MobiCCN: Mobility Support with Greedy Routing
in Content-Centric Networks

Liang Wang, Otto Waltari, Jussi Kangasharju

Department of Computer Science, University of Helsinki, Finland

Abstract—Content-Centric Network (CCN) shifts the Internet
from point-to-point paradigm to receiver-driven data-centric
paradigm. While it solves many problems in the current Internet
and opens the door to many novel applications, it also leaves
many challenges unanswered, e.g., mobility support and mobile
content publishing and dissemination. In this paper, we show how
a greedy routing can be implemented in CCN architecture to sup-
port mobility. This allows for efficient content publisher mobility
and supports seamless handoffs for interactive connections. We
present our solution — MobiCCN, and evaluate it thoroughly in
realistic network topologies to show it outperforms other popular
mobility schemes.

I. INTRODUCTION

Content-Centric Networking (CCN) [1] shifts the cur-
rent Internet paradigm from point-to-point communication to
content-centric dissemination. CCN solves some problems in
current Internet like network congestion, content delivery and
security and etc. The essence of CCN is accessing content
by name. All content is identified, addressed and retrieved by
name instead of physical locations. A client requests a content
item by sending out an Interest packet into the network.
The network nodes can potentially store the content to serve
the future requests.

Naming also poses significant challenges on routing. In
current Internet, DNS handles the mapping between hostnames
and IP addresses. However, as far as content is concerned,
the number of items to handle is orders of magnitude larger
than names handled by DNS. Hierarchical names have been
proposed because they offer performance gains through aggre-
gation. However, this assumes the names are correlated with
the underlying network topology, and may leave lots of gaps
if the content has high mobility. While Caesar et al. showed
flat name is feasible in [2], Ghodsi et al. argued in [3] that
both hierarchical and flat names are essentially the same.

Due to its receiver-driven design, CCN inherently sup-
ports receiver mobility. A lost packet can be recovered by
retransmitting the Interest. However, sender or publisher
mobility is difficult to achieve. One scenario is maintaining
the communication between mobile caller and callee in a VoIP
call. Another is mobile content publishing and dissemination.
In both cases, data sources are highly mobile. The standard
CCN requires necessary name operations to handle data source
mobility, but updating and propagating names are expensive
operations in network. Performance and scalability are hard to
achieve in such cases.

All these issues boil down to the question how we route the
packets to the correct destination. Routing and name resolution
form the core of the problem. An interesting direction in
routing research is greedy routing which was first applied to
mobile ad-hoc network, but it can also be used in traditional
wired network. Zhang et al. in [4] presented a greedy routing
based on underlying metric space. The idea is that each router
is assigned a coordinate from a name-based metric space. The
router makes the forwarding decisions based on the distance
of its directly connected neighbors and the destination in the
packet. CAIDA has also done experiments in evaluating greedy
routing, but they have been limited to small-scale and manually
assigned (geographical) coordinates [5].

In this paper, we show that by introducing a greedy routing
into CCN architecture, we can provide an efficient mecha-
nism for seamless mobility, also solve the disparity between
enormous space of names and scarce routers’ resources. Even
though we focus the discussion on CCN, it is worth pointing
out that our solution can be equally applied to other similar
systems. Our contributions are as follows:

1) We show that greedy routing can be implemented as
routing policy in CCN.

2) We present MobiCCN, our mobility scheme, and evalu-
ate it thoroughly in realistic settings.

3) We compare MobiCCN with other schemes from liter-
ature, and show that it outperforms them.

The paper is organized as follows. Section II gives a
brief introduction on CCN and greedy routing techniques. We
present MobiCCN in Section IIT and evaluate it in Section VI.
Section V gives a comparison of common mobility schemes
in CCN. Finally, Section VI concludes the paper.

II. BACKGROUND
A. CCN

Information-Centric Networking (ICN) has been an active
research area for several years. There are several similar inde-
pendent proposals [1], [6], [7], and all of them are essentially
based on the similar concept — accessing content by name.
We use CCN [1] as basis for our work, but many of the
key elements of our solution can be applied in other ICN
architectures as well.

CCN is a receiver-driven model. To retrieve a content, the
user needs to construct an Interest packet first, which
contains the content name. The Interest is sent to the

network and routed in a hop-by-hop manner by CCN routers.
Each router checks the content name and if there is a copy
in the local storage — Content Store (CS), the response will
be sent back immediately. Otherwise, the router checks its
Forwarding Information Base (FIB) and uses longest prefix
matching to determine which face the Interest will be
forwarded to. The forwarded Interest leaves an entry
in router’s Pending Interest Table (PIT). If the Interest
finally reaches the data source and is replied by the server,
the response can follow the entries in PIT left by the previous
Interest and goes back to the user.

CCN inherently supports receiver-side mobility. To recover
a lost packet during mobility, receiver only needs to retransmit
the previous Interest. Intermediate routers can use the
copies in their CS to serve the request. However, if the data
source is mobile, retrieving data will be much more difficult.
Common schemes use hierarchical naming and if a data
source moves into a new domain, it has to perform expensive
name operations to handle the mobility. In some schemes,
the receiver needs to be informed about the changes so that
communication can continue. In [8], Kim et al. compared
several mobility schemes, including their own solution.

B. Greedy Routing

Greedy routing has a long history in mobile and sensor
networks. In such networks, a node does not have global
knowledge of the network topology and only knows its
neighbors. Greedy routing makes it possible to route packets
in the “dark” by assigning coordinates to nodes. However,
greedy routing doesn’t specify its underlying metric space,
node usually uses its actual geographical coordinates as its
locator, which is also referred as geographical routing. The
destination’s coordinate is embedded into the packet header.
To forward a packet, a node calculates the distance between
the destination and each of its directly connected neighbors,
and selects the one closest to the destination as the next hop.
However, using geographical coordinates cannot guarantee
100% delivery due to the local minimum issue. In a connected
graph, local minimum refers to the situation that a node x
itself is closer to the destination y than any of its neighbors
even though y is not z’s directly connected neighbor. In
this case, the node cannot decide who should be the next
hop therefore routing fails. In [9], Cvetkovski et al. proposed
Gravity-Pressure routing to provide optional path when local
minimum occurs.

Using geographical coordinates is equivalent to embedding
the network into Euclidean space. However, Euclidean space is
not the only candidate for greedy routing’s underlying metric
space. Instead of real geographical coordinates in Euclidean
space, nodes can use virtual coordinates from any well-defined
metric space. Therefore, another solution to the local minimum
problem is to embed the topology in a “better” metric space.
The idea is to find a greedy embedding for arbitrary topologies.
Greedy embedding refers to the embedding with the property
that given any destination y which is not directly connected to
a node z, x can always find a neighbor of him who is closer

Greedy Packet virtual coordinate operation parameter

<—|_ greedy: / 324532234925526 / voip / ring ...
{ greedy: / 854267864477975 / publish / data/17 ...

greedy: / 548865564345699 / update / signature ...

Content Name

Selector

Nonce

L

Fig. 1: Greedy packet type. All the greedy packets are nor-
mal CCN Interests, MobiCCN only reserves the prefix
greedy:/ to activate the greedy protocol.

to y than himself. Kleinberg gave a proof in [10], showing
that if we use a hyperbolic space as the underlying metric
space, then every connected graph has a greedy embedding.
Therefore 100% delivery is guaranteed. In [9], Cvetkovski et
al. extended Kleinberg’s work to dynamic graphs.

III. ARCHITECTURE

In this section, we present our MobiCCN by describing how
communication happens in the system. Then we give a specific
scenario of VoIP in Section III-C.

A. Proposal

As we have seen, the conventional way of routing and name
resolution in CCN is incapable of handling sender mobility
issues. We propose a new routing protocol which can coexist
with the standard CCN routing protocol.

There are two routing protocols in MobiCCN, the standard
CCN protocol and the greedy protocol. MobiCCN neither
changes the existing packet format nor adds any new ones.
A greedy packet is just a normal CCN Interest. We
only reserved prefix greedy:/ for greedy protocol, while
the standard one uses ccnx:/. Whenever a router receives a
packet with the name starting with greedy:/, it switches to
greedy protocol to forward the packet. As Figure 1 shows,
the general format of the name of a greedy packet is
greedy:/vc/operation/parameters/....

Each router is assigned a vc (virtual coordinate) from
the underlying hyperbolic space H (using MWST algorithm
discussed in Section IV-D). Coordinate allocation can be done
in many ways, e.g., manually or by the ISP using the MWST
algorithm (or any similar embedding algorithm). As shown
in [9], coordinate allocation can also be done automatically
and dynamically whenever a new node joins or an old node
leaves by using the dynamic embedding algorithm in [9].

Greedy protocol uses vc as the destination address and
embeds it into the content name of a packet. Each router
only maintains a small table of its neighbors’ coordinates. In
order to forward a packet, the router first extracts destination
coordinate ve from the packet, then it calculates the distance
between the destination and each of its neighbors. The packet
is forwarded to the neighbor who is closest to the destination.

However, we do not have to calculate distance for every
greedy packet and can reduce the computational overheads
by caching previous results. When a greedy packet arrives,

Algorithm 1 Greedy routing protocol - Interest

Algorithm 2 Greedy routing protocol - Update

Input: Greedy Interest GI
Output: Forward decision
dst < destination coordinate of G
if (dst, face) in FIB then
oface < face
else
for each directly connected neighbor IV; do
d; < distance between dst and IV;
end for
oface < N; with smallest d;
Update (dst,oface) pair in FIB
end if
Forward G1 to oface

the router checks whether there is an entry in FIB using the
longest prefix matching. If the result is positive, it means the
distance has been calculated before, then packet is forwarded
to the next hop stored in FIB. The router’s performance is
independent of the number of greedy packets passing by.

Each user has a unique ID to identify himself, which can
be the same as his CCN name. Greedy routing then maps the
user ID into the same hyperbolic space H to obtain its virtual
coordinate. Mapping can be done with any well-defined hash
function, e.g. SHA-1. Each user has a dedicated router who is
closest to him in H as his host router in the network. The host
router serves as rendezvous point and relays traffic for him. !

Whenever a data source moves to a new attachment point, it
sends out an Update packet to its host router. The Update
has a name like greedy./vc/update/..., indicating it is an update
operation. Each router the Update passes by will update the
corresponding entries of that data source in its FIB accord-
ingly; then Interests towards the source can be forwarded
correctly to the new domain. From receiver’s perspective, it
always uses data source’s original name to communicate. So
there is no need to change content name even after the source’s
handoff, because the Interests can always reach source’s
host router (in the worst case).

Algorithms 1 and 2 show how greedy Interest and
greedy Update are processed in a router. It is not necessary
for a greedy Interest to arrive at the rendezvous point in
order to reach the mobile user, because the greedy Interest
may pass a router which already cached (dst, face) in FIB
before reaching the rendezvous point. This means that the
stretch in MobiCCN can even be lower than that in normal
greedy routing, however this advantage is highly topology-
dependent and not a guaranteed property.

B. Security

As shown in [1], CCN is built on the notion of content-
based security. Each piece of content can be authenticated by
the digital signature embedded in the packet header. MobiCCN

I'There are obvious similarities between MobiCCN and Mobile IP, and the
host router is roughly equivalent to a home agent.

Input: Greedy Update GU
Output: Update F'I B of the routers between a mobile user
and its corresponding rendezvous point
iface < ingress of GU
dst < destination coordinate of GU
Update (dst,iface) pair in FIB
for each directly connected neighbor N; do
d; < distance between dst and N;
end for
oface < N; with smallest d;
d < destination between dst and current router
if d < min(d;) then
Rendezvous point, stop forwarding
else
Forward GU to oface
end if

inherently embodies the CCN’s security, and has the equal
strength of CCN in against many kinds of attacks.

To prevent malicious users from exploiting Update packets
to disturb the normal communication, the sender is required
to sign every Update packet. Whenever an Update packet
arrives, the router needs to check whether the sender is the
actual owner of the name so that he has the right to update
his corresponding entries in FIB. This can be easily done by
validating the digital signature in the packet, if the key used
for signing is not the same as the one of the actual owner,
the packet should be dropped immediately. Technically, this
means signed Interest instead of signed Content Object.
According to CCNx specification, the signature can either be
appended to the content name (as MobiCCN does), or stored
in the additional field in the header.

Validation requires extra operations and network communi-
cation. To reduce the overheads and also prevent work-factor
attack, we adopted three mechanisms in the design. First,
router is not obligated to validate every Update packet as
long as sender’s attachment point remains unchanged. Second,
only the edge router (sender’s attachment point) is responsible
for validating sender’s authenticity, the downstream routers are
free from these operations. Third, owner’s key is cached before
its expiration so that a router needs not retrieve it all the time
whenever it needs validation.

Instead of mandating a one-size-fits-all approach, CCN
adopts a very flexible contextual trust model. Clients should
determine themselves whether the data is trustworthy. In a sim-
ilar vein, MobiCCN design allows both traditional hierarchical
PKI (public-key infrastructure) and non-hierarchical model
like SDSI [11]. However, discussion over the trust models is
beyond the scope of this paper and is left as our future work.

C. VoIP Scenario

We present a VoIP scenario as an example of how MobiCCN
handles mobility. Note that MobiCCN is not limited to voice
calls, but is a solution for general publisher mobility in CCN.

—> Greedy Interest
----- > Greedy Update

Alice &=

Fig. 2: MobiCCN Scenario. Bob’s host router is R and
between the left and right figure Bob changes his attachment
point from A to B. Router D caches Bob’s Update and
Alice’s Interest packet on the right-hand figure does not
need to go to R but D is able to forward it directly to B.

Figure 2 shows a simple VoIP scenario in MobiCCN with
both two users — Alice (Caller) and Bob (Callee). Both Alice
and Bob use their email addresses as their unique IDs, and
their corresponding virtual coordinates in H are vcgyice and
vepop Tespectively. Now Alice wants to initialize a VoIP call
to Bob. To set up the connection, she first tries the standard
CCN way by using the name like ccnx:/domain/voip/bob.
However, if Bob already starts moving before Alice’s attempts,
the connection setup will fail. After the timeout event is
triggered, Alice activates greedy protocol and sends out a
new Interest with the name greedy:/vcyop/voip/ring. The
Interest will pass by Bob’s host router and finally find its
way to Bob using greedy protocol. If both fail, then Bob is
considered offline.

The previous two-attempt setup only happens once in the
beginning of the communication, and the overhead can be
avoided if greedy protocol is used as the primary protocol.
The standard one is then used as backup protocol to achieve
lower average latency if both counterparts are stationary.

Another way to avoid two-attempt setup is for Alice to
send out two Interests (both standard and greedy one)
in parallel in the beginning, then choose the protocol after
Bob replies. The overhead is just one extra packet.

When Bob is the data source and he moves into a new
domain B, he sends a greedy Update with the name
greedy:/vcpop/update after the handoff. The Update eventu-
ally reaches his host router and all the intermediate routers
update their FIB in order to forward Interests towards
Bob correctly.

However, as we can see from Figure 2, Alice’s Interest
reaches D before R, and router D already updated its FIB
from Bob’s greedy Update. Alice’s Interest can then be
routed directly towards Bob without passing the host router.

D. Features & Limitations

MobiCCN can either be used as a backup solution for
mobility issues, or the primary scheme for mobile content
publishing and dissemination. MobiCCN only needs marginal
modifications to CCN routers and does not interfere with the

Network | Routers | Links | POPs | Diameter | Avg. Path
Exodus 338 800 23 12 5.824
Sprint 547 1600 43 12 5.182
AT&T 733 2300 108 11 6.043
NTT 1018 2300 121 14 6.203

TABLE I: Graph properties of the four selected ISP networks

standard protocol. Applications using the standard protocol are
not aware of the greedy protocol.

Greedy protocol might increase stretch in the communica-
tion. However, as we show in Section V, it is still much lower
than other popular schemes and stretch can be further reduced
by using a better embedding algorithm. Furthermore, due to
the flexibility of MobiCCN, users can negotiate with each
other to switch to the standard protocol if they stop moving.

IV. EVALUATION
A. Prototype & Testbed

We implemented MobiCCN prototype in Python. The pro-
totype works similarly to CCN defined in [1]. Greedy routing
is implemented as an extension to the standard CCNXx routing
protocol. We are also implementing MobiCCN in the CCNx
prototype as a plug-in.

We chose four real-world ISPs networks to run our experi-
ments: Exodus, Sprint, AT&T and NTT. The network topology
files are from Rocketfuel [12] project. For the network with
multiple components, we only use the biggest one. Table I
shows an overview of the networks with their graph properties.

All the experiments are performed on our department cluster
consisting of 240 Dell PowerEdge M610 nodes. Each node is
equipped with 2 quad-core CPUs, 32GB memory, and con-
nected to a 10-Gbit network. All the nodes run Ubuntu SMP
with 2.6.32 kernel. Multiple virtual routers are multiplexed
onto one physical node if the ISPs network is larger than the
cluster network.

B. Handoff Delay

Handoff delay is one of the most important metrics for
evaluating a mobility solution. We experimented our solution
on four topologies, but since the results are similar in all of
them, we only present the results on AT&T network. We
also compared MobiCCN with different mobility schemes.
However, since Interest Forwarding has been shown to be
superior to the others [8], we only compare against it in
this section. Note that the evaluation in [8] is done on a
synthetic topology and we now run their algorithm on a real
ISP topology.

In our simulation, the link delay is set to 5 ms. The initial
placement of the sender and receiver is arbitrary. The selection
of the next attachment point of the mobile sender is among the
nodes within a 2-hop radius. Layer 2 handoff delay is set to
100 ms, and loss detection timer is also set to 100 ms. Both
caller and callee perform a simultaneous handoff at 10 sec.
Caller and callee send out Interests at a rate of 50 pkts/s.

Figure 3a shows the sequence number of the content piece
the caller received when simultaneous handoff happened.

5030 % 7030 x
X)e(X)e(

. 5025 = . 7025 .
[} x o e
€ 5020 & € 7020 5%
S X S X
Z 5015 . Z 7015 .
2 5010 g2 7010 §
5 g i
g 5005 - g 7005 %

5000 ¥* 7000 x*

4995 95

9.9 10.0 10.1 10.2 10.3 10.4 105 9.9 10.0 10.1 10.2 10.3 10.4 10.5
Timestamp (s) Timestamp (s)
(a) Caller (b) Callee
Fig. 3: MobiCCN handoff delay

5030 N 7030 e
. 5025 5o8 . 7025 et
3 S 3 a
£ 5020 ” £ 7020 &
=] AAA =3 AAA
Z 5015 § Z 7015
g2 5010 g 7010
g £ g
T 5005 & o 7005 &
3 a & a8

5000 7000

4995
9.9 10.0 10.1 10.2 10.3 10.4 10.5

Timestamp (s)

(a) Caller

95
9.9 10.0 10.1 10.2 10.3 10.4 10.5
Timestamp (s)

(b) Callee

Fig. 4: Interest Forwarding [8] handoff delay

When the caller finished layer 2 handoff at 10.1 sec, he started
re-requesting the lost data. Because packet #5005 was already
on its way to the caller when the handoff happened, it was
already cached by an intermediate router. That is why packet
#5005 can be quickly re-transmitted at 10.15 sec just after the
layer 2 handoff finished. The rest of the re-transmissions are
subject to one RTT, they arrive later at 10.17 sec. The caller’s
handoff delay is 173 ms.

Figure 3b shows sequence number callee received during the
handoff. The callee’s handoff delay is 163 ms, which is shorter
than the caller’s 173 ms. The reason is that paths between
caller and callee are not symmetric. Path from callee to caller
(6 hops) is shorter than that from caller to callee (7 hops).

Figure 4 shows the handoff delay in Interest forwarding
scheme from [8]. The experiments are done with the same
setting as that of MobiCCN. The caller’s and callee’s handoff
delays are the same, both are 188 ms. Although small, this
difference to MobiCCN is consistently present and measurable
in all our experiments. The reason of the longer handoff delay
is that the path between caller and callee increased from 6
hops to 8 hops after the handoff. This is shown in Figure 5. If
data source moves from A to B, topology « in Figure 5a will
not increase the path length. However, topology [in Figure 5b
will increase the path length by 1. Triangular routing cannot
be eliminated in Interest Forwarding if user’s home agent A
becomes the next hop in the new path. It is more difficult to
prevent this issue if topology [is closer to the network core.

Even though neither MobiCCN nor Interest Forwarding
requires users to change names after the handoff, Interest
Forwarding may be affected by the network topology.

(a) Topology o

(b) Topology 8

Fig. 5: Interest Forwarding is subject to topology

MobiCCN X A
18 Interest Forwarding A A
S
T 16 A
@ A
g 1.4
1.2 A A
£ X X X X X X X X X
1
0 2 4 6 8 10

Fig. 6: Average stretch as a function of number of handoffs

C. Scalability

We designed another experiment to see how the network
topology affects the path stretch. In the experiment, callee is
fixed and caller moves IV times. Every ¢ sec, caller moves
to a new attachment point. (While such mobility might not
happen in many scenarios, it serves to illustrate MobiCCN’s
scalability even under extremely mobility.) We measured the
stretch between caller and callee after each handoff. The
experiments were repeated 50 times, and Figure 6 shows the
average stretch.

For Interest Forwarding, despite of some small fluctuations,
stretch increases while the caller keeps changing its attachment
point. The reason is that if the previously attached router is the
next hop of the newly attached router, the path will increase
after handoff. As the caller moves more, the probability of this
happening varies according to the topology, thus causing some
fluctuation in the results. However stretch shows a steadily
increasing trend. Furthermore, stretch in Interest Forwarding
scheme is consistently higher than in MobiCCN, which is
stable at 1.13. MobiCCN’s performance is independent of
moving and topology once the embedding is done.

This experiment implies the network topology can have a
significant impact on the performance of a mobility scheme.
An artificial topology is incapable of reflecting all the charac-
teristics from realistic topologies, thus evaluations on purely
synthetic topologies are likely to yield results that do not
correspond to results in a real network topology.

D. Stretch

The host router approach of MobiCCN may increase stretch
because traffic in many cases passes through the host router,
but a better embedding algorithm can help reduce the stretch.

To embed a network into a hyperbolic space, the first step is
to derive a spanning tree from the network, then we embed the

Exodus | Sprint AT&T NTT
Avg. Stretch 1.384 1.375 1.271 1.320
Min. Stretch | 1.149 1.197 1.110 1.198
MWST 1.212 1.185 1.128 1.150
Improvement | 13.06% | 13.82% | 11.25% | 12.88%

TABLE II: Stretch of four networks with different spanning
tree algorithms

tree into the space. Kleinberg showed in [10] that the greedy
embedding of a spanning tree of a graph is also the graph’s
greedy embedding. However we can derive multiple spanning
trees from the same graph, and different trees may lead to
different stretches. When the network is small, the embedding
can be done manually and the stretch can be reduced to as
low as 1, like [5]. However, manually assigning coordinates
is infeasible for a large network.

In [13], Cvetkovski et al. implemented two heuristics and
showed that they can improve the average hop stretch by about
30%. In this paper, we used the Maximum-Weight Spanning
Tree (MWST) in [13] to construct the spanning tree on the
experiment topology and embedded it into a Poincaré disk.

For each network, we generated 5000 random minimum
spanning trees and embedded them into the Poincaré disk. We
recorded the average and the minimum value; these are shown
in the first and second row in Table II.

We used MWST for the greedy embedding and recorded its
stretch and also calculated the improvement MWST achieved
compared with the average value. The third and fourth row
in Table II show the results. MWST has about 11% — 13%
improvement on realistic network topologies.

E. Performance Impact

When CCN router forwards a greedy packet, router spends
extra CPU cycles in computing the distances between the
destination and its neighbors to decide the next hop. How-
ever, since MobiCCN uses the same longest prefix matching
mechanism as that in standard CCN, it can utilize FIB to
cache the previously calculated results to reduce the overheads.
Then the CPU overheads become independent of the absolute
number of greedy packets passing by, but only a function of
the arrival rate of the packets containing new destinations. The
FIB entries are tentative and will be purged out automatically
after predefined expiration time. So even if all the traffic are
greedy packets, the overheads still remain at a low level.

We evaluated how greedy routing impacts router perfor-
mance in the worst case without optimization. In our exper-
iment, we first measured the router’s maximum throughput
when all the packets passed by are standard CCN packets.
Then we increased the fraction of greedy packets step by step,
and examined how it degrades CCN router’s throughput. Our
results show that the throughput drops linearly as a function of
the fraction of greedy packets. With up to 10% greedy packets,
the drop is negligible, but if the traffic consists of purely
greedy packets and the router has to calculate the distance
for every packet, the throughput drops by about 30%.

V. COMPARISON OF MOBILITY SCHEMES

In this section, we compare MobiCCN with other mobil-
ity schemes presented in literature. Kim et al. [8] already
performed a basic comparison between Interest Forwarding
and the others. In this paper, we evaluate the schemes from
the following perspectives: handoff delay, average latency,
capability of handling simultaneous handoff, scalability, single
point of failure and implementation complexity. Table III
summarizes the comparison.

Sender-driven control message is the most straightfor-
ward scheme. In this scheme, the moving user sends out
a control message explicitly to the receiver to inform his
new hierarchical name when handoff occurs. However, this
scheme cannot handle well the situation where both sender
and receiver are moving. The communication may completely
break down when simultaneous handoff happens. Another
problem is that receiver must regenerate the new Interest
for the lost packet using sender’s new hierarchical name. The
advantages of this scheme are its simplicity and pure CCN
style, and average latency in the communication is low. All
the modifications are in the application layer.

In Rendezvous point scheme, user needs to update their
attachment point to the rendezvous point periodically or when
handoff occurs. If the receiver fails to get response within
a predefined time, the receiver will think the data source
has changed its attachment point. Then the receiver sends
the query to rendezvous point to get the update. In this
scheme, the communication will not completely break down
if simultaneous handoff happens, but it is still possible that
the receiver gets outdated information and suffers from a
large delay due to second lookup operations. Furthermore,
the receiver still needs to regenerate Interest with the
new name for the lost packets. Generally, this scheme suffers
from a large handoff delay. The advantage is that average
latency is low and the modification is on the application
layer; lookup only happens when timeout is triggered. Normal
communication is done as in CCN.

Indirection point scheme uses separate server to relay all
the traffic. If handoff occurs, the Interests to the user
are buffered first at the indirection point, then forwarded later
until the moving user updates the new name to the Indirection
point. Because all the traffic must pass the indirection point,
the obvious disadvantage is the indirection point becomes the
single point of failure and a bottleneck if the traffic load is
heavy. Even though the handoff delay can be improved in this
scheme, normal traffic suffers from a large average latency.

In all aforementioned schemes, the content must change
its name based on the attached domain. However, updating
content name is an expensive operation in CCN and this makes
seamless handoff difficult to implement. Kim et al. proposed
Interest Forwarding in [8]. In their scheme, the mobile
user must send a notification to the current attached router
when it notices a handoff is imminent. The router will start
buffering the coming Interests for the user. Then the user
can fetch the buffered Interests by sending a virtual

Avg. Latency Handoff Delay | Simultaneous Scalability Single Point of | Complexity
Handoff Failure
MobiCCN Medium Low Yes High No Medium
Sender-Driven Msg Low High No High No Low
Rendezvous Point Low Medium Yes Low Yes Low
Indirection Point High Medium Yes Low Yes High
Interest Forwarding Medium Low Yes Medium No High

TABLE II: Comparison of different mobility schemes. MobiCCN achieves good trade-off point from various perspective.

MC IF RP IP SD MC IF RP IP SD

(a) Handoff delay (ms) (b) Average latency (ms)

Fig. 7: Comparison of latencies in different schemes. MC:
MobiCCN, IF: Interest Forwarding, RP: Rendezvous Point,
IP: Indirection Point, SD: Sender-Driven Message

Interest back to the old attached router. The virtual
Interest also updates the FIB in the intermediate routers
so that the following Interests can be forwarded correctly.
This scheme avoids changing the content name by using
tentative home agent. However, one problem is the whole
scheme may fail if an imminent handoff becomes hard to
predict. Secondly, as we have shown in this paper, the path
may grow longer while the user is moving, and the following
traffic suffers from the larger latency.

Figure 7 shows the handoff delay and average latency in
each scheme. The experiment was repeated 100 times and
the average value with standard deviation is presented. In
Figure 7a, simultaneous handoff was evaluated. Sender-Driven
Scheme is missing because it cannot handle simultaneous
handoff. The performance of Rendezvous Point and Indirection
Point depends on the placement of the Indirection/Rendezvous
server. In our experiment, we deployed the server 6 hops
away from both two mobile nodes. MobiCCN has the best
performance of all the solutions. Rendezvous Point is the worst
and has the largest variation due to the possibility that user
may receive outdated information.

Figure 7b shows the average latency in the communication.
We let the data source have two handoffs before we start the
evaluation. The Rendezvous Point and Sender-Driven Message
have the shortest latency because they always use the shortest
path. Indirection Point is the worst because all the traffic is
relayed. MobiCCN is slightly higher than the best one due to
the stretch caused by greedy routing. But the latency can be
further reduced and become closer to the one by using better
embedding algorithm. Interest Forwarding is a little higher
than MobiCCN due to the issue we discussed in Section I'V-B.

In summary, MobiCCN outperforms the other solutions in
terms of delay and (for the most part) latency.

VI. CONCLUSION

In this paper, we present how we extend geographical
routing in current CCNXx to solve mobility and mobile content
publishing and dissemination issues in CCN. By embedding
network topology into hyperbolic space, we distribute the
rendezvous points and name resolution functionality into the
network. We compared MobiCCN to other proposed CCN
mobility schemes and showed that it outperforms existing
schemes both in terms of handoff delay and communication
latency. We are currently implementing our solution on CCNx
as extension, which is fully compatible with the standard CCN
routing protocol.

REFERENCES

[1] V. Jacobson, D. K. Smetters, J. D. Thornton, M. F. Plass, N. H. Briggs,
and R. L. Braynard, “Networking named content,” in Proceedings of the
5th ACM Conext. New York, NY, USA: ACM, 2009, pp. 1-12.

[2] M. Caesar, T. Condie, J. Kannan, K. Lakshminarayanan, and I. Stoica,
“ROFL: Routing on Flat Labels,” SIGCOMM Comput. Commun. Rev.,
vol. 36, no. 4, pp. 363-374, 2006.

[3] A. Ghodsi, T. Koponen, J. Rajahalme, P. Sarolahti, and S. Shenker,
“Naming in content-oriented architectures,” in Proceedings of the ACM
SIGCOMM workshop on Information-centric networking, 2011.

[4] L. Zhang, D. Estrin, J. Burke, V. Jacobson, J. Thornton, D. Smetters,
B. Zhang, G. Tsudik, D. Massey, C. Papadopoulos et al., “Named data
networking (ndn) project,” Technical Report NDN-0001, Xerox Palo Alto
Research Center-PARC, 2010.

[5] Caida, “Greedy forwarding on the ndn testbed,” August
2011. [Online]. Available: http://www.caida.org/research/routing/
greedy_forwarding_ndn/

[6] T. Koponen, M. Chawla, B.-G. Chun, A. Ermolinskiy, K. H. Kim,
S. Shenker, and I. Stoica, “A data-oriented (and beyond) network
architecture,” SIGCOMM Comput. Commun. Rev., vol. 37, no. 4, pp.
181-192, 2007.

[7] Publish/Subscribe Internet Routing Paradigm, “Conceptual architecture
of psirp including subcomponent descriptions. Deliverable d2.2, PSIRP
project,” , August 2008.

[8] D.-h. Kim, J.-h. Kim, Y.-s. Kim, H.-s. Yoon, and I. Yeom, “Mobility
support in content centric networks,” in Proceedings of the second
edition of the ICN workshop on Information-centric networking, 2012.

[9] A. Cvetkovski and M. Crovella, “Hyperbolic embedding and routing for
dynamic graphs,” in IEEE INFOCOM, april 2009, pp. 1647 —1655.

[10] R. Kleinberg, “Geographic routing using hyperbolic space,” in IEEE
INFOCOM, may 2007, pp. 1902 —1909.

[11] R. L. Rivest and B. Lampson, “Sdsi - a simple distributed security
infrastructure.” MIT, 1996.

[12] N. Spring, R. Mahajan, and D. Wetherall, “Measuring ISP topologies
with rocketfuel,” in Proceedings of ACM SIGCOMM, 2002.

[13] A. Cvetkovski and M. Crovella, “Low-stretch greedy embedding heuris-
tics,” in Computer Communications Workshops (INFOCOM WKSHPS),
march 2012, pp. 232 -237.

