im-
plies the first and second. For the third one, it is immediate
that there exists a stable extension in F ′. Suppose there is
a stable extension T in F ′ s.t. q is not contained in it. It is
immediate that T is not stable, since no admissible set in F ′
contains the only attacker of q, namely q. Finally, to see that
there is no stable extension T ′ with q′ /∈ T ′, by previous
proof we know that each dxi is attacked by each stable exten-
sion. Thus, if q′ is not contained in T ′, then no argument in
T ′ attacks q′, and therefore T ′ is not stable in F ′.

We now proceed to the other direction of the hardness
proof. We show that the first three items individually imply
that the fourth item in the list holds. Assume that F ′ ∈ F̂
with F ′ = (A,R′). First note that all three items imply
condition (i) ∃E ∈ adm(F ′) s.t. q, q′ ∈ E. Consider
Ri = {(a, dxi ) | a ∈ A, x ∈ X} ∪ {(dxi , q′) | x ∈ X},
i.e., the set of attacks that originate from arguments in A to
arguments dxi and from dxi to q′ for a fixed i. It follows that
∃i s.t. |(R∆R′) ∩Ri| = 0, i.e., there exists an index i s.t. the
attack relation Ri is unchanged in R′ compared to R. This
holds since there are n + 1 attack structures Ri but only at
most n modifications in R′ compared to R.

Since q′ ∈ E by assumption (i), it follows that for each
x ∈ X we have x ∈ E or x ∈ E, since these are the only
attackers of dxi which attacks q′ (admissibility of E). Since
we have at most n changes in R∆R′, it immediately follows
that for each x ∈ X one of the following statements holds:
• (x, x) /∈ R′ and (x, x) ∈ R′, or
• (x, x) ∈ R′ and (x, x) /∈ R′.

This also implies that (R∆R′) ⊆ {(x, x), (x, x | x ∈ X}.
Summarizing, it holds that for each x ∈ X we have removed
exactly one self-attack from either x or x in R′ compared to
R and these are the only changes.

From this and assuming one of the first three items in the
list it follows that ∀E′ ∈ adm(F ′) we have q /∈ E′ (referred
to as condition (ii)), since q ∈ E′ and (q, q) ∈ R′. Let τ
be a truth assignment s.t. τ(x) = 1 iff (x, x) /∈ R′. Now
suppose that τ 6|= ψ (i.e., φ is not valid). Let E′′ = (E ∩
(X ∪ X)) ∪ {y ∈ Y | τ(y) = 1} ∪ {y ∈ Y | τ(y) =
0} ∪ {q, q′}. It follows that E′′ ∈ cf (F ′) (all self-attacks
on the corresponding x and x are not present in F ′). It is
immediate that E′′ attacks all arguments in A \ E′′ in F ′

except for arguments C.
E′′ attacks all arguments in C (18)

iff ∀c ∈ C∃a ∈ E′′ s.t. (a, c) ∈ R′ (19)
iff ∀c ∈ C∃z ∈ X ∪ Y (20)

z ∈ c implies z ∈ E′′ and (21)

¬z ∈ c implies z ∈ E′′ (22)
iff ∀c ∈ C∃z ∈ X ∪ Y (23)
z ∈ C implies τ(z) = 0 (24)
¬z ∈ C implies τ(z) = 1 (25)

iff τ 6|= ψ. (26)

This implies that E′′ ∈ stb(F ′) which is a contradiction (see
condition (ii)). Therefore τ |= ψ and thus φ is valid.


