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Abstract
We present a novel approach to low-dimensional neighbor
embedding for visualization, based on formulating an infor-
mation retrieval based neighborhood preservation cost func-
tion as Maximum satisfiability on a discretized output dis-
play. The method has a rigorous interpretation as optimal vi-
sualization based on the cost function. Unlike previous low-
dimensional neighbor embedding methods, our formulation
is guaranteed to yield globally optimal visualizations, and
does so reasonably fast. Unlike previous manifold learning
methods yielding global optima of their cost functions, our
cost function and method are designed for low-dimensional
visualization where evaluation and minimization of visualiza-
tion errors are crucial. Our method performs well in experi-
ments, yielding clean embeddings of datasets where a state-
of-the-art comparison method yields poor arrangements. In
a real-world case study for semi-supervised WLAN signal
mapping in buildings we outperform state-of-the-art methods.

Introduction
Low-dimensional visualization of high-dimensional datasets
is an important and challenging application of nonlinear di-
mensionality reduction. Many methods are devised to find
a lower-dimensional manifold from the data space and thus
not designed to reduce dimensionality below the effective
dimensionality of the manifold. In visualization the typ-
ical target dimensionality is two or three; many methods
are not designed to minimize errors that necessarily occur
due to the low dimensionality, and perform poorly in visu-
alization (Venna et al. 2010). Recent successful approaches
use neighbor embedding (Hinton and Roweis 2002; van der
Maaten and Hinton 2008; Venna et al. 2010), fitting neigh-
borhoods in the original space to neighborhoods on the
display. The best performing methods in recent compar-
isons (Venna et al. 2010) use iterative gradient search (IGS).
While computationally somewhat demanding, IGS finds lo-
cal optima only, which reduces quality and reliability of
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produced visualizations, as results may strongly depend on
initialization. Scatterplot visualization was recently formal-
ized as an information retrieval problem (Venna et al. 2010)
of retrieving real neighbors of points based on the display;
this gives visualization a well-defined objective, but to solve
it the authors had to smooth the cost function and apply
gradient-based methods which suffer from local optima. We
introduce a novel approach to low-dimensional visualiza-
tion. We solve the information retrieval task directly as a
constrained optimization problem on a discrete output dis-
play grid. Visualization on a grid is convenient when dis-
play size and resolution are constrained as in mobile use,
or to ensure on-screen items are non-overlapping for visual
clarity and ease of interaction; grid displays have been used
in image search and browsing interfaces (Quadrianto et al.
2010). Our approach yields globally optimal visualizations
on grids. Optimality is crucial when only a few visualiza-
tions can be shown, for example in printed media.

Our approach is based on setting soft constraints on neigh-
bors remaining close-by and non-neighbors remaining far
off. Constraints are weighted based on original closeness of
the neighbors/non-neighbors. Advantages of our approach
are: (1) The solution globally optimally satisfies the neigh-
borhood constraints and needs no initialization or optimiza-
tion parameters. (2) The method has a well-defined infor-
mation retrieval interpretation as minimizing total cost of
retrieval errors. (3) The method lets end-users restrict the
search to visualizations satisfying desired (e.g. structural)
properties, by setting additional constraints; for instance we
can let the user iteratively narrow the search space by con-
straints formed from previous solutions. In experiments, we
show that globally optimal solutions are found in reasonable
time for typical datasets from neighbor embedding litera-
ture. Our method gives clean embeddings with fewer arti-
facts than a state-of-the-art comparison, and outperforms the
state-of-the-art in a real-life WLAN signal mapping task.

Neighbor Embedding as Information Retrieval
Low-dimensional visualization is often approached by using
nonlinear dimensionality reduction (NLDR). Many NLDR
methods are not designed to reduce dimensionality beyond
the effective dimensionality of an underlying data mani-
fold; in contrast, on low-dimensional (2d) displays all orig-
inal data relationships cannot be preserved. Minimizing



the inevitable visualization errors is crucial. Two kinds
of errors may occur in neighborhood relationships: misses
are pairs of data that are close-by (neighbors) in the orig-
inal space but not on the display, and false neighbors are
pairs of data close-by on the display but not in the original
space. Good visualizations minimize these errors. In fact,
this minimization corresponds to an information retrieval
task (Venna et al. 2010): minimizing misses maximizes re-
call of retrieving the true neighbors of a point from the dis-
play, and minimizing false neighbors maximizes precision
of retrieving the true neighbors. Recent NLDR methods
based on neighbor embedding have an information retrieval
interpretation, maximizing recall (Hinton and Roweis 2002;
van der Maaten and Hinton 2008), or tradeoffs between re-
call and precision (Venna et al. 2010). We introduce a new
well-performing neighbor embedding approach where, for
any definition of neighbors, the information retrieval task
is solved exactly by encoding it declaratively as Maximum
satisfiability (Li and Manyà 2009). Our approach is di-
rectly based on given pairwise neighborhood assignments,
and thus very general: it does not require a general similar-
ity measure for the data domain, so we can treat data and
its domain knowledge in whichever form is easiest to pro-
vide. Pairwise (dis)similarities, direct neighbor constraints,
and also missing information can be handled naturally.

Maximum Satisfiability
For a Boolean variable x, there are two literals, x and ¬x. A
clause is a disjunction (∨, logical OR) of literals and a (truth)
assignment is a function τ from Boolean variables to {0, 1}.
A clause C is satisfied by τ (τ(C) = 1) if τ(x) = 1 for a
variable x in C, or τ(x) = 0 for a literal ¬x in C. A set F
of clauses is satisfiable if there is an assignment τ satisfying
all clauses in F (τ(F ) = 1) and unsatisfiable (τ(F ) = 0
for any τ ) otherwise. An instance F = (Fh, Fs, c) of the
weighted partial MaxSAT problem consists of two sets of
clauses, a set Fh of hard clauses and a set Fs of soft clauses,
and a function c : Fs → R+ that associates a non-negative
cost (weight) with each soft clause.1 We refer to weighted
partial MaxSAT instances simply as MaxSAT instances. An
assignment τ that satisfies Fh is a solution to F . The cost of
a solution τ to F is

COST(F, τ) =
∑

C∈Fs: τ(C)=0

c(C),

i.e., the sum of the costs of the soft clauses not satisfied by
τ . A solution τ is (globally) optimal for F if COST(F, τ) ≤
COST(F, τ ′) for any solution τ ′ to F . The cost of the optimal
solutions of F is denoted by OPT(F ). The MaxSAT problem
asks to find an optimal solution to a given instance F .

In general, the MaxSAT-based approach has two steps;
(1) the problem is encoded as a MaxSAT instance F so that
any optimal solution to F can be mapped to an optimal so-
lution of the original problem; (2) an off-the-shelf MaxSAT
solver is used to find an optimal MaxSAT solution. MaxSAT

1This is more general than the standard definition c : Fs →
N+; we do not restrict the costs to be integral. We employ a recent
MaxSAT solver which allows real-valued costs on clauses.

is today a viable approach to find globally optimal solutions
to challenging optimization problems (Chen et al. 2010;
Zhu, Weissenbacher, and Malik 2011; Jose and Majumdar
2011; Guerra and Lynce 2012; Berg and Järvisalo 2013;
Berg, Järvisalo, and Malone 2014).

Problem Statement: NLDR onto a Grid
Assume we have a finite set P = {1, . . . , n} of (high-
dimensional) datapoints to be placed onto a 2d display. Tra-
ditional NLDR starts from a distance matrix between points
in P . Our setting is more general, as explained next.

Input: Weight matrix. Suppose some pairs of points
in P are known to be similar in the sense that they should
be kept close-by on the display, and others are known to be
dissimilar in the sense that they should not be put close-by.
Such knowledge can arise, e.g., from transformation of a
known (dis)similarity matrix of the high-dimensional data,
from a known adjacency matrix of graph data, or from do-
main knowledge of analysts. This knowledge can be en-
coded as a (possibly asymmetric) weight matrix W ∈ R̄n×n
over P , where R̄ stands for R ∪ {−∞,+∞}. For each pair
of points x and y, the corresponding matrix element W(x, y)
takes values as follows. W(x, y) > 0 denotes that we con-
sider point y a neighbor of point x which is important to
keep close-by to x. The greater the value of W(x, y), the
more importance we attach to this neighborhood relation-
ship, where W(x, y) = +∞ is the maximal importance.
W(x, y) < 0 denotes that we consider y a non-neighbor of x
which is important to keep away from x. The more negative
the value of W(x, y), the more importance we attach to this
non-neighbor relationship, where W(x, y) = −∞ denotes
the maximal importance. The value W(x, y) = 0 denotes
that we have no particular interest where y is placed relative
to x. We will use W to define explicit pairwise constraints.

Output onto a grid. We consider the task of placing the
points in P onto a two-dimensional display discretized as a
N ×M grid, containing a set G of N ×M grid-positions.
The locations of the points will be optimized based on the
weight matrix W. On the grid, we consider a basic relation-
ship between the grid-positions: which positions are neigh-
bors. The notion of a grid-neighborhood is defined via a
symmetric grid-neighborhood function N : G→ 2G, where
η ∈ N(ξ) means that η and ξ are neighboring grid positions
and η 6∈ N(ξ) means they are not.

Objective. The weight matrix W tells which points we
want to place close-by and which ones not. The objective
is then to map each of the points in P onto a grid position
(i.e., to find a function G : P → G) in a way that the grid-
neighborhood of the points on the grid resembles the knowl-
edge in W “as closely as possible”. To formalize the notion
of resemblance, we use two types of constraints.

Recall: If W(x, y) > 0 we set a constraint to map x and
y into neighboring grid positions (G(y) ∈ N(G(x))), and
set the weight of the constraint to correspond to the impor-
tance W(x, y). Satisfying such constraints from x to the
known similar points y means they are placed close to x. If
we retrieve all points close to x on the grid, satisfying these
constraints minimizes missed similar points and maximizes
recall, hence we call them recall constraints.



Precision: If W(x, y) < 0 we set a constraint to
map x and y into non-neighboring grid positions (G(y) 6∈
N(G(x))) with weight |W(x, y)|. Satisfying the set of such
constraints from x to other points y minimizes how many
known dissimilar points y are retrieved from positions close
to x, hence we call them precision constraints.

Formally, the objective is to minimize the sum of the
weights of the violated recall and precision constraints:

min
∑

W(x,y)>0

1

2
W(x, y) · I[G(y) 6∈ N(G(x))]

+
∑

W(x,y)<0

1

2
|W(x, y)| · I[G(y) ∈ N(G(x))] (1)

where the indicator function I[c] is 1 (0) iff the condition c
holds (does not hold). The objective function has a natural
interpretation: it is the importance-weighted sum of misses
and false neighbors when, for each point x, we retrieve
close-by points y from the grid-neighborhood and compare
them to the known neighbors and non-neighbors in W.

If W(x, y) 6= W(y, x) (i.e., the weights wrt x, y are asym-
metric), the objective function averages the weights of the
recall and precision constraints over (x, y). Infinite impor-
tance yield hard constraints: If W(x, y) = +∞ for some x
and y, in order to obtain a bounded objective function value,
we require G(y) ∈ N(G(x)). Similarly, if W(x, y) = −∞,
we require G(y) 6∈ N(G(x)).

Discussion. Our problem definition is applicable in all
typical NLDR settings. It covers arbitrary neighborhood
functions for constructing a neighborhood graph, e.g. k-
nearest neighborhoods by letting W(x, y) = 1 if y is
one of the k nearest neighbors of x, and W(x, y) = −1
otherwise. Known similarity or dissimilarity scores can
be mapped into importance weights as we show in ex-
periments. For vectorial data, weights can be constructed
based on any distance computation such as geodesic dis-
tances (Tenenbaum, de Silva, and Langford 2000) or fol-
lowing a probabilistic approach (Hinton and Roweis 2002;
van der Maaten and Hinton 2008). In an interactive setting,
additional constraints indicated by users could easily be in-
corporated to adjust an initial visualization simply by chang-
ing the respective entries of W and recomputing.

Our formulation bears some resemblance to graph em-
bedding approaches. Structure preserving embedding (SPE)
preserves global topological properties of input graphs, de-
fined by a neighborhood function, in the low-dimensional
space (Shaw and Jebara 2009). However, our approach is
not restricted to linear constraints, can be weighted, does
not need a full adjacency matrix, and the matrix need not
be symmetric. Unknown or unsure relationships can be rep-
resented as zero-valued entries in W which do not induce
any neighborhood constraints. This flexibility arises from
the grid-based discrete output; the choice between discrete
and continuous depends on the application.

A Compact MaxSAT Formulation
A naive Maxsat formulation of the NLDR objective would
use Boolean variables xxξ which are true iff one data point

x is mapped to grid position ξ. However, this would yield
a quadratic number of variables, and would require a cubic
number of constraints. We now detail a more compact log-
encoding type of a MaxSAT formulation.

A Bit-based MaxSAT Encoding. Our encoding assumes
that the target is a two-dimensional grid containing N rows
and M columns such that N = 2R and M = 2C for some
integersR andC. With these assumptions we can enumerate
each row (column) as a binary number using R = log2N
and C = log2M bits. An example of a 4 × 8 grid is shown
in Fig. 1. Now the mapping of each point x onto the grid
(i.e. the value G(x)) can be represented by the assignment
of R (C) row (column) bit variables enumerated from right
(i.e., from the least significant bit) to left (i.e., to the most
significant bit): rxR, . . . , r

x
2 , r

x
1 (cxC , . . . , c

x
2 , c

x
1 ).

We now encode the NLDR task, starting by defining sev-
eral intermediate clauses which then allow compact encod-
ing of the whole task. As the grid-neighboorhood N, we
define that any two points x and y are mapped to neigh-
boring positions on the grid whenever they are mapped to
adjacent rows or columns (or both). More precisely: let rx
(ry) be the row and cx (cy) the column to which the point x
(y) is mapped to. Then x and y are neighbors on the grid iff
|rx − ry| ≤ 1 and |cx − cy| ≤ 1. The hard clauses of the
encoding define this concept by introducing auxiliary vari-
ables. The auxiliary variables are then used to formulate the
soft precision and recall constraints. For increased clarity
we present the encoding in terms of propositional logic.

Hard Clauses: For a fixed pair of points x and y the
hard clauses are used in order to define four variables:
SCxy,SRxy,ACxy,ARxy denoting whether or not x and y
are mapped to the same column, same row, adjacent columns
or adjacent rows respectively. We next describe the con-
straints defining SCxy , ACxy , SRxy , and ARxy .

As just discussed, points x and y are mapped to the
same (adjacent) columns on the grid whenever the values
of cxC , . . . , c

x
2 , c

x
1 and cyC , . . . , c

y
2, c

y
1 as binary numbers are

equal (differ by at most 1). In order to state this precisely
we need to first define the concept of individual bits being
equal. We introduce auxiliary variables {EQxyj }Cj=1 defined
to be true iff the j-th column bit of both points is the same:

EQxyj ↔ (cxj ↔ cyj ).

Figure 1: Illustration of bit-based encoding for 32 grid po-
sitions. Grid-neighbors of position 12 (Row: 01, Column:
011) all have row values between: 00 - 10 and column values
between 010 - 100. Column, row, and diagonal neighbors of
12 are 4 and 20; 11 and 13; 3, 5, 19, and 21, respectively.



Using these variables the definition of SCxy is straightfor-
ward. Points x and y are mapped to the same column iff
each column bit in both x and y is the same:

SCxy ↔
C∧
j=1

EQxyj .

The definition of ACxy is slightly more intricate. We note
that if the values represented by the column bits of x and
y differ at most by one, the following differing condition
holds for all i = 1..C: “If cxi 6= cyi and cxk = cyk for
all k = i + 1..C, then cxk′ 6= cxi and cyk′ 6= cyi for all
k′ = 1..i − 1”. To be able to encode this compactly we
first introduce auxiliary variables F xyi and F yxi with the fol-
lowing interpretation: F xyi (F yxi ) is true iff cxj = 0 (cyj = 0)
and cyj = 1 (cxj = 1) for all 1 ≤ j < i. As constraints:

F xyi ↔
∧

1≤j<i

(¬cxj ∧ c
y
j ) and F yxi ↔

∧
1≤j<i

(cxj ∧ ¬c
y
j ).

Using this we can introduce variables Axyi and Bxyi which
are true iff the differing condition holds at bit i:

Axyi ↔
[[
¬EQxyi ∧

C∧
j=i+1

EQxyj

]
→ (cxi → F xyi )

]
, and

Bxyi ↔
[[
¬EQxyi ∧

C∧
j=i+1

EQxyj

]
→ (¬cxi → F yxi )

]
.

Now points x and y are mapped to adjacent columns iff the
differing conditions holds at all column bits:

ACxy ↔
C∧
i=1

(Axyi ∧B
xy
i ).

The constraints defining SRxy and ARxy are the same as
for SCxy and ACxy except that they are stated over row bits
instead of column bits.

Using the four variables SCxy , SRxy , ACxy , and ARxy ,
we finally define the concept of two points being neighbors
in the grid. In a two dimensional grid there are three ways
in which x and y can be mapped to neighboring positions.
We say that they are column neighbors if they are mapped to
the same row and adjacent columns, row neighbors if they
are mapped to the same column and adjacent rows, and di-
agonal neighbors if they are mapped to both adjacent rows
and adjacent columns. We introduce three variables CNxy ,
RNxy and DNxy that are true iff the points x and y are row,
column or diagonal neighbors respectively:

CNxy ↔ (SRxy ∧ACxy),
RNxy ↔ (SCxy ∧ARxy),
DNxy ↔ (ARxy ∧ACxy).

Soft Clauses: Soft clauses of the encoding encode the ob-
jective function via recall and precision constraints using the
variables defined by the hard clauses.

Recall: If W(x, y) > 0 in the high dimensional space, we
want x and y to be row, column, or diagonal neighbors on the

grid: for each point x and for all y such that W(x, y) > 0,
we introduce the soft clause

(RNxy ∨ CNxy ∨DNxy)

with weight W(x, y)/2. Each such clause exactly corre-
sponds to one term in the recall part of the objective func-
tion, that is, one term in the first sum in (1). Note that when
W(x, y) = +∞, the resulting clause becomes hard.

Precision: If W(x, y) < 0, we want x and y not to be
row, column, or diagonal neighbors on the grid. We encode
this by introducing a new variable PRxy , the soft clause
(PRxy) with weight |W(x, y)|/2, and the hard constraint

PRxy → (¬RNxy ∧ ¬CNxy ∧ ¬DNxy).

In words, points x, y cannot be mapped to neighboring
grid positions whenever the soft clause (PRxy) is satisfied.
Furthermore, whenever the x and y are not mapped to neigh-
boring grid positions, the soft clause (PRxy) can be satisfied
by simply assigning PRxy to 1. Each such clause corre-
sponds to one term in the precision part of the objective func-
tion, that is, one term in the second sum in Eq. (1). Again,
when W(x, y) = −∞, the clause (PRxy) becomes hard.

The resulting bit-based MaxSAT encoding consists of all
hard and soft constraints defined above.

Theorem 1 The bit-based MaxSAT encoding is correct in
that, given as input any weight matrix W over a set P of
datapoints, and an N × M grid G where N = 2R and
M = 2C for some R and C, there is a one-to-one corre-
spondence between the optimal mappings (wrt the objective
function Eq. (1)) of P into G, and the optimal solutions to
the weighted partial MaxSAT instance produced by the bit-
based MaxSAT encoding on input W.

The encoding is much more compact than a naive one:
w.r.t. the number of variables and number of clauses, the
encoding is quadratic in the number of datapoints, with a
logarithmic factor for maximum of the number of rows and
columns. The encoding allows several points to be mapped
to the same grid position. If desired, this can be ruled out by
simply adding the clause (¬SCxy ∨¬SRxy) for each pair of
points x, y, forbidding assigning x and y to the same grid-
position.

Experiments
We apply the bit-based MaxSAT encoding to the visual-
ization of five different types of synthetic and real-world
datasets. In particular, after a comparison with the popular
t-SNE method on benchmark data, we showcase our method
in a real-world application scenario on WLAN signal map-
ping, where it outperforms a current state-of-the-art tech-
nique (Pulkkinen, Roos, and Myllymäki 2011).

In the experiments we construct the neighborhoods using
the perplexity measure (Hinton and Roweis 2002) widely ap-
plied in the field. Weights for the constraints are derived by
the probability pij for each object xi to have xj as neighbor:

pij =
exp(−dij)∑
k 6=i exp(−dik)

, where dij =
‖xi − xj‖2

2σi
. (2)



Figure 2: Helix data (A). On two different grids our method unfolds the helix (B-C), whereas t-SNE (D) breaks it apart.

The σi is chosen to set the entropy of the distribution over
neighbors equal to log k, where the perplexity k denotes the
effective number of local neighbors. The weight matrix W
is finally summarized by thresholding the probability pij :

W(i, j) =


pij if pij ≥ ε (recall constraint)
−pij if pij < δ (precision constraint)
0 otherwise (no constraint)

(3)

where δ ∈ [0, ε]. For each i, the row W(i, ·) is normalized so
that positive entries sum to +1 and negative ones to −1, so
that recall and precision constraints have equal impact on the
embedding. For a 9-cell grid-neighborhood, the threshold ε
is chosen so that at maximum 5 recall neighborhood con-
straints are built. If δ = ε for every point outside the recall
neighborhood a precision constraint is constructed. For δ <
ε, a region near the recall neighborhood stays unconstrained,
alleviating problems related to dense, over-constrained re-
gions in data. The instance constructing source code, the
detailed encoding and additional experimental results can be
found at http://research.ics.aalto.fi/mi/software/satnerv/.

Comparisons on Benchmark Data. For the benchmark
data we simply use the constructed W as the ground truth
for performance evaluation and compare the neighborhoods
on the display to it. For the t-SNE comparison, we set per-
plexity to yield the same pij as in W, and use the thresholds
when retrieving neighbors from the t-SNE output. We used
the following datasets and threshold values for computing
the weight matrices in our experiments:
Helix: 100 datapoints from a three-dimensional coiled ring

(synthetic), see Fig. 2(A). We computed the neighborhood
weights following Eq. (3) using perplexity 5 and threshold
ε = δ = 0.17 for precision and recall, resulting in an
effective neighborhood of 2.

Coil: A standard dimension reduction and visualization
benchmark dataset (Nene, Nayar, and Murase 1996) used
in the original t-SNE paper (van der Maaten and Hinton
2008), with images of rotated objects of the first 5 classes.
Weights were computed using perplexity 5, ε = 0.2 and
δ = 0.01, resulting in an effective neighborhood of 4.

Olivetti: The Olivetti (Samaria and Harter 1994) database
contains 400 grayscale facial images, with size 64 × 64,
of several persons. Weights computed using perplexity 5
and ε = δ = 0.15.

ISMB: Gene expression microarray experiments (Caldas et
al. 2009) from the ArrayExpress database (Parkinson et
al. 2009). Following (Caldas et al. 2009), we used 105 ex-
periments with latent variables describing gene set activi-
ties as features, and 13 topics and a color scheme. Weights
computed using perplexity 5, ε = 0.2, δ = 0.001.

We used MaxHS (Davies and Bacchus 2013) as the
MaxSAT solver. We compared our approach to the cur-
rent perhaps most widely used NE method, t-SNE (van der
Maaten and Hinton 2008), and SPE (Shaw and Jebara 2009).

As the true high-dimensional neighborhood is known, one
can directly count violations of neighborhood (i.e., precision
and recall) constraints to compare the methods. An overview
of the results is given in Table 1. The SPE implementa-
tion by the SPE authors ran out of memory (64 GB) on all
datasets except Helix. On all datasets, MaxSAT outperforms
t-SNE in terms of violated neighborhood constraints. Fig. 2
shows the result in more detail for the Helix data set: as seen
from the figure, t-SNE (D) has difficulties preserving the he-
lical structure, breaking it up into several pieces, and vio-
lating 55 neighborhood constraints. However, our method
(B–C) succeeds and finds an optimal solution without any
neighborhood violations.

Showcase: WLAN signal map. A WLAN positioning
system constructs a radio map based on the variation of the
signal strength measurements according to the geographical
location. It is used indoors, where GPS coverage is unavail-
able and the collection of location tagged training data is te-
dious and time consuming. The dataset contains 540 finger-
print vectors which are each composed of 34 received signal

Table 1: Overview of benchmark results. For each method,
neighborhood violations are listed as: (number of recall con-
straint violations, number of precision constraint violations).
The solution quality of MaxSAT is best on all data sets.

Dataset Neigborhood violations time

MaxSAT t-SNE SPE MaxSAT t-SNE

Helix (0,0) (28,401) (0,0) 14s 6s
Coil (0,0) (30,41158) memout 14h 8s
Olivetti (133,364) (137,34699) memout 10h 7s
ISMB (48,30) (66,632) memout 14s 1s



Figure 3: Visualizations of WLAN by the 2-stage Isomap (A) and MaxSAT on a 16 × 64 grid (B). Dots represent the 200
fingerprint vectors, triangles the 38 key points, squares the 66 mapped test points. Similar RSSI vectors are colored similarly.
Stars are the recorded geographical positions of the test points; lines connect the mapped and recorded positions.

strength indicator (RSSI) values collected in a real-world of-
fice building space of size 24 m× 7 m (Pulkkinen, Roos, and
Myllymäki 2011). The positioning task is to place the finger-
prints on the floor plan. For 104 fingerprints the geographi-
cal coordinates in the area is known, out of them 38 are used
for training and are denoted key points, and the remaining
66 are used as test points for evaluation purposes. The orig-
inal paper proposes a two-stage semi-supervised approach:
(1) fingerprint vectors are mapped to 2d with the non-linear
manifold learning technique Isomap (Tenenbaum, de Silva,
and Langford 2000); (2) the key points are used to fix the
mapping positions to geographical coordinates using a re-
gression procedure. In contrast, our method uses the posi-
tion of the key points in the grid directly by simply adding
hard constraints over the respective bit variables. We com-
puted the weights with perplexity 15, ε = 0.1 and δ = 10−7,
resulting in maximal 5 recall neighbors for the MaxSAT en-
coding. The Isomap approach is replicated using compara-
ble settings with k = 5 as input.

We report on a set of experiments, based on varying the
number of fingerprints and key points used for construct-
ing the radio map. We evaluate the produced radio maps
numerically using the average Euclidean distance from the
mapped test points to their recorded geographical position.
The Isomap runtimes were ≈ 5 seconds. Table 2 provides
a comparison of Isomap and our approach. MaxSAT clearly
outperforms Isomap: we generally (with only one excep-
tion) produce better radio maps (in which the test points are
assigned closer to the real positions) than Isomap. When the
number of fingerprints is significantly reduced, the MaxSAT
solving becomes faster, and still exhibits robust performance
in terms of radio map quality. Figure 3 gives an example of
the radio maps produced by (A) Isomap and (B) our method.

Conclusions
We present a novel MaxSAT-based low dimensional neigh-
bor embedding approach for visualization. The approach is
guaranteed to provide globally optimal embeddings of high-
dimensional similarities onto a discrete grid display, maxi-
mizing precision and recall. The method embeds data con-
sistently well in practice, yielding clean embeddings with
less artifacts than a state-of-the-art t-distributed stochastic
neighbor embedding method. Our approach also allows for
iteratively enforcing user feedback (expert knowledge) as
additional constraints for refining embeddings. In addition
to typical benchmark data, as a show-case we applied the
approach to semi-supervised WLAN positioning (mapping
high-dimensional RSSI vectors directly to geometrical co-
ordinates) where our method outperforms a state-of-the-art
positioning method. Overall, MaxSAT yields powerful new
tools for neighbor embedding.

Table 2: Quality of Isomap and MaxSAT radio maps: mean
distance of mapped points from recorded positions.

all samples/
prints/keys

Mean distance MaxSAT

Isomap MaxSAT time (min) cost/softclauses

540/436/38 210.484 177.115 1552.13 0.003
404/300/38 189.367 178.510 87.00 0.004
304/200/38 209.822 164.786 15.12 0.005
204/100/38 234.310 177.256 7.09 0.009
404/300/19 224.688 204.201 86.18 0.002
304/200/19 213.637 174.281 16.14 0.002
204/100/19 292.846 275.523 5.08 0.006
404/300/12 252.490 282.756 2931.33 0.001
304/200/12 229.226 186.638 57.30 0.002
204/100/12 326.314 251.408 4.44 0.004
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