
Conditional Lower Bounds for
Failed Literals and Related Techniques?

Matti Järvisalo and Janne H. Korhonen

HIIT & Department of Computer Science, University of Helsinki, Finland

Abstract. We prove time-complexity lower bounds for various prac-
tically relevant probing-based CNF simplification techniques, namely
failed literal detection and related techniques. Specifically, we show that
improved algorithms for these simplification techniques would give a
2δn time algorithm for CNF-SAT for some δ < 1, violating the Strong
Exponential Time Hypothesis.

1 Introduction

Automated formula simplification at the conjunctive normal form (CNF) level is
today an integral part of the SAT solving workflow, often notably speeding up
Boolean satisfiability (SAT) solving of real-world application instances. Indeed,
various polynomial-time techniques have been proposed for simplifying CNF
formulas before (i.e., in preprocessing) and during (i.e., in inprocessing [26])
search for satisfiability; see e.g. [1–3, 6, 11, 14, 15, 20, 21, 25, 29, 30, 33]. However,
formula simplification tends to come with a price. While stronger simplification
might be achieved by using more computational effort, in practice time used
for simplification should not outweight the benefits of the simplifications in
terms of the overall solving time (i.e., the combined time used for simplification
and search). While SAT solver developers keep on searching for more efficient
ways of implementing simplification techniques, our formal understanding of
the time complexity of different simplification techniques is rather limited at
present. This paper take steps towards a more in-depth understanding of the
price of simplification: we prove lower bounds for different probing-based CNF
simplification techniques.

Unit propagation is a common basis for many different simplification tech-
niques [3,12,13,17,18,20,21,31,32,35,38]. A key example is failed literal elim-
ination [13, 31, 34], which aims at deducing unit clauses via checking whether
assuming a truth value for a single variable results in a conflict by unit propa-
gation. Failed literals is a key technique used during search within lookahead
DPLL solvers [23] for both search tree pruning as well as a basis of branching
heuristics [22, 27, 28, 31, 34]. Furthermore, in combination with conflict-driven
? This work was supported by Academy of Finland Finnish Centre of Excellence
in Computational Inference Research COIN (grant #251170; M.J.) and Helsinki
Doctoral Programme in Computer Science – Advanced Computing and Intelligent
Systems (J.K.).

clause learning (CDCL) solvers, failed literals can be detected during preprocess-
ing as well as during search, e.g., by inprocessing CDCL SAT solvers such as
Lingeling [4]. Various clause elimination and clause strengthening techniques are
essentially generalisations of failed literals, probing for either conflicts or specific
literal dependencies using unit propagation by assuming one or more literals at a
time.

1.1 Contributions

Our main result is a conditional lower bound for the failed literal existence
problem, i.e., that of deciding whether a given CNF formula contains a failed
literal. Since the fixpoint of unit propagation can be computed in time O(n+m)
on CNF formulas with n clauses and m variables, failed literal existence has a
simple algorithm with running time O

(
n(n+m)

)
: for each literal ` ∈ F , run unit

propagation on F ∧ (`) and see if a conflict is derived. An iterative application of
this simple algorithm gives a O

(
n2(n+m)

)
algorithm for applying failed literal

elimination until fixpoint.
In practice, the quadratic running time of the simple algorithm for failed literal

existence can be too time consuming. However, as our main result, formalized as
Theorem 1, we show that non-negligible improvements over the simple algorithm
would give an improved algorithm for CNF-SAT.

Theorem 1. Let ε > 0. If there is a O
(
(N +M)2−ε) algorithm for failed literal

existence on Horn-3-CNF formulas with N variables and M clauses, then there is
a 2(1−ε/2)n poly(n,m) time algorithm for CNF-SAT on formulas with n variables
and m clauses

In other words, any such improvement, even in the restricted setting of
Horn-3-CNF formulas, would give us a exponential speedup over brute force for
CNF-SAT, improving upon the state of the art. Indeed, this would violate the
strong exponential time hypothesis (SETH) [8, 24] stating that

lim
k→∞

inf{δ : k-CNF can be solved in time O(2δn)} = 1 .

In particular, SETH would imply that CNF-SAT with unrestricted clause length
cannot be solved in time 2(1−ε)n poly(n,m) for any ε > 0. Thus Theorem 1 gives
a conditional lower bound against faster algorithms for failed literal existence.

Corollary 1. Failed literal existence cannot be solved on Horn-3-CNF formulas
with N variables and M clauses in time O

(
(N +M)2−ε) for any ε > 0 unless

SETH fails.

This result falls in line with other recent work investigating lower bounds
based on SETH [7,9,37]. While SETH itself is an extremely strong complexity
assumption, our result can be interpreted as showing that any attempt to improve
upon the simple O

(
n(n+m)

)
algorithm for finding a failed literal faces barriers

equivalent to improving the worst-case performance of CNF-SAT algorithms.

A detailed proof of Theorem 1 is presented in Section 3. As outlined in
Section 4, minor variations of the proof also give the same quadratic lower bound
for several related problems: checking the existence of asymmetric tautologies
and asymmetric literals, as well as for checking whether a binary CSP restricted
to domain-size 3 is singleton arc consistent.

2 Preliminaries

We assume that the reader is familiar with standard definitions on propositional
satisfiability. When convenient, a clause is seen as a set of literals and a CNF
formula as a set of clauses. Recall that the subclass k-CNF consists of CNF
formulas consisting of clauses of length ≤ k; Horn consists of CNF formulas in
which each clause has at most one positive literal; and that Horn-k-CNF is the
intersection of k-CNF and Horn.

Given a CNF formula F with clauses (¬l1), . . . , (¬lk), and (l1 ∨ · · · lk ∨ lk+1),
the unit resolution rule allows to extend F by letting F := F ∧ (lk+1), i.e., allows
the derivation of the unit clause (lk+1) from F in one step. Unit propagation on
F applies the unit resolution rule until fixpoint, and we write F `up (l) if unit
propagation on F derives the unit clause (l).

A literal l ∈ F is a failed literal in F if unit propagation derives a conflict on
F ∧ (l), that is, we have F `up (`′), (¬`′) for some literal `′. In particular, this
implies that F is logically equivalent to F ∧ (¬l), which can be used to simplify
F by letting F := F ∧ (¬l) if l ∈ F fails in F ; this is called the failed literal rule.
Failed literal elimination refers to applying the failed literal rule until fixpoint.

3 Proof of the Failed Literal Existence Lower Bound

On a high level, our strategy for proving Theorem 1 follows that of Pătraşcu and
Williams [37]. In particular, assume that the following conditions hold.

(i) For some ε > 0, there is a O
(
(N+M)2−ε) algorithm for failed literal existence

on Horn-3-CNF formulas with N variables and M clauses.
(ii) There is a reduction that maps a CNF formula F with n variables and m

clauses to a Horn-3-CNF Ffl with N variables and M clauses such that
ii.a Ffl has a failed literal if and only if F is satisfiable,
ii.b N,M ≤ 2n/2 poly(n,m), and
ii.c Ffl can be constructed in time 2n/2 poly(n,m).

Lemma 1. Conditions (i) and (ii) imply that CNF-SAT has an algorithm with
running time 2(1−ε/2)n poly(n,m).

Proof. On input CNF formula F , we (1) construct Ffl, and (2) use the algorithm
for failed literal existence to decide whether Ffl has a failed literal, and thus
whether F is satisfiable. The first step takes 2n/2 poly(n,m) time and the second
step takes O

(
(N +M)2−ε) time, that is, 2(1−ε/2)n poly(n,m) time.

Thus in order to prove Theorem 1, it suffices to construct a reduction satisfying
Condition (ii) above. In what follows, we first present a reduction template (in
Section 3.1) which can be used as a base construction for obtaining reductions from
CNF-SAT to failed literal existence as well as other related existence problems.
We then instantiate the reduction for failed literal existence and show how to
obtain Horn-3-CNF formulas from the reduction (in Section 3.2). Instantiations
for related problems, namely, the existence problem for asymmetric tautologies
and literals, and checking singleton arc consistency of binary CSPs of domain
size three, are presented in Section 4.

3.1 A Reduction Template

Let F = C1∧C2∧· · ·∧Cm be a CNF formula over variables x1, x2, . . . , xn. Without
loss of generality, we assume that n is even and n ≥ 4. We split the variable set into
high variables x1, x2 . . . , xn/2 and the low variables xn/2+1, xn/2+2 . . . , xn. Let
P = {p1, p2, . . . , p2n/2} be the set of all truth assignments into the high variables,
and similarly let Q = {q1, q2, . . . , q2n/2} be the set of all truth assignments into
the low variables. For p ∈ P and q ∈ Q, denote by pq the assignment into
variables x1, x2, . . . , xn obtained by combining p and q.

We now construct a new formula F ′ from F as follows. The variable set of F ′
is

{yr : r ∈ P ∪Q} ∪ {ci : i = 1, 2, . . . ,m} ∪ {w} ,

and the clauses of F ′ are given by the following three rules.

(1) For each partial assignment p ∈ P and clause Ci ∈ F , if p satisfies Ci we
include the clause (¬yp ∨ ci), or equivalently, (yp → ci).

(2) For each partial assignment q ∈ Q, we include the clause(
yq ∨

∨
i : q(Ci)6=1

¬ci
)
, or equivalently,

((∧
i : q(Ci)6=1

ci
)
→ yq

)
.

In words, this clause states that having ci = 1 for all clauses Ci ∈ F that are
not satisfied by q implies yq = 1. Without loss of generality, we will assume
that the original formula F contains the tautological clauses (x1 ∨ ¬x1) and
(x2 ∨ ¬x2). This ensures that clauses generated by this rule have length at
least 3; in particular, they are not units.

(3) For each partial assignment q ∈ Q, we include the clause (¬yq ∨ w), or
equivalently, (yq → w).

Intuitively, the important feature of F ′ is how unit propagation behaves
on the formula. The variables of F ′ can be seen to be arranged in layers, as
illustrated in Figure 1. These layers are (1) the high variables {yp : p ∈ P}, (2)
the clause variables {c1, c2, . . . , cm}, (3) the low variables {yq : q ∈ Q}, and (4)
the terminal variable {w}. Clauses are implications from variables on layer i
to a single variable on layer i + 1. As all the clauses are Horn, positive units

. . .
yp1

yp2
yp3

c1 c2 c3 c4

yp4
yp5

yq1
yq2

yq3

w

^ ^ ^ ^

. . .

. . .

high variables

clause variables

low variables

cl
au

se
s

(1)

(2)

(3)

terminal

Fig. 1. Illustration of the reduction

will propagate only downwards towards the terminal w, and negative units will
propagate only upwards toward the variables yp.

Furthermore, the “satisfiability gadgets” consisting of the clauses (2) control
the flow of unit propagation between variables yp and w. That is, the only way
for unit propagation to pass through these gadgets is that we start from a literal
yp for an assignment p that can be extended to a satisfying assignment for F .

More formally, we make the following observations about F ′.

Lemma 2. Given a CNF formula F with n variables and m clauses, F ′ is a
CNF formula with N clauses and M variables such that

(a) F ′ is a Horn-CNF formula,
(b) F ′ is satisfied by assigning all variables to 0,
(c) N = 2n/2 +m+ 1,
(d) M = 2n/2 poly(m), and
(e) F ′ can be constructed in time 2n/2 poly(n,m).

Lemma 3. Let p ∈ P be fixed.

(a) If there is a q ∈ Q such that pq satisfies F , then F ′ ∧ (yp) `up (w).
(b) if there is no q ∈ Q such that pq satisfies F , then unit propagation on F ′∧(yp)

derives exactly the units (ci) for i such that p(Ci) = 1.
(c) Unit propagation on F ′ ∧ (¬w) derives exactly the units (¬yq) for q ∈ Q.

Proof. Fix p ∈ P and q ∈ Q. We start by making the following simple observation:
the assignment pq satisfies F if and only if {i : p(Ci) 6= 1} ∩ {i : q(Ci) 6= 1} = ∅,
which in turn is equivalent to {i : q(Ci) 6= 1} ⊆ {i : p(Ci) = 1}.

For (a), assume that there is q ∈ Q such that pq satisfies F . For any i such
that p(Ci) = 1, we have (yp → ci), and thus F ′ ∧ (yp) `up (ci). Since pq satisfies
F , we have by the earlier observation that F ′ ∧ (yp) `up (ci) for all i such that
q(Ci) 6= 1. Thus unit propagation derives (yq) using the clause

(∧
q(Ci) 6=1 ci

)
→ yq,

and, further, (w) using the clause (yq → w).

For (b), note that unit resolution on F ′ ∧ (yp) immediately derives (ci) for
i such that p(Ci) = 1, and no other units are immediately derived or already
present in F ′. Since pq does not satisfy F for any q ∈ Q, we have {i : p(Ci) 6= 1}∩
{i : q(Ci) 6= 1} 6= ∅. Thus, unit propagation does not derive (yq) from the clause(∧

q(Ci)6=1 ci
)
→ yq, nor does it derive (w).

For (c), note that F ′∧(¬w) `up (¬yq) for all q ∈ Q, using the clause (yq → w).
Since each clause

(∧
q(Ci)6=1 ci

)
→ yq has length at least 3 and variables w and

yq do not appear in any other clauses, no further units are derived.

3.2 The Lower Bound

To complete the reduction to failed literal existence, we construct the formula
Ffl by adding the clause (¬w ∨ ¬yp) or equivalently, (w → ¬yp) to F ′ for each
p ∈ P . Lemma 2 also holds for Ffl. Furthermore, we have the following.

Lemma 4. Let ` be a literal in Ffl. We have that

(a) ` is a failed literal in Ffl if ` = yp for some p ∈ P and there is a q ∈ Q such
that pq satisfies F , and

(b) ` is not a failed literal otherwise.

Proof. First, we note that (a) follows from Lemma 3(a), as we have Ffl ∧ (yp) `up
(w) and (w → ¬yp) if p satisfies the conditions of (a). Thus, it suffices to show
that there are no other failed literals.

Now let ` be literal that does not satisfy the requirements of (a). We show
that Ffl ∧ (`) is satisfiable, so ` cannot be a failed literal. There are three cases
to consider.

1. If ` is a negative literal, assigning all variables to 0 satisfies Ffl ∧ (`), as all
clauses are non-unit Horn clauses.

2. If ` is a positive literal and ` is not of form yp, then assigning variables in
the set {`, w} ∪ {yq : q ∈ Q} to 1 and other variables to 0 satisfies Ffl ∧ (`).

3. If ` = yp for some p ∈ P and pq does not satisfy F for any q ∈ Q, then by
Lemma 3(b) assigning yp and all variables ci such that p(Ci) = 1 to 1 and
other variables to 0 satisfies Ffl ∧ (yp).

The formula Ffl is still not necessarily 3-CNF. However, standard rewriting of
a long clause as clauses of length 3 preserves the Horn property: rewriting a Horn
clause (x1 ∧ · · · ∧ xk−1)→ l), where l is either xk or ¬xk, using fresh variables
a3, . . . , ak−1 gives the Horn clauses(

(x1 ∧ x2)→ a3
)
∧
(
(a3 ∧ x3)→ a4

)
∧ · · · ∧

(
(ak−1 ∧ xk−1)→ l

)
.

This rewriting preserves unit propagations over the original clause, and hence
does not affect the existence of failed literals.

Theorem 1 follows now from Lemmas 1–4 and the rewriting from Horn-CNF
to Horn-3-CNF.

4 Extensions

The reduction template described in Section 3.1 can be used to prove similar
lower bounds for existence problems over other notions related to failed literals.
Here we consider the existence problem for asymmetric tautologies and literals,
and checking singleton arc consistency of binary CSPs of domain size three.

For a CNF formula F , a clause C = (l1 ∨ · · · ∨ lk) ∈ F is an asymmetric
tautology [19] if unit propagation derives a conflict on (F \C)∧ (¬l1)∧ · · ·∧ (¬lk).
If C is an asymmetric tautology, then F can be simplified by letting F := F \ C.
A clause C ∈ F , a literal ` is an asymmetric literal in C if unit propagation on
F ∨ (`) derives (`′) for some `′ ∈ C \ {`}. If ` is an asymmetric tautology in
C, then F can be simplified by letting F := (F \ C) ∧ (C \ l). The notion of
asymmetric literals is a generalization of hidden literals [20]. Both asymmetric
tautologies and asymmetric literals are detected e.g. by vivification and during
inprocessing within the Lingeling SAT solver [4].

Furthermore, we consider the problem of checking singleton arc consistency [10,
36] of constraint satisfaction problems (CSPs) with constraints over pairs of
variable (i.e., binary CSPs) and with variable domains restricted to cardinality
three. On CNF formulas, checking singleton arc consistency is equivalent to
checking for the existence of failed literals, and extends to naturally to CSPs1.
Here we consider the restricted setting of (3, 2)-CSPs, i.e., binary CSPs with
variable domains restricted to cardinality three.

Theorem 2. Let ε > 0. There is a 2(1−ε/2)n poly(n,m) time algorithm for
CNF-SAT on formulas with n variables and m clauses if one of the following
holds.

(a) There is a O
(
(N +M)2−ε) algorithm for asymmetric tautology existence over

Horn-3-CNF formulas with N variables and M clauses.
(b) There is a O

(
(N +M)2−ε) algorithm for asymmetric literal existence over

Horn-3-CNF formulas with N variables and M clauses.
(c) There is a O

(
(N +M)2−ε) algorithm for checking singleton arc consistency

over (3, 2)-CSPs with N variables and M constraints.

Proof sketch. For (a) and (b), we start from the reduction template given in
Section 3.1 and extend it in a similar manner as in Section 3.2 with following
differences. For (a), we construct formula Fat by adding the clause (yp → w)
to F ′ for each p ∈ P . This new clause is an asymmetric tautology if and only
if p can be extended to a satisfying assignment for F , and there are no other
asymmetric tautologies in Fat (compare with Lemma 4).
1 Enforcing arc consistency refers to reducing the variable domains of a CSP until
fixpoint using the following rule: if there is a variable x and a value v in the domain
D(x) of x that is not supported by a constraint in the CSP, then letD(x) := D(x)\{v}.
A CSP is singleton arc consistent if for all x and v ∈ D(x), enforcing singleton arc
consistency on the CSP after assigning D(x) := {v} does not result in an empty
domain for some variable.

For (b), we construct the formula Fal by adding the clause (w ∨ yp) to F ′ for
each p ∈ P ; again, only possible asymmetric literals arise from these clauses and
correspond to satisfying assignments of F as before. Replacing w with ¬w in all
clauses gives a Horn formula.

For (c), we transform the Horn-3-CNF formula Ffl obtained from the failed
literal reduction into (3, 2)-CSP instance, by emulating each length 3 Horn clause
with two binary constraints over domain of size 3. That is, we replace each
clause

(
(a ∧ b) → c

)
by two constraints C and C ′ as follows. For C, we set

var(C) = {a, c} and allow all assignments with a = 0 or a = 2, and assignments
a = 1, c = 0 and a = 1, c = 2. For C ′, we set var(C ′) = {b, c} and allow all
assignments with b = 0 or b = 2, and assignments b = 1, c = 0 and b = 1, c = 1.
The resulting CSP instance is singleton arc consistent if and only if Ffl has no
failed literals.

5 Concluding Remarks

We established a connection between the strong exponential time hypothesis
and the existence of subquadratic algorithms for checking whether a given CNF
formula contains at least one failed literal, as well as several other related
simplification techniques. Any improvement over the obvious algorithm for failed
literal existence, even on Horn-3-CNF formulas, would require a major algorithmic
breakthrough.

However, several questions related to our results remain open. So far, we
were unable to establish a similar lower bound for failed literal existence for
2-CNF formulas, and as such cannot rule out the possibility of a subquadratic
algorithm for the 2-CNF case. In contrast, our proofs require clauses of width 3,
or domain size 3 in the case of binary CSPs. Similarly, it is open whether there
exist O

(
(n+m)3−ε) time algorithms for computing the fixpoint of failed literal

elimination. Proving a conditional lower bound for the fixpoint computation
would be a stronger result than our lower bound for failed literal existence. Again,
it is not clear whether such a lower bound can be established, especially in the
limited setting of Horn-CNFs; note that for 2-CNFs, computing the fixpoint can
be done in time O

(
n(n + m)

)
, as all failed literals in the fixpoint fail without

eliminating other failed literals first. Another possible extension of our results
would be to prove a more general conditional lower bound for k-step lookahead,
i.e., the extension of failed literal existence / failed literal elimination (i.e., 1-step
lookahead) to testing sets of k > 1 literals instead of a single literal at a time [16].

Finally, a converse result—that is, showing that faster CNF-SAT algorithms
would imply faster algorithms for failed literal existence—would give an even
tighter connection between the complexity of the two problems.

References

1. Bacchus, F.: Enhancing Davis Putnam with extended binary clause reasoning. In:
Proc. AAAI. pp. 613–619. AAAI Press / The MIT Press (2002)

2. Bacchus, F., Winter, J.: Effective preprocessing with hyper-resolution and equality
reduction. In: Proc. SAT 2003. LNCS, vol. 2919, pp. 341–355. Springer (2004)

3. Berre, D.L.: Exploiting the real power of unit propagation lookahead. Electronic
Notes in Discrete Mathematics 9, 59–80 (2001)

4. Biere, A.: Lingeling, Plingeling and Treengeling entering the SAT Competition
2013. In: Proceedings of SAT Competition 2013. Department of Computer Science
Series of Publications B, vol. B-2013-1, pp. 51–52. University of Helsinki (2013)

5. Biere, A., Heule, M., van Maaren, H., Walsh, T. (eds.): Handbook of Satisfiability,
Frontiers in Artificial Intelligence and Applications, vol. 185. IOS Press (2009)

6. Brafman, R.I.: A simplifier for propositional formulas with many binary clauses.
IEEE Transactions on Systems, Man, and Cybernetics, Part B 34(1), 52–59 (2004)

7. Calabro, C., Impagliazzo, R., Kabanets, V., Paturi, R.: The complexity of unique
k-SAT: An isolation lemma for k-CNFs. Journal of Computer and System Sciences
74(3), 386–393 (2008)

8. Calabro, C., Impagliazzo, R., Paturi, R.: The complexity of satisfiability of small
depth circuits. In: IWPEC 2009 Revised Selected Papers, LNCS, vol. 5917, pp.
75–85. Springer (2009)

9. Cygan, M., Dell, H., Lokshtanov, D., Marx, D., Nederlof, J., Okamoto, Y., Paturi,
R., Saurabh, S., Wahlstrom, M.: On problems as hard as CNF-SAT. In: Proc. CCC.
pp. 74–84. IEEE (2012)

10. Debruyne, R., Bessière, C.: Some practicable filtering techniques for the constraint
satisfaction problem. In: Proc. IJCAI. pp. 412–417. Morgan Kaufmann (1997)

11. Eén, N., Biere, A.: Effective preprocessing in SAT through variable and clause
elimination. In: Proc. SAT. LNCS, vol. 3569, pp. 61–75. Springer (2005)

12. Fourdrinoy, O., Grégoire, É., Mazure, B., Sais, L.: Reducing hard SAT instances to
polynomial ones. In: Proc. IRI. pp. 18–23. IEEE Systems, Man, and Cybernetics
Society (2007)

13. Freeman, J.: Improvements to propositional satisfiability search algorithms. PhD
thesis, University of Pennsylvania, USA (1995)

14. Gelder, A.V.: Toward leaner binary-clause reasoning in a satisfiability solver. Ann.
Math. Artif. Intell. 43(1), 239–253 (2005)

15. Gershman, R., Strichman, O.: Cost-effective hyper-resolution for preprocessing
CNF formulas. In: Proc. SAT. LNCS, vol. 3569, pp. 423–429. Springer (2005)

16. Gwynne, M., Kullmann, O.: Generalising unit-refutation completeness and SLUR
via nested input resolution. J. Autom. Reasoning 52(1), 31–65 (2014)

17. Han, H., Somenzi, F.: Alembic: An efficient algorithm for CNF preprocessing. In:
Proc. DAC. pp. 582–587. IEEE (2007)

18. Heule, M., Dufour, M., van Zwieten, J., van Maaren, H.: March_eq: Implementing
additional reasoning into an efficient look-ahead SAT solver. In: SAT 2004 Selected
Papers. LNCS, vol. 3542, pp. 345–359. Springer (2005)

19. Heule, M., Järvisalo, M., Biere, A.: Clause elimination procedures for CNF formulas.
In: Proc. LPAR-17. LNCS, vol. 6397, pp. 357–371. Springer (2010)

20. Heule, M., Järvisalo, M., Biere, A.: Efficient CNF simplification based on binary
implication graphs. In: Proc. SAT. LNCS, vol. 6695, pp. 201–215. Springer (2011)

21. Heule, M., Järvisalo, M., Biere, A.: Revisiting hyper binary resolution. In:
Proc. CPAIOR. LNCS, vol. 7874, pp. 77–93. Springer (2013)

22. Heule, M., van Maaren, H.: Aligning CNF- and equivalence-reasoning. In: SAT
2004 Selected Papers. LNCS, vol. 3542, pp. 145–156. Springer (2005)

23. Heule, M., van Maaren, H.: Look-ahead based SAT solvers. In: Biere et al. [5], pp.
155–184

24. Impagliazzo, R., Paturi, R., Zane, F.: Which problems have strongly exponential
complexity? Journal of Computer and System Sciences 63(4), 512–530 (2001)

25. Järvisalo, M., Biere, A., Heule, M.: Simulating circuit-level simplifications on CNF.
J. Autom. Reasoning 49(4), 583–619 (2012)

26. Järvisalo, M., Heule, M., Biere, A.: Inprocessing rules. In: Proc. IJCAR. LNCS,
vol. 7364, pp. 355–370. Springer (2012)

27. Kullmann, O.: Investigating the behaviour of a SAT solver on random formulas
(2002)

28. Kullmann, O.: Fundaments of branching heuristics. In: Biere et al. [5], pp. 205–244
29. Li, C.M.: Equivalency reasoning to solve a class of hard SAT problems. Inf. Process.

Lett. 76(1-2), 75–81 (2000)
30. Li, C.M.: Integrating equivalency reasoning into Davis-Putnam procedure. In:

Proc. AAAI. pp. 291–296. AAAI Press / The MIT Press (2000)
31. Li, C.M., Anbulagan: Heuristics based on unit propagation for satisfiability problems.

In: Proc. IJCAI. pp. 366–371. Morgan Kaufmann (1997)
32. Lynce, I., Marques-Silva, J.P.: Probing-based preprocessing techniques for proposi-

tional satisfiability. In: Proc. ICTAI. pp. 105–. IEEE Computer Society (2003)
33. Manthey, N., Heule, M., Biere, A.: Automated reencoding of boolean formulas. In:

Proc. HVC 2012. LNCS, vol. 7857, pp. 102–117. Springer (2013)
34. Niemelä, I., Simons, P.: Smodels - an implementation of the stable model and

well-founded semantics for normal LP. In: Proc. LPNMR. LNCS, vol. 1265, pp.
421–430. Springer (1997)

35. Piette, C., Hamadi, Y., Sais, L.: Vivifying propositional clausal formulae. In:
Proc. ECAI. FAIA, vol. 178, pp. 525–529. IOS Press (2008)

36. Prosser, P., Stergiou, K., Walsh, T.: Singleton consistencies. In: Proc. CP. LNCS,
vol. 1894, pp. 353–368. Springer (2000)

37. Pătraşcu, M., Williams, R.: On the possibility of faster SAT algorithms. In:
Proc. SODA. pp. 1065–1075 (2010)

38. Sheeran, M., Stålmarck, G.: A tutorial on Stålmarck’s proof procedure for proposi-
tional logic. Formal Methods in System Design 16(1), 23–58 (2000)

	Conditional Lower Bounds for Failed Literals and Related Techniques

