
A Core-Guided Approach to Learning Optimal Causal Graphs

Antti Hyttinen and Paul Saikko and Matti Järvisalo
HIIT, Department of Computer Science, University of Helsinki, Finland

Abstract
Discovery of causal relations is an important part
of data analysis. Recent exact Boolean optimiza-
tion approaches enable tackling very general search
spaces of causal graphs with feedback cycles and
latent confounders, simultaneously obtaining high
accuracy by optimally combining conflicting in-
dependence information in sample data. We pro-
pose several domain-specific techniques and inte-
grate them into a core-guided maximum satisfia-
bility solver, thereby speeding up current state of
the art in exact search for causal graphs with cycles
and latent confounders on simulated and real-world
data.

1 Introduction
Discovery of causal relations from sample data is an im-
portant part of data analysis for various application fields,
and thus an important area of AI research. Causal relation
structures are generally represented as directed graphs, where
nodes represent measurements and directed edges denote di-
rected causal relations. It has been shown that many features
of these structures can be determined even from passively ob-
served data [Pearl, 2000; Spirtes et al., 2000]. The difficulty
lies in determining presence of edges and their directional-
ity, especially when latent confounders (unobserved common
causes) and feedback (directed cycles) may be present.

For restricted settings without latent confounders and feed-
back cycles, various well-performing algorithms for causal
discovery have been developed. When aiming for accuracy
rather than very high scalability, the most accurate choices are
exact score-based Bayesian network structure learning algo-
rithms [Malone et al., 2015], which provide provably globally
optimal graphs as solutions under well-defined (e.g. Bayesian
marginal likelihood) scoring functions [Yuan and Malone,
2013; Bartlett and Cussens, 2017; Berg et al., 2014] by em-
ploying e.g. constraint optimization methods such as integer
programming (IP) and maximum satisfiability (MaxSAT).

However, much less progress has been made for exact
discovery algorithms when allowing for the presence of la-
tent confounders or feedback. To handle these more gen-
eral search spaces, the classic constraint-based causal dis-
covery algorithms [Spirtes et al., 2000; Pearl, 2000] use

(in)dependence constraints obtained from statistical tests to
narrow down the candidate graphs that may have produced
the given data. The classic inexact algorithms, such as PC,
CCD and FCI, scale up by pruning out independence tests
based on earlier test results [Spirtes et al., 2000; Richardson,
1996]. Unfortunately, these methods are not very accurate in
practice: early mistakes often jeopardize the learning results
[Claassen and Heskes, 2012; Hyttinen et al., 2014].

Conflicting independence test results from sample data
give rise to a combinatorial optimization problem which,
when allowing for latent confounders and cycles, is over a
drastically larger search space compared to more restricted
settings such as Bayesian network structure learning. The
first exact approach to this general setting recently devel-
oped by Hyttinen et al. [2014] is able find guaranteed-optimal
causal structures in terms of weighted (in)dependence con-
straints, and exhibits higher accuracy [Hyttinen et al., 2014;
Magliacane et al., 2016; Borboudakis and Tsamardinos,
2016]. The approach is based on applying MaxSAT opti-
mization solvers—or, in this case equivalently, answer set
programming [Hyttinen et al., 2014]. However, developing
causal discovery algorithms with better running time perfor-
mance without trading off accuracy for this general setting is
a major challenge.

We take on this challenge by proposing several algorith-
mic techniques for speeding up the approach of Hyttinen
et al. [2014], who apply a MaxSAT solver as a black box
on their encoding of the causal discovery task. This leaves
the actual search for a solution to an off-the-shelf MaxSAT
solver that has no domain-specific knowledge on the prob-
lem domain in question. Instead, we show how to integrate
domain-knowledge into a state-of-the-art MaxSAT solver for
expediting the search for causal structures. Specifically, we
(i) identify a number of generic cores describing small sets of
conflicting constraints, (ii) develop an incremental core ex-
traction technique, (iii) use dynamic partial encodings dur-
ing search without influencing the optimality of found causal
structures, and (iv) propose a problem-specific way based on
linear programming relaxations for hardening constraints.
The resulting solver, Dseptor, outperforms the approach of
Hyttinen et al. [2014] in terms of running times on both sim-
ulated and real-world data. An implementation and an online
appendix are available at the authors’ homepages.

2 Exact Constraint-based Causal Discovery
We focus on the problem setting and optimization problem
formulation of [Hyttinen et al., 2014]. We consider the class
G of causal graphs G = (V,E) with set of nodes V , where
the edge relation E is composed of directed causal edges and
(symmetric) bi-directed edges (see Figure 1 for an example).
Bi-directed edges X ↔ Y canonically represent latent con-
founders, e.g., structures X ← L → Y , where L /∈ V is an
unmeasured common cause of two observed variables X and
Y . A walk between X and Y is a sequence of consecutive
edges in the graph (allowing for repeated edges and nodes).
A node is a collider on a walk if both its adjacent edges on the
walk point into the node. A walk in graph G is d-connecting
w.r.t. a conditioning set S ⊆ V \ {X,Y } if every collider on
the walk is in S and no other nodes on the walk are in S. Two
nodes are d-connected given a conditioning set S if there is
at least one d-connecting walk between them; otherwise they
are d-separated. (This is equivalent to Pearl’s standard defini-
tion [Studený, 1998].) In Figure 1, X andW are d-connected
given Y through X ↔ Z → Y ← Z ← W . Nodes Y and
Q are d-separated given W as all walks between them violate
the d-connection criterion at node X .

Under the commonly used causal Markov and faithfulness
assumptions [Spirtes et al., 2000], statistical dependence be-
comes equivalent to (a type of) reachability in the graph: two
random variables are statistically dependent conditional on a
set of variables S iff they are d-connected given S in the gen-
erating causal structure G.1 That is, given enough samples
from a model with structure in Figure 1, we would expect to
find X statistically dependent on W given Y , and Y statisti-
cally independent ofQ givenW . Thus, throughout the rest of
the paper we use X ⊥⊥ Y |S (X 6⊥⊥ Y |S) to denote statistical
independence (dependence) and d-separation (d-connection).

The aim of causal discovery is to recover as many proper-
ties of Gt as possible from the data, which we take to be an
i.i.d. dataset sampled from a passive observational distribu-
tion that is Markov and faithful to an underlying “true” causal
graph Gt. The (in)dependence constraints K are obtained by
running statistical independence tests on the data. Since the
tests produce both false positives and false negatives when
run on finite sample data, exact constraint-based causal dis-
covery can be viewed as the following abstract constrained
optimization problem [Hyttinen et al., 2014].

INPUT: A set K of conditional (in)dependence con-
straints over V , and a non-negative weight (cost)
w(k) for each k ∈ K.

TASK: Find a causal graph G∗ = (V,E∗) s.t.

G∗ ∈ argmin
G∈G

∑
k∈K : G 6|=k

w(k).

In words, our goal is to find a single representative graph
G∗ that minimizes the sum of the weights of the given
conditional independence and dependence constraints not
implied by G∗. The constraints can be weighted according

1Spirtes [1995] shows this for the linear cyclic case. Pearl and
Dechter [1996] give a proof for the discrete cyclic case, Neil [2000]
points out the required additional assumptions. For the acyclic case,
see e.g. [Spirtes et al., 2000].

Q

X Z Y

W

Figure 1: Example graph.

to their reliability, and conflicts among the constraints are
well-resolved when the sum of the weights of the constraints
not satisfied by the output graph are minimized. Given a
representative, properties of its equivalence class can be
examined in several ways, see e.g. [Hyttinen et al., 2013].

Weights for (in)dependence constraints can be obtained in
many ways. Claessen and Heskes [2012] calculate Bayesian
probabilities by marginalizing over Bayesian network struc-
tures. Ways to turn frequentist p-values into reliability
weights have recently been proposed [Magliacane et al.,
2016; Triantafillou and Tsamardinos, 2015]. While the algo-
rithms we develop are independent of the choice of weights,
we obtain weights from local Bayesian model selection [Hyt-
tinen et al., 2014; Margaritis and Bromberg, 2009] for our
experiments.

Note that the optimization problem is computationally
challenging. For obtaining good accuracy, a large number of
(in)dependence constraints K are needed; we use all testable
(in)dependence constraints (

(
n
2

)
2n−2 for n nodes). The d-

separation condition for a solution satisfying a particular
(in)dependence constraint is also quite intricate. On the other
hand, this separation condition can be relatively naturally en-
coded declaratively as Boolean constraints. We give here an
intuitive overview of the encoding of Hyttinen et al. [2014] in
terms of MaxSAT to the extent necessary for the rest of this
paper. In MaxSAT, problems are encoded using propositional
clauses, using hard clauses (which have to be satisfied by all
solutions) and weighted soft clauses (which, if not satisfied,
incur a cost on a solution equal to their weights). In [Hyt-
tinen et al., 2014] each (in)dependence constraint k ∈ K is
encoded as a unit soft clause over a distinct Boolean variable
representing k with weight w(k). Additional Boolean vari-
ables are used for representing the solutions searched over,
i.e., the edge relation of causal graphs. The d-connecting
walks are encoded as hard clauses, linking the edge relation
with the (in)dependence constraints.

3 Implicit Hitting Set Approach
We build on the encoding of Hyttinen et al. [2014] rep-
resented as MaxSAT [Berg et al., 2015], integrating sev-
eral domain-specific algoritmic improvements into the open-
source MaxSAT solver LMHS [Saikko et al., 2016] to fur-
ther improve the running times of the approach. LMHS im-
plements the generic implicit hitting set approach [Moreno-
Centeno and Karp, 2013] for MaxSAT [Davies and Bac-
chus, 2013]. Analogously to MaxSAT, the causal discovery
instances (D,K,w) considered here consist of a (hard) d-
separability condition D, a set of (soft) (in)dependence con-
straints K, and a weight function w which characterizes the
reliability of constraints in K.

In this context, the implicit hitting set approach of LMHS

C := C ∪ {c}
UNSAT

H

D,K w : K → R+

SAT solver
D, (K \H)

IP solver
H = HSw(C)

Input

Output: τSAT

Figure 2: Implicit hitting set approach.

(see Figure 2) works via an alternating sequence of calls to
a Boolean satisfiability (SAT) solver and an integer program-
ming (IP) solver. Each is used for a task it is well-suited for:
the SAT solver for proving unsatisfiability, and the IP solver
for efficiently handling a weighted objective function.

In detail, the SAT solver is used to accumulate a set C
of (unsatisfiable) cores of the instance, i.e., subsets of con-
straints c ⊂ K which (together with D) are not satisfied by
any causal graph. A core of an unsatisfiable instance in read-
ily provided by modern SAT solvers without additional over-
head once unsatisfiability is established. After each core ex-
traction step, an IP solver is called onC to optimally solve the
minimum-cost hitting set problem HSw(C) over the cores in
C with weights given by w, i.e., to find a set H ⊆

⋃
C mini-

mizing
∑

x∈H w(x) subject to H ∩ c 6= ∅ for each c ∈ C, or
in words, a minimum-cost set of constraints which intersects
with each of the currently accumulated cores.

After a hitting set H is computed, the constraints in H are
removed from the next SAT solver call. Concretely, this next
call checks the satisfiability of a CNF formula consisting of
the encoding of D and the encoding of the constraints of K
not in H . Once the SAT solver finds a solution τ , i.e., finds
a causal graph that satisfies K \H and D, the solution given
by the SAT solver is guaranteed to be an optimal solution,
i.e., the optimal cost is

∑
x∈H w(x). The intuition here, as

shown for MaxSAT by Davies and Bacchus [2011], is that
the optimal causal graphs of (D,K,w) all satisfy K \H and
D for some minimum-cost hitting set H over all unsatisfi-
able cores of the instance. In practice, such an H can be (and
typically is) found without having to accumulate every unsat-
isfiable core. Further, the solution to each min-cost hitting set
instance solved during search provides a lower bound on the
cost of optimal causal graphs.

Example. Consider the following unit-weighted constraints:

K = {X 6⊥⊥ Z|W ; Y 6⊥⊥ Z|W ; X ⊥⊥ Y |W ; X ⊥⊥ Y |Z,W ;

X 6⊥⊥ Z|Y,W ; Y 6⊥⊥ Z|X,W ; X 6⊥⊥ Y |W,Q; Y ⊥⊥ Q|W}.
The implicit hitting set approach starts by checking whether
all of the constraints are simultaneously satisfiable, i.e.,
whether some causal graph satisfies K and D. No
such graph exists, so the SAT solver will return an
unsatisfiable core of the instance, for example, c1 =
{X 6⊥⊥ Z|W ; Y 6⊥⊥ Z|W ; X ⊥⊥ Y |W ; X ⊥⊥ Y |Z,W}.
Thus, at least one of the four constraints has to be an error in
the statistical tests (under the used assumptions). The search
proceeds by solving the minimum-cost hitting set problem
over this single core using an IP solver. One solution is

Table 1: Common domain-specific core types.

(i) {X ⊥⊥ Z|S; X ⊥⊥ Y |S; X 6⊥⊥ Z|Y, S}
(ii) {X 6⊥⊥ Z|S; Y 6⊥⊥ Z|S; X ⊥⊥ Y |S; X ⊥⊥ Y |Z, S}

(iii) {X 6⊥⊥ Z|Y, S; Y 6⊥⊥ Z|X,S; X ⊥⊥ Y |S;
X ⊥⊥ Y |Z, S}

(iv) {Y 6⊥⊥ Z|S; X 6⊥⊥ Z|S; Z ⊥⊥ W |X,Y, S;

X ⊥⊥ Y |Z, S; X ⊥⊥ Y |W,S}
(v) {Y 6⊥⊥ Z|S; X 6⊥⊥ Z|S; Z ⊥⊥ W |Y, S;

X ⊥⊥ Y |Z, S; X ⊥⊥ Y |W,S}
(vi) {X 6⊥⊥ Y |Z, S; Y 6⊥⊥ Z|X,W,S; W 6⊥⊥ Y |Z, S;

W ⊥⊥ X|Y,Z, S; X ⊥⊥ Z|W,S}
(vii) {X 6⊥⊥ Y |Z, S; Y 6⊥⊥ Z|X,W,S; W 6⊥⊥ Y |S;

W ⊥⊥ X|Y, S; X ⊥⊥ Z|W,S}

X ⊥⊥ Y |Z,W , which gives a lower bound of 1 for the cost
of optimal solutions. The search then iterates by checking
whether a causal graph satisfies constraints other than X ⊥⊥
Y |Z,W . Again no such graph exists, and we obtain a core,
say c2 = {X ⊥⊥ Y |W ; X 6⊥⊥ Y |W,Q; Y ⊥⊥ Q|W}. The IP
solver can then provide the min-cost hitting set {X ⊥⊥ Y |W}
of {c1, c2}. We then check for a graph in which all constraints
other than X ⊥⊥ Y |W are satisfied. Now the SAT solver re-
turns a solution, which can be interpreted as the graph in Fig-
ure 1. The cost of this graph is 1, since only one constraint,
X ⊥⊥ Y |W , with unit weight is violated in the graph, and
the search terminates. Optimality is proven without consid-
ering the core c3 = {X 6⊥⊥ Z|Y,W ; Y 6⊥⊥ Z|X,W ; X ⊥⊥
Y |W ; X ⊥⊥ Y |Z,W}.

4 Domain-Specific Cores
As the first main contribution of this work, we identify several
low-cardinality cores commonly encountered in causal dis-
covery instances. Identifying general forms (or patterns) of
such cores can be very beneficial for speeding up LMHS: we
can find a number of cores by a simple pattern search through
the constraints K (in negligible time), instead of making po-
tentially very time-consuming SAT solver calls for each core.
We can thereby use critical domain-specific knowledge in the
LMHS search simply by adding the found domain specific
cores directly to the core set maintained by LMHS.

During search, low-cardinality cores especially constrain
the hitting set problems (and considerably improve the lower
bound); however, their extraction can be time-consuming
with a SAT solver. Thus, we ran plain LMHS on the en-
coding of Hyttinen et al. [2014] to search for examples of
small cores. We then manually generalized them and proved
their validity. Table 1 lists core types over at most four nodes,
these core types are valid for any set S disjoint from the nodes
mentioned. The induced cores were enough for solving all
instances up to four nodes in our simulations, i.e., no further
cores needed to be extracted using a SAT solver. The follow-
ing theorem establishes that the core types (i)–(vii) in Table 1
are subset-minimal cores for causal discovery instances.

Theorem 1 Each of the sets of (in)dependence constraints

(i)–(vii) in Table 1 is a subset-minimal core: for each of the
cores (i)–(vii), it holds that 1) there is no causal graph in
G that satisfies all of the (in)dependence constraints in the
core (assuming faithfulness), and 2) the constraints in every
proper subset of the core are satisfied by a causal graph.

For example, the intuition behind core (i) is that if condi-
tioning on node Y induces a dependence (d-connection) be-
tween X and Z (1st vs 3rd constraint), Y would have to be
dependent on X (violating the 2nd constraint). Minimality of
core (i) is verified by noting that any two constraints can be
trivially simultaneously satisfied.

5 Incremental Core Extraction through
Dynamic Partial Encoding

If we adhere exactly to the core loop shown in Figure 2, all
constraints in K \ H are input at once to the SAT solver in
a single SAT call for extracting a core. Here we propose in-
stead finding a core by incrementally adding constraints from
K \H one by one until the SAT solver reports unsatisfiability
and yields a core; Alg. 1 outlines this approach as FINDCOR-
EINCREMENTAL. This technique has several potential bene-
fits (as also previously pointed out in [Ansótegui et al., 2016]
for the related so-called stratified approach in the context of
pure SAT-based MaxSAT solvers). (i) We obtain a solution τ
from each SAT solver call until the call on which the solver
reports unsatisfiability. Each of the satisfiable calls thus gives
an upper bound which can improve the currently known best
upper bound U ; improved upper bounds are important for
the bounds-based constraint hardening described in Sect. 6
to have an impact. (ii) The core c obtained is minimal w.r.t.
the order in which the soft constraints are added. This can
result in smaller cores, which makes the core minimization
procedures implemented within LMHS run faster. (iii) Many
of the—compared to LMHS, additional—SAT solver calls on
D,K ′ are satisfiable and made on a relatively small set of
constraints (K ′); hence many of these calls can be expected
to be relatively fast. Also, a number of SAT solver calls can
be skipped, since the solution obtained during the preced-
ing solver call often already satisfies the next constraint to
be added.

Incremental core extraction allows for using domain-
specific heuristics for the order in which constraints are
added. For example, one can order by decreasing weights,
following heuristics from inexact causal discovery algo-
rithms [Triantafillou and Tsamardinos, 2015; Borboudakis
and Tsamardinos, 2016] and MaxSAT [Ansótegui et al.,
2016], or by increasing conditioning set size, inspired by the
FCI and PC algorithms [Spirtes et al., 2000]. However, these
heuristics tend to consider a relatively high number of con-
straints before finding a core. We found that adding con-
straints one by one in a random order works well here. In-
tuitively, a random order diversifies the search for cores to
different subsets of (in)dependence constraints, which can be
very beneficial for proving improved lower bounds.

Dynamic Partial Encoding. We also employ an encoding
technique which allows for switching off parts of the (in total
large) d-separation encoding that are redundant w.r.t. the cur-
rent setK ′ of (in)dependence constraints considered in single

1: procedure FINDCOREINCREMENTAL(H,U)
2: K ′ = ∅
3: while K ′ 6= K \H do
4: Add a new element k from K \H to K ′.
5: If k is satisfied by previous solution τ : continue.
6: (R, τ, c) = SATSOLVER(D,K ′)
7: If R = SAT: update upper bound U, continue.
8: If R = UNSAT: return core c.
9: Return SAT.

Algorithm 1: Incremental core extraction in Dseptor.

SAT solver call. While the full MaxSAT encoding of a causal
discovery instance is input initially to LMHS, by definition
each of the SAT solver calls take into account only a subset
of the (in)dependence constraints: the constraints in the lat-
est hitting set H are disregarded in the next SAT solver call.
The incremental core extraction technique further decreases
the number of enforced (in)dependence constraints per SAT
solver call. However, the hard clauses imposing d-separation
criterion related to a specific (in)dependence constraint re-
main active in the SAT solver—although the actual indepen-
dence is not used or considered at all. The SAT solver may
not always realize that such hard clauses are redundant. In
hope of making the job of the SAT solver easier, we propose
a way of dynamically switching off hard clauses unrelated to
a given set of (in)dependence constraints.

Consider Figure 3, where the two triangles rooted at the
(in)dependence constraints ki and kj , respectively, represent
the set of hard clauses that are part of the d-separation en-
coding for ki and kj , i.e., the clauses in the cone of influence
of the respective constraints. In our case, this structure is
directly given by the encoding proposed in [Hyttinen et al.,
2014]. Firstly, we add the logical implication ¬bi → ki per
each (in)dependence constraint ki introducing a fresh block-
ing variable bi. Secondly, for clauses in the non-shared part
of the cone marked with bi (similarly for bj), we augment
each clause with the blocking variable bi: we replace each
clause cl by logical implication ¬bi → cl. This means that
bi = 0 implies that the clauses have to be satisfied, and
bi = 1 relaxes (blocks) the clauses. For the shared part of
the cones marked with bij , we again augment the clauses in
that part with the blocking variable bij . We also add the log-
ical implication (¬bi ∨ ¬bj) → ¬bij as a hard constraint.
Thus bi = 0 (or bj = 0) enforces the clauses in the shared
part as well. The idea here resembles the approach proposed
for dealing with dependencies between blocking variables in
other contexts [Lagniez and Biere, 2013]. Applying this strat-
egy recursively on the d-separation encoding establishes that
all clauses in the cone of influence of K ′ are switched on iff
all (in)dependence constraints in K ′ are enforced to be satis-
fied during the incremental core extraction SAT calls.

ki kj

bij
bi bj

Figure 3: Blocking variables in dynamic partial encoding.

6 Bounds-based Constraint Hardening
During search, we use the current bounds for bounds-
based hardening of (in)dependence constraints. Our domain-
specific approach is based on the following well-known tech-
nique of variable fixing for IP solving in operations research
literature [Danzig et al., 1954; Crowder et al., 1983].2 By
finding the min-cost hitting set over the current set of ac-
cumulated cores, conditioned on including a particular con-
straint k, we can obtain a conditional lower bound L¬k for
the space of solutions in which k is not satisfied. If L¬k ex-
ceeds the current global upper bound U , k can be enforced as
a hard constraint. Instead of solving the IP problem, a good
bound L¬k can be obtained via the corresponding LP relax-
ation which is faster to solve. For hardening constraints early,
this technique benefits crucially from the improved bounds
obtained by incremental core extraction. Each hardened con-
straint simplifies the subsequent SAT and IP calls, and also
speeds up incremental core extraction as only constraints that
have not yet been hardened are considered there.

As a domain-specific extension, we also use this scheme to
harden Boolean variables representing the causal graph so-
lution, i.e., the existence of individual edges in the graph.
Specifically, if the solution graph includes any type of an
edge between nodes X and Y , then it leaves all constraints
K ′′ of the form X ⊥⊥ Y |S unsatisfied. If there are many sets
S ⊆ V \ {X,Y } such that X ⊥⊥ Y |S, the sum of weights of
such constraints can be large. Thus it makes sense to find the
lower bound L′′ conditional on the existence of an edge be-
tween nodes X and Y—we can obtain such L′′ from the LP
relaxation conditioned on including each constraint in K ′′.
If L′′ is greater than the current global upper bound U , no
edges can then be present between X and Y in an optimal
graph and thus we can w.l.o.g. assign all edge variables be-
tween X and Y to be false. (Note that, in contrast, the inex-
act PC algorithm infers the absence of edges between X and
Y upon finding a single (possibly unreliable) independence
X ⊥⊥ Y |S [Spirtes et al., 2000].) Inferring hard absences
of edges directly simplifies the subsequent SAT solver calls
by tightening the solution space. The subsequently extracted
cores are thereby often smaller, which makes the subsequent
hitting set IPs also simpler.

7 Experiments
We implemented Dseptor by extending the MaxSAT solver
LMHS with the domain-specific techniques proposed in
Sects. 4–6; We use MiniSAT [Eén and Sörensson, 2004]
and IBM CPLEX as the internal SAT and IP solvers, re-
spectively. We compare the performance of Dseptor to those
of state-of-art MaxSAT solvers using the encoding of Hytti-
nen et al. [2014]. The experiments were run on 2.83-GHz
Intel Xeon E5440 machines with 32-GB RAM and Debian
GNU/Linux.

First we compare the performance of the solvers on syn-
thetic data generated from 7-node cyclic (possibly) linear
Gaussian models with correlated disturbances. The edges

2Hardening using costs of residual formulas has also been used
in pure SAT-based MaxSAT algorithms [Ansótegui et al., 2013].

0 20 40 60 80 100

0
1
0
0

2
0
0

3
0
0

4
0
0

5
0

0
6
0
0

instances (sorted for each line)

s
o
lv

in
g
 t
im

e
 p

e
r

in
s
ta

n
c
e
 (

s
)

Synthetic data, 100 instances, 7 nodes, 672 soft constraints

Dseptor

w.o. Sec. 6

w.o. Sec. 5

w.o. Sec. 4

Maxino

LMHS

MaxHS

QMaxSAT

MSCG15b

MSCG15a

Clingo

OpenWBO

WPM3

CPLEX

Figure 4: MaxSAT solver and Dseptor running times.

were sampled at random to obtain average degree 2, coef-
ficients were from ±[0.2, 0.8]. We used BIC-based model
selection to obtain the weights for the independence con-
straints over N = 1000 samples. Figure 4 gives a compar-
ison of Dseptor with the MaxSAT solvers LMHS [Saikko
et al., 2016], MaxHS [Davies and Bacchus, 2013], Max-
ino [Alviano et al., 2015], MSCG [Morgado et al., 2015],
OpenWBO [Martins et al., 2014], QMaxSAT [Koshimura et
al., 2012], and WPM3 [Ansótegui et al., 2016], CPLEX run
on a standard IP translation of MaxSAT [Davies and Bac-
chus, 2013; Ansótegui and Gabàs, 2013], and the ASP solver
Clingo (using its default branch-and-bound search) [Gebser et
al., 2012] as used in [Hyttinen et al., 2014]. Dseptor outper-
forms all of the other solvers, solving 96% of the instances
under the timeout of 600 seconds. Maxino comes in sec-
ond (81%) ahead of plain LMHS and QMaxSAT. Clingo and
many other solvers are not competitive here. Figure 4 also
shows that all techniques proposed in Sects. 4–6 improve the
performance: turning off each individual technique in Dsep-
tor increases solving times.

To examine the performances on more realistic sets of
(in)dependence constraints, we looked at real-world datasets
often used for benchmarking exact Bayesian network struc-
ture learning algorithms [Yuan and Malone, 2013; Bartlett
and Cussens, 2017]. To comply with the current problem
formulation, we considered suitable-sized (n) subsets of the
variables in the datasets, the remaining variables becoming
thus latent. We employed the BDEU score with equivalent
sample size 10 to obtain constraint weights for this discrete
data, and used a per-instance timeout of 7200 seconds. The
results summarized in Figure 5, and detailed in Table 2 for
Dseptor and its best competitors, LMHS (on which Dseptor
is based), Maxino, and QMaxSAT, show that Dseptor clearly
outperforms the competing approaches on these real-world
benchmarks. Table 2 also gives the time taken by Dseptor to
find an optimal graph (without proving its optimality yet) in
parentheses. On a great majority of instances Dseptor finds
an optimal solution very fast; the proof of optimality hence
dominates the overall running times. This implies that Dsep-
tor has very good anytime performance, being often able to
give very good solutions in short time.

Table 2: Running times on real-world datasets.

Running time (seconds)
Dataset n N LMHS Maxino QMaxSAT Dseptor

Adult 6 30162 37 41 41 11 (4)
Alarm 7 1000 606 3674 2017 151 (4)
Autos 8 159 TO TO TO 2044 (63)
Bands 6 277 103 212 291 3268 (1)
Epigenetics 7 72228 82 98 213 28 (23)
Flag 10 194 TO TO TO 888 (78)
Heart 10 212 TO TO 6458 881 (75)
Hepatitis 10 126 TO 3725 TO 392 (72)
Horse.23 7 300 62 10 133 4 (0)
Horse 9 300 TO 1235 2878 337 (44)
Image 7 2310 3590 723 1267 686 (16)
Imports 6 205 63 182 243 TO (7)
Letter 7 20000 2121 1295 1214 693 (419)
LungCancer 8 27 1350 1330 4232 74 (28)
Meta 7 528 754 350 338 182 (119)
Mushroom 7 1000 1026 777 1336 1120 (957)
Mushroom 7 8124 252 205 305 710 (188)
Parkinsons 6 195 22 12 34 3 (0)
Sensors 7 5456 157 42 148 82 (53)
Soybean 9 266 TO 990 860 180 (0)
Spectf 10 267 TO 3598 449 261 (1)
Statlog 7 752 834 1747 7107 61 (17)
SteelPlates 6 1941 22 16 24 64 (1)
Voting 7 435 252 138 217 62 (4)
Water 7 380 181 563 305 94 (15)
Wdbc 8 569 TO TO TO 2833 (2)
Wine 7 178 222 1285 2254 164 (3)
Zoo 6 101 29 34 55 18 (1)
alarm 9 10000 TO 1382 1230 26 (0)
alarm 9 1000 TO 1354 TO 72 (14)
alarm 7 100 271 601 301 68 (2)
asia 8 10000 TO TO TO 873 (22)
asia 7 1000 591 1062 738 92 (29)
asia 10 100 104 13 21 4 (0)
carpo 9 10000 TO 2267 TO 605 (76)
carpo 8 1000 TO TO TO 633 (4)
carpo 8 100 6211 TO 5510 1877 (13)
Diabetes 8 10000 TO TO 171 8 (0)
Diabetes 8 1000 TO 4714 373 9 (0)
Diabetes 8 100 157 43 33 11 (0)
hailfinder 8 10000 3539 1815 784 TO (0)
hailfinder 9 1000 TO 551 1843 97 (28)
hailfinder 7 100 854 TO 3827 4399 (9)
insurance 8 10000 2255 944 1835 48 (4)
insurance 9 100 TO TO TO 853 (19)
Link 10 10000 TO TO TO 637 (24)
Link 10 1000 TO TO TO 394 (21)
Link 9 100 TO TO TO 164 (11)
Mildew 9 10000 TO 852 1950 105 (5)
Mildew 8 1000 2808 TO 6205 49 (8)
Mildew 6 100 25 208 164 10 (0)
Pigs 8 10000 1899 146 694 17 (1)
Pigs 8 1000 3128 2848 1561 1026 (60)
Pigs 8 100 3449 TO 4964 47 (3)
Water 7 10000 298 202 499 48 (0)
Water 10 1000 TO TO TO 1034 (245)
Water 10 100 TO 5983 TO 484 (26)

8 Related Work
There has been recent algorithmic work on causal discov-
ery problems related to the one discussed in this paper. SAT
solvers where first used for causal discovery in [Triantafillou
et al., 2010; Triantafillou and Tsamardinos, 2015]. Essen-
tially, they greedily add constraints one at a time and check
for satisfiability: if the solver returns UNSAT, the constraint
is removed, and search is continued. Although this scales up
considerably better than the exact counterparts, the accuracy
is not as good as that of an exact method [Borboudakis and
Tsamardinos, 2016]. Magliacane et al. [2016] proposed a re-
laxation of the optimization problem definition of Hyttinen

10 20 30 40 50

0
2
0
0
0

4
0
0
0

6
0
0
0

instances (sorted for each line)

s
o
lv

in
g

 t
im

e
 p

e
r

in
s
ta

n
c
e
 (

s
)

Real−world data, 6−10 nodes, 240−11520 soft constraints

Dseptor

Maxino

QMaxSAT

LMHS

MaxHS

MSCG15b

MSCG15a

WPM3

OpenWBO

CPLEX

1 60 600 7200

1
6
0

6
0
0

7
2
0
0

Dseptor (s)

L
M

H
S

 (
s
)

n=10
n=9
n=8
n=7
n=6

1 60 600 7200

1
6
0

6
0
0

7
2
0
0

Dseptor (s)

M
a
x
in

o
 (

s
)

n=10
n=9
n=8
n=7
n=6

Figure 5: Running time comparison on real-world data.

et al. [2014], thereby obtaining better scalability for detect-
ing some features of the graph without losing much accuracy
compared to Hyttinen et al. [2014]. However, in comparison
to the present paper, the most noticeably difference shared
by Triantafillou et al. [2010], Triantafillou and Tsamardi-
nos [2015], and Magliacane et al. [2016] is that (i) they con-
sider a more restricted search space (and hence a different
encoding), assuming acyclicity, and (ii) their approaches do
not produce guaranteed-optimal solutions in terms of the the-
oretically appealing objective function considered here. Note
also that in our approach acyclicity can be enforced when
wanted. Finally, just as Hyttinen et al. [2014], we can in-
corporate background knowledge and straightforwardly gen-
eralize to multiple (experimental) data sets.

9 Conclusions
We proposed several domain-specific techniques for im-
proving a recent Boolean optimization approach to exact
constraint-based causal discovery over a very general search
space. We showed that the resulting causal discovery solver
Dseptor has markedly better the runtime performance than
other solvers on both synthetic and real-world datasets. We
conjecture that enumerating additional (larger but still rela-
tively small) domain-specific minimal cores could improve
the runtime performance further.

Acknowledgements
We thank Fahiem Bacchus for pointing out bounds-based
hardening via LPs for Section 6. This work was financially
supported by Academy of Finland through grants 251170
(COIN), 276412, 284591, and 295673; and DoCS Doctoral
School in Computer Science and Research Funds of the Uni-
versity of Helsinki.

References
[Alviano et al., 2015] M. Alviano, C. Dodaro, and F. Ricca.

A MaxSAT algorithm using cardinality constraints of
bounded size. In IJCAI. AAAI Press, 2015.

[Ansótegui and Gabàs, 2013] C. Ansótegui and J. Gabàs.
Solving (weighted) partial MaxSAT with ILP. In CPAIOR,
volume 7874 of LNCS, pages 403–409. Springer, 2013.

[Ansótegui et al., 2013] C. Ansótegui, M.L. Bonet, J. Gabàs,
and J. Levy. Improving WPM2 for (weighted) partial
MaxSAT. In CP, volume 8124 of LNCS, pages 117–132.
Springer, 2013.

[Ansótegui et al., 2016] C. Ansótegui, J. Gabàs, and J. Levy.
Exploiting subproblem optimization in SAT-based
MaxSAT algorithms. J. Heuristics, 22(1):1–53, 2016.

[Bartlett and Cussens, 2017] M. Bartlett and J. Cussens. In-
teger linear programming for the Bayesian network struc-
ture learning problem. Artif. Intell., 244:258–271, 2017.

[Berg et al., 2014] J. Berg, M. Järvisalo, and B. Malone.
Learning optimal bounded treewidth Bayesian networks
via maximum satisfiability. In AISTATS, volume 33 of
JMLR W&CP, pages 86–95. JMLR, 2014.

[Berg et al., 2015] J. Berg, A. Hyttinen, and M. Järvisalo.
Applications of MaxSAT in data analysis. In PoS, 2015.

[Borboudakis and Tsamardinos, 2016] G. Borboudakis and
I. Tsamardinos. Towards robust and versatile causal dis-
covery for business applications. In KDD. ACM, 2016.

[Claassen and Heskes, 2012] T. Claassen and T. Heskes. A
Bayesian approach to constraint based causal inference. In
UAI, pages 207–216. AUAI Press, 2012.

[Crowder et al., 1983] H. Crowder, E.L. Johnson, and
M. Padberg. Solving large-scale zero-one linear program-
ming problems. Oper. Res., 31(5):803–834, 1983.

[Danzig et al., 1954] G.B. Danzig, D.R. Fulkerson, and S.M.
Johnson. Solution of a large-scale traveling-salesman
problem. Oper. Res., 2:393–410, 1954.

[Davies and Bacchus, 2011] J. Davies and F. Bacchus. Solv-
ing MAXSAT by solving a sequence of simpler SAT in-
stances. In CP, volume 6876 of LNCS, pages 225–239.
Springer, 2011.

[Davies and Bacchus, 2013] J. Davies and F. Bacchus. Ex-
ploiting the power of MIP solvers in MAXSAT. In SAT,
volume 7962 of LNCS, pages 166–181. Springer, 2013.

[Eén and Sörensson, 2004] N. Eén and N. Sörensson. An ex-
tensible SAT-solver. In SAT 2003, volume 2919 of LNCS,
pages 502–518. Springer, 2004.

[Gebser et al., 2012] M. Gebser, B. Kaufmann, and
T. Schaub. Conflict-driven answer set solving: From
theory to practice. Artif. Intell., 187:52–89, 2012.

[Hyttinen et al., 2013] A. Hyttinen, P. O. Hoyer, F. Eber-
hardt, and M. Järvisalo. Discovering cyclic causal models
with latent variables: A general SAT-based procedure. In
UAI, pages 301–310. AUAI Press, 2013.

[Hyttinen et al., 2014] A. Hyttinen, F. Eberhardt, and
M. Järvisalo. Constraint-based causal discovery: Conflict
resolution with answer set programming. In UAI, pages
340–349. AUAI Press, 2014.

[Koshimura et al., 2012] M. Koshimura, T. Zhang, H. Fujita,
and R. Hasegawa. QMaxSAT: A partial Max-SAT solver.
JSAT, 8(1/2):95–100, 2012.

[Lagniez and Biere, 2013] J.-M. Lagniez and A. Biere. Fac-
toring out assumptions to speed up MUS extraction. In
SAT, volume 7962 of LNCS, pages 276–292. Springer,
2013.

[Magliacane et al., 2016] S. Magliacane, T. Claassen, and
J.M. Mooij. Ancestral causal inference. In NIPS, pages
4466–4474, 2016.

[Malone et al., 2015] B. Malone, M. Järvisalo, and P. Myl-
lymäki. Impact of learning strategies on the quality of
Bayesian networks: An empirical evaluation. In UAI,
pages 562–571. AUAI Press, 2015.

[Margaritis and Bromberg, 2009] D. Margaritis and
F. Bromberg. Efficient Markov network discovery
using particle filters. Comput. Intell., 25(4):367–394,
2009.

[Martins et al., 2014] R. Martins, V.M. Manquinho, and
I. Lynce. Open-WBO: A modular MaxSAT solver. In SAT,
volume 8561 of LNCS, pages 438–445. Springer, 2014.

[Moreno-Centeno and Karp, 2013] E. Moreno-Centeno and
R.M. Karp. The implicit hitting set approach to solve
combinatorial optimization problems with an application
to multigenome alignment. Oper. Res., 61(2):453–468,
2013.

[Morgado et al., 2015] A. Morgado, A. Ignatiev, and
J. Marques-Silva. MSCG: Robust core-guided MaxSAT
solving. JSAT, 9:129–134, 2015.

[Neal, 2000] R. Neal. On deducing conditional indepen-
dence from d-separation in causal graphs with feedback.
J. Artif. Intell. Res., 12:87–91, 2000.

[Pearl and Dechter, 1996] J. Pearl and R. Dechter. Identi-
fying independencies in causal graphs with feedback. In
UAI, pages 420–426. Morgan Kaufmann, 1996.

[Pearl, 2000] J. Pearl. Causality: Models, Reasoning, and
Inference. Cambridge University Press, 2000.

[Richardson, 1996] T. Richardson. A discovery algorithm
for directed cyclic graphs. In UAI, pages 454–461. Morgan
Kaufmann, 1996.

[Saikko et al., 2016] P. Saikko, J. Berg, and M. Järvisalo.
LMHS: A SAT-IP hybrid MaxSAT solver. In SAT, volume
9710 of LNCS, pages 539–546. Springer, 2016.

[Spirtes et al., 2000] P. Spirtes, C. Glymour, and
R. Scheines. Causation, Prediction, and Search.
MIT Press, 2000.

[Spirtes, 1995] P. Spirtes. Directed cyclic graphical repre-
sentation of feedback models. In UAI, pages 491–498.
Morgan Kaufmann, 1995.

[Studený, 1998] M. Studený. Bayesian networks from the
point of view of chain graphs. In UAI, pages 496–503.
Morgan Kaufmann, 1998.

[Triantafillou and Tsamardinos, 2015] S. Triantafillou and
I. Tsamardinos. Constraint-based causal discovery from
multiple interventions over overlapping variable sets. J.
Mach. Learn. Res., 16:2147–2205, 2015.

[Triantafillou et al., 2010] S. Triantafillou, I. Tsamardinos,
and I. G. Tollis. Learning causal structure from overlap-
ping variable sets. In AISTATS. JMLR, 2010.

[Yuan and Malone, 2013] C. Yuan and B. Malone. Learning
optimal Bayesian networks: A shortest path perspective.
J. Artif. Intell. Res., 48:23–65, 2013.

