
Enhancing Compact Routing in CCN with
Prefix Embedding and Topology-Aware Hashing

Stefanie Roos
TU Dresden

Dresden, Germany
stefanie.roos@tu-

dresden.de

Liang Wang
University of Helsinki

Helsinki, Finland
Liang.Wang@helsinki.fi

Thorsten Strufe
TU Dresden

Dresden, Germany
thorsten.strufe@tu-

dresden.de

Jussi Kangasharju
University of Helsinki

Helsinki, Finland
Jussi.Kangasharju@helsinki.fi

ABSTRACT

Information-centric networks are a new paradigm for ad-
dressing and accessing content on the Internet, with Content-
Centric Networking (CCN) being one of the more popular
candidate solutions. CCN de-couples content from the lo-
cation it is hosted and allows for mobility of the node re-
questing the content. However, CCN’s ability to handle the
mobility of the content source are limited and so far little
research has focused on how both endpoints would be able
to be mobile. We focus on mobility of the content source,
using network embeddings as a tool. Network embeddings
have already been proposed for content addressing and mo-
bility management in prior work. In this paper, we first
show that previously designed embeddings lead to a highly
unbalanced storage and traffic load: More than 90 % of all
stored references are mapped to one node, which is involved
in more than 95% of all queries. We propose a modified
embedding, Prefix-S embedding, and a topology-aware key
assignment, which enable a uniform distribution of the stor-
age load. The maximum traffic per node is also considerably
reduced from more than 95% to 35%.

Categories and Subject Descriptors

C.2.1 [Network Architecture and Design]: Network topol-
ogy

Keywords

provider mobility; embedding; content-centric networking

1. INTRODUCTION
Information-Centric Networking (ICN) has been proposed

as a solution for content delivery in the Internet, especially

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full cita-

tion on the first page. Copyrights for components of this work owned by others than

ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-

publish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from permissions@acm.org.

MobiArch’14, September 11, 2014, Maui, Hawaii, USA.

Copyright 2014 ACM 978-1-4503-3074-9/14/09 ...$15.00.

http://dx.doi.org/10.1145/2645892.2645900.

in terms of addressing and accessing content. In this context,
challenges such as naming, caching, and routing, are of core
interest and require efficient solutions. As ICN decouples
content name (and how it is accessed) from the location it is
stored, it would stand to reason that mobility, both for the
content provider as well as consumer, would be relatively
easy to achieve. However, as pointed out in [12], content
provider mobility still remains one of the biggest research
challenges in almost all ICN proposals [1, 7, 10,11].

Compared to the web, ICN offers improved mobility sup-
port as existing proposals typically offer natural consumer
mobility, since the system architectures behind the propos-
als are essentially receiver-driven. However, provider mobil-
ity, which usually requires expensive name operations (e.g.,
propagating updates by flooding or maintaining large data-
bases) in the network, is extremely difficult to implement in
an efficient and scalable way.

Thus, an ICN network is expected to either implement
name resolution or content-based routing in order to discover
and deliver content. The choice on these two approaches
is a trade-off between efficiency and accuracy. Name res-
olution guarantees content discovery but has to maintain
two databases (identifier-to-locator mapping and reachabil-
ity information) at a logically centralized point and suffers
from query overheads. Content-based routing, on the other
hand, is more robust and efficient since it bypasses the query
step but only promises probabilistic content discovery (with
tunable probability) and suffers from high traffic overheads.
However, as [13] showed, this tradeoff can be mediated by
using a flat naming scheme with greedy routing.

In technical terms, [13] uses SHA-1 for content addressing
and hyperbolic embedding technique to implement a dis-
tributed hash table (DHT) underlay in the network, further
transforming every content router into a rendezvous point.
Note that there are multiple ways of addressing content
and hyperbolic embedding with greedy routing is merely
one possible realization of compact routing.1 Though [13]
showed that their solution is superior to existing alternatives
in terms of handling mobility, it fails to take into account
the complexity of the embedding. As an extension to the
work in [13], in this paper we focus on looking for a su-

1Compact routing refers to routing with minimal local com-
plexity in terms of both storage and computation.

perior substitute to hyperbolic embedding, and study how
content addressing should take advantage of the underlying
structure of the metric space in a routing scheme. We show
that a poor choice of embedding can cause a highly skewed
name distribution in routing’s metric space, which further
may lead to severe congestion.
Specifically, our contributions in this paper are as follows:

1. We study several embedding schemes and propose Prefix-
S embedding as a superior substitute to hyperbolic em-
bedding. Prefix-S embedding provides guaranteed de-
livery at lower computational costs.

2. We show that content addressing with naive hashing
may cause a highly unbalanced load distribution, map-
ping most content on one node. We propose a topology-
aware hashing which takes network topological prop-
erties into account to achieve a uniformly distributed
storage load.

3. We evaluate our solution thoroughly with realistic set-
tings and show it outperforms the existing ones and
achieves good system performance in terms of low over-
heads, high scalability and well-balanced load.

The rest of the paper is organized as follows: Section 2 de-
scribes our system model and Section 3 presents the Prefix-S
and topology-aware hashing algorithms. Section 4 evaluates
the proposed algorithms with different simulation settings
and Section 5 discusses the related work. Finally, Section 6
concludes the paper.

2. SYSTEM MODEL
In our model, we consider an information-centric network

using a flat naming scheme. While our evaluation focuses
on a CCN-like network, our use of hashing of names means
that the results and model apply to any ICN proposal. In
the rest of the paper, we follow CCN’s terminology. The
network topology can be represented as a graph G = (V,E)
where node set V corresponds to the content routers and
edge set E corresponds to the links among the connected
routers. Each router vi has a unique ID id(vi) allocated from
a well-defined metric space < M, d > with distance function
d. The assignment id : V → M is called an embedding. In
general, we want id to enable greedy routing, i.e., a path be-
tween any two nodes in V can be found by always choosing
the neighbor of the currently contacted node, whose ID min-
imizes the distance to the target ID. Note that the distance
of nodes refers to the distance of their IDs, rather than their
topological distance.
Each content piece cj is uniquely identified with a name

drawn from a name space C. We denote the addressing
function which maps a content name into M as g : C →
M . A content cj has a designated host vi such that vi =
argmin∀vi∈V d(id(vi), g(cj)). In other words, cj is desig-
nated to the router with the closest ID vi in the metric
space M .
Our system operation model is based on the work in [13].

However, since our concern is how embedding and hashing
can influence the ID distribution in the metric space, which
further impact the system performance. We simplify their
model and only focus on the two aforementioned functions
id and g instead of delving into practical protocol designs.

When user requests content ci, the content name is hashed
into M by calling g(ci) and embedded into the Interest
packet. The Interest traverses the network with greedy rout-
ing. Each router only maintains a small table of its neigh-
bors’ coordinates. In order to forward an Interest, the router
extracts destination coordinate (content ID) from its header,
then it calculates the distance between the destination and
each of its neighbors. The Interest is forwarded to the neigh-
bor whose ID is closest to the destination.

The operation model defined in [13] requires that the con-
tent owner continuously registers himself at the host router
so that the coming Interests can trace back. However, in
our simplified model, we do not distinguish between content
and content owner, and simply assume the Interest will be
satisfied after arriving at its host router.

3. ALGORITHMS
In this section, we first review existing embeddings used

for comparison in Section 4, before detailing our approach.

3.1 Existing Embeddings
Greedy embeddings are in general created by embedding

a spanning tree into a suitable metric space. All nodes enu-
merate their children. The root node of the spanning tree is
assigned an ID, and then each child computes its ID based
on the ID of its parent and the index given by the parent.

Kleinberg’s Embedding

Kleinberg’s embedding into hyperbolic space enables embed-
ding an arbitrary finite graph into two-dimensional hyper-
bolic space. The maximal degree m in the spanning tree
needs to be known beforehand. The spanning tree is em-
bedded into the Poincaré Disk by choosing the ID of the
root node as the center of the ideal m-gon whose corners
are m-th roots of unity, i.e. the complex numbers e2πij/m

for j = 0, . . . ,m − 1. The ID of a child is obtained by ap-
plying a suitable isometric transformation, parametrized by
the ID of the parent and the index of the child, of the above
m-gon and choosing the center as the child’s ID. Greedy
routing, which always selects the closest neighbor to a de-
sired target ID, is guaranteed to succeed [9]. Kleinberg did
not treat the issue of creating suitable routing keys for con-
tent addressing. The straight-forward solution is to obtain a
two-dimensional coordinate (r(f),φ(f)) of the content f in
polar coordinates. More precisely, let h be a hash function
with a z bit image. Then r(f) and φ(f) can be chosen as

r(f) = h(f)
2z and φ(f) = 2π h(f+1)

2z .

Prefix Embedding

Prefix Embedding is an adaption of the PIE embedding [5]
for unweighted graphs that has been considered for content
addressing in [6]. The idea is to assign IDs using a custom
metric space such that the distance between node IDs is
identical to their hop distance in the spanning tree. The
root is given the empty vector. A child’s ID is the ID of the
parent and an additional coordinate equal to the index of the
child. The distance between two IDs s and t is then given as
the sum of the their lengths minus twice the common prefix
length cpl(s, t), so

d(s, t) = |s|+ |t|− 2cpl(s, t). (1)

Two solutions for content addressing have been proposed
in [6]. We use virtual tree construction, which is more flexi-
ble and was indicated to have slightly better load balancing
properties. Here, the coordinates are bit sequences. For
any node with c children, consider the maximally balanced
binary tree with c leaves. The node can hence map each
child to one leaf in the binary tree. The ID of the child is
then the ID of the parent concatenated with bit sequence
corresponding to the position of the leaf in the binary tree.
Content addressing is done by hashing the content f with a
z-bit hash function. The responsible node is then the node
with the longest common prefix with h(f). However, greedy
routing need to be slightly modified because some internal
nodes of the virtual binary tree do not exists. The distances
of nodes represent the distances in the virtual tree rather
than in the actual spanning tree, so that a node can appear
closer to its sibling than its parent. Thus, if a node encoun-
ters a query for key and its ID is not a prefix of the key
but it does not have any closer neighbor, the query has to
be forwarded to the parent. The modified greedy routing
algorithm is guaranteed to find the closest node [6].

3.2 Prefix-S Embedding
One problem with the above version of the Prefix embed-

ding is that content is only stored at nodes with at most one
child. We hence propose Prefix-S Embedding, which stores
content at all nodes. Here, each node u is given two IDs, the
routing ID IDR(u) and the storage ID IDS(u), a prefix of
all keys stored at u. The embedding works very similarly to
the virtual tree variant of Prefix Embedding. The root node
gets assigned the empty vector as routing ID. When enu-
merating its children, an internal node u adds an additional
virtual child u′. Routing IDs are assigned to the children
by concatenating IDR(u) and the bit sequence of the cor-
responding leaf in the maximally balanced binary tree as
described above. The storage ID of u is then the routing ID
of the virtual node u′, IDS(u) = IDR(u

′). The pseudocode
of Prefix-S Embedding is given in Algorithm 1, with symbol
|| indicating concatenation operation.

Algorithm 1 PrefixSEmbedding()

1: {Given: Graph G=(V,E) with spanning tree T}
2: {children(v): children of node v in T , ||: concatenation}
3: Assign IDR(r) = ()
4: Queue q = {r}
5: while q is not empty do

6: u = remove head of q
7: if |children(u)| > 0 then

8: Create balanced binary tree B of size |children(u)|+ 1
9: Create mapping map: children(u) ∪ {u} → leaves(B)
10: for v ∈ children(u) do

11: IDR(v) = IDR(u)||map(v)
12: add v to q
13: end for

14: IDS(u) = IDR(u)||map(u)
15: else

16: IDS(u) = IDR(u)
17: end if

18: end while

As for Prefix Embedding, greedy routing with the modi-
fication of forwarding to a parent if the current node’s stor-
age ID is closest to the key but not a prefix is guaranteed to
work. Since the storage ID always corresponds to a leaf node
in the virtual tree, a node is responsible for a key if and only

if its storage ID is a prefix of key (under the assumption that
keys are longer than node IDs). If a node is not responsible
for a key, the responsible node can be found by forwarding
to the closest neighbor if said neighbor is closer, or by con-
tacting the parent. The forwarding decision is described in
Algorithm 2.

Algorithm 2 nextHopS(BitSequence key, Node u)

1: {Given: Graph G=(V,E), assignments IDR, IDS , spanning
tree T}

2: {parent(v): parent of node v in T}
3: { N(v): neighbors of node v in G}
4: if IDS(u) is a prefix of key then

5: routing terminated
6: end if

7: next = argmin{d(IDR(v), key) : v ∈ N(u)}
8: if d(IDS(u), key) < d(IDR(next), key) then

9: return next
10: else

11: return parent(u)
12: end if

3.3 Topology-Aware Hashing
For the above embedding, leaves on the same level of the

virtual tree are responsible for the same fraction of IDs.
Hence, for arbitrary unbalanced trees, the storage load is ex-
pected to be unbalanced. In the following, we discuss how to
create topology-aware keys, which achieve a uniform distri-
bution over of keys over nodes for arbitrary topologies. The
principal idea is that the probability that a key with prefix
x has prefix x||0 is approximately equal to the ratio of the
leaves in the left subtree rooted at node x in the virtual tree
and all leaves in the subtree rooted at x. We thus compute
the key of a piece of content f iteratively, as detailed in Algo-
rithm 3. The key is a bit sequence b1b2...bz, where z is larger
than the depth of the spanning tree. Assume for all possible
prefixes di = b1...bi, the number of nodes v for which di is
a prefix of ID(v) is known. In case of Prefix-S Embedding,
we consider the storage ID IDS(v). A hash function h is
chosen with image space 2z for some z ∈ N. The values
hi = h(f ⊕ i) need to be known for i = 0 . . . depth(T) to
locate the responsible node. The (i+ 1)-th digit bi+1 of the
file ID d is computed on basis of di. The recursion anchor
is given by the empty string d0. Then we have

bi+1 =

{

0,
hi+1

2z ≤ |{v∈V :cpl(ID(v),di||0)=i+1}|
|{v∈V :cpl(ID(v),d)=i}|

1, otherwise
(2)

with cpl(s, t) denoting the common prefix length. The pro-
cess continues until the set |{v ∈ V : cpl(ID(v), d) = i}| is
empty, so that the responsible node is uniquely identified by
the key di. In order to distinguish different pieces of content
stored at the same node and have keys of identical length,
we concatenate di with the last z − i bits of h(f).

4. EVALUATION
We evaluated the approaches proposed in Section 3 using

9 different topologies of autonomous systems (AS).

4.1 Metrics and Set-up
We considered three metrics for our evaluation:

i) the fraction of stored items each node is responsible for,

Algorithm 3 ComputeKey(BitSequence f)

1: {Given: Graph G=(V,E), assignment ID}
2: {cpl: common prefix length, ||: concatenation}
3: {s[i . . . j]: bits i to j of s}
4: i = 0
5: key =′′

6: while length(key) < z do

7: if |{v ∈ V : cpl(ID(v), key) = i}| = 0 then

8: key = key||h(f)[i+ 1, . . . , z]
9: else

10: hash = h(f ⊕ i)/2z

11: if hash ≤ |{v∈V :cpl(ID(v),key||0)=i+1}|
|{v∈V :cpl(ID(v),key)=i}| then

12: key = key||0
13: else

14: key = key||1
15: end if

16: end if

17: end while

18: return key

ii) the traffic distribution, i.e., fraction of queries processed
by each node,

iii) the number of hops needed to discover the destination
of the query using greedy routing.

We evaluate the correlation between i) and ii) to see if a
high storage load might be partly compensated by experi-
encing less traffic and vice versa. Ranking the nodes by i)
and ii) provided an overview of how storage and traffic is
balanced between the nodes. The evaluation was conducted
as follows: We first created a spanning tree of the graph ex-
ecuting a breadth-first search starting a random node. Then
we generated a set of k = 10, 000 random ASCII character
strings of length 20, which we used to represent the queried
content. Afterwards, we computed the embedding for all
considered embedding algorithms. For each embedding and
each applicable key generation scheme, we then created the
keys from the character strings and executed a query for
each key from a random start node. Hence, a total of 5
combinations of embedding and key generation were evalu-
ated : The Kleinberg embedding KB with hashing into the
unit disk as well as Prefix PH/PTA and Prefix-S Embedding
PSH/PSTA using both straight-forward hashing (H) and
topology-aware (TA) keys. The relation between the stor-
age and the traffic load on nodes is measured by the Pearson
correlation coefficient. Results were averaged over 20 runs.
The hop count iii) does not necessarily correspond to the

stretch, which is defined as the average ratio of the length of
the routing path to the shortest path for all pairs of nodes.
Since iii) considers queries, it is lower than the stretch if
nodes that are easily discovered, e.g., the root, receive a
disproportional high number of queries. The paths actually
traversed during routing are more important for the working
system, so that we choose this metric rather than the stretch.

4.2 Expectations
We expect the Kleinberg embedding to produce a very

unbalanced load distribution. The root node is responsible
for the majority of the unit disk when considering Euclidean
space (which the hashing does) regardless of the structure of
the tree. Similarly, the tree for Prefix and Prefix-S Embed-
ding is bound to have leaves at very different levels, leading
to a high storage load on those on a high level when us-
ing straight-forward hashing. The maximum storage load is

likely to be even higher for Prefix-S Embedding because the
virtual nodes corresponding to the storage ID of the inter-
nal nodes on the top levels are always leaves. However, for
topology-aware keys the load is supposed to be uniformly
distributed over all nodes (Prefix-S Embedding) or all leaf
nodes (Prefix Embedding). When considering the traffic a
node has to process rather than the storage load, we ex-
pect nodes on the higher levels to experience a higher load.
It is not required that messages between nodes in differ-
ent branches pass their common ancestor in the tree, since
greedy routing also uses non-tree edges. Nevertheless, tree
edges are more likely to be used, so that we expect an un-
balanced traffic distribution for all spanning-tree based em-
beddings. Thus, there should also be a high positive correla-
tion between traffic and storage load for the Kleinberg and
Prefix-S embedding with standard hashing. Both allocate
the majority of the queries and the traffic to the higher lev-
els of the tree. When using topology-aware keys, the traffic
should be uncorrelated to the uniformly distributed load for
Prefix-S embedding. Prefix embedding allocates all files on
leave nodes. These are rarely intermediate nodes for queries,
however they frequently are destinations, so that the sign of
the correlation is not immediately clear.

Previous work on greedy embeddings showed that they ex-
hibit similarly short routes and a low stretch [2,6,9]. Poten-
tially, the average routing length is slightly lower for Klein-
berg’s embedding due to high fraction of queries addressed
to the root node, which is fast to route to using tree edges.

4.3 Results
We first consider the maximum load per node and the to-

tal traffic, for the 9 considered ASs. Afterwards, we analyze
the distribution of the load for one exemplary AS, AS1239.
In order to show the general applicability of our results, Ta-
ble 1 summarizes the maximal storage and traffic load for
the 9 sample ASs. In addition, the average routing length is
given in order to estimate delays and the overall traffic.

Maximum Load

For the Kleinberg embedding, the storage load is always
above 90%, and the fraction of traffic the most loaded node
has to process is above 95%. For Prefix and Prefix-S embed-
ding with hashing, the highest storage load and traffic are
between 20% to 40%, and 50% to 85%, respectively. The
maximum load is slightly higher for Prefix-S because inter-
nal nodes on high levels receive a large fraction of queries.
For topology-aware keys the maximum storage load is always
less than twice the average load for Prefix-S embedding, the
actual load depending on the size of the AS. For Prefix em-
bedding, the maximum load is slightly higher, because only
a subset of the nodes participate in storing. The maximum
traffic is drastically reduced by topology-aware keys as well,
being at most 35% and 65%. Here, Prefix-S embedding has
no overall advantage over Prefix embedding.

Routing Length

We also analyzed if load balancing increased the overall traf-
fic, i.e., the number of hops needed to resolve a query. Ta-
ble 1 indicates that indeed the topology-aware keys exhibit
a slightly longer routing length than with Kleinberg’s em-
bedding, but the difference is mostly around half a hop in
average, and at most 0.76 hops (comparing Kleinberg KB
and Prefix-S PSTA for AS3967). Note that the difference

was not only due to an increased stretch, since both the
standard hashing and the topology-aware keys use the same
topology. Rather, the reason seems to be the location of
the nodes that are responsible for the queries. Prefix em-
bedding, storing all content at leaves, in general showed the
longest routes, whereas Kleinberg embedding, storing most
of the content at the root, is potentially the least costly.
Due to the tree structured, the shortest path to the route is
found, but non-optimal routes are common for leave nodes.
We now focus on a single AS 1239 for further analysis,

but emphasize that the results applied equally to the other
ASes as well, but they have been excluded due to space
limitations.

Storage Load Distribution

The distribution of the storage load is displayed in Figure 1a,
using a cumulative distribution function (cdf) to show the
fraction of files the k nodes with the highest load are respon-
sible for. The curve shows a very steep initial increase for
Kleinberg’s embedding as well as for the two Prefix embed-
dings with a standard content addressing. By introducing
topology-aware keys, the storage load is balanced uniformly,
so that the increase is close to linear. The curve for Pre-
fix embedding with topology-aware keys has a steeper slope
because internal nodes with more than one child do not re-
ceive any load, whereas for Prefix-S Embedding, the load is
uniformly distributed between all nodes.

Traffic Distribution

For the fraction of queries a node has to forward, i.e. the
traffic per node, topology-aware keys also lessen the imbal-
ance, but cannot abolish it (see Figure 1b). The nodes with
the highest load are involved in more 35 % of all queries,
which is however considerably less than for hyperbolic em-
beddings, for which the root node is involved in more than
98 % of the queries.

Correlation

As can be expected from these results, the correlation co-
efficients of the storage and the traffic load are high for
Kleinberg (0.704) and Prefix-S embedding (0.629), whereas
there is no notable correlation for Prefix-S embedding with
topology-aware keys (0.011). For Prefix Embedding is cor-
relation coefficient is clearly positive (0.316) for straight-
forward hashing and clearly negative (−0.348) for topology-
aware keys. The result can be explained since leaves nodes
at a high level are frequent destinations of queries as well
as storing a large number of items for the standard address-
ing scheme, leading to a positive correlation. For topology-
aware keys, items are still stored only on leaf nodes, but
uniformly distributed between them. Hence none of them
has a disproportionally large amount of traffic, which is re-
served for the internal nodes without storage responsibility,
leading to a negative correlation.

4.4 Discussion
We have shown that the poor load balance of hyperbolic

embeddings can be improved. Topology-aware keys achieve
a uniform storage load and reduce the traffic at congested
nodes at the price of a marginally increased overall traffic.
The above results indicate that Prefix-S Embedding is the
best choice when combined with topology-aware keys, since
it offers a uniform storage distribution over all nodes and

the lowest maximum traffic. However, Prefix Embedding
offers a negative correlation between storage and traffic, so
that congested nodes only have to forward queries rather
than answer them. Depending on the actual scenario, in
particular storage and time constraints, Prefix embedding
can be a better choice.

5. RELATED WORK
CCN inherently supports receiver mobility due to its re-

ceiver-driven model. To retrieve a content, the user needs
to construct an Interest packet with the content name. The
Interest is sent to the network and routed in a hop-by-hop
manner by CCN routers to the data source unless it can be
satisfied by the en-route caches. Hence the lost packet can
be easily recovered by retransmitting the previous Interest.
However, data source mobility still remains as a challenging
open question though several solutions were proposed in the
prior work [4, 8, 13], such as Sender-driven message, Ren-
dezvous point, Indirection point and Interest Forwarding.
Compared to others, [13] shows greedy routing is a promis-
ing candidate with superior performance in both handoff
delay and average latency.

Greedy routing is one realization for the compact routing,
and the core of a successful routing scheme heavily relies on
finding a so-called greedy embedding. The greedy embedding
preserves the property that given any destination y not di-
rectly connected to a node x, x can always find a neighbor
of him who is closer to y than himself. With greedy routing
scheme, a node only needs local information from directly
connected neighbors in order to forward a message. Such
properties make greedy routing an ideal solution in the sit-
uation where global knowlege is expensive to obtain if not
possible like ad-hoc or large-scale networks. Several greedy
embedding schemes with different properties were proposed
in the previous work [3, 5, 6, 9].

Despite of showing the possibility of solving mobility issue
with greedy routing, three important facts are overlooked
by [13]. First, hyperbolic embedding is a relatively expen-
sive operation. Other embeddings that guarantee the same
100% delivery but with less overheads exist. Second, the
content addressing in [13] uses simple Sha-1. Due to the
non-uniform division in hyperbolic space, the distribution of
the generated content IDs is highly skewed. The node in the
Poincaré Disk center is responsible for most of the content,
which causes severe congest problem. Third, the redundant
links (or shortcuts) between the nodes were not well ex-
plored, results in potential unbalance traffic since most of
the traffic may go through the root. We extended the work
in [13] by solving the aforementioned issues. Based on our
knowledge, we are the first one extensively exploring the re-
lation between greedy embedding and topology-ware content
addressing in the context of CCN.

6. CONCLUSION
In this paper, we studied the relation between the graph

embedding and content addressing in the context of CCN.
We showed that naive combination of the both is not only
a costly solution but also causes highly skewed ID distribu-
tion in routing’s metric space, further leading to storage load
and congestion issues. To get resolve these issues, we pro-
posed Prefex-S embedding to reduce the overhead and dis-
tribute the load among all nodes, and topology-aware keys

Maximum Storage Load Maximum Traffic Average Routing Length
AS KB PH PTA PSH PSTA KB PH PTA PSH PSTA KB PH PTA PSH PSTA

AS1221 0.952 0.410 0.081 0.401 0.011 0.970 0.804 0.515 0.829 0.648 5.54 5.59 5.35 5.51 4.88
AS1239 0.925 0.216 0.004 0.340 0.003 0.972 0.588 0.367 0.665 0.369 4.94 5.41 5.00 5.39 5.28
AS1755 0.948 0.280 0.016 0.336 0.008 0.962 0.640 0.486 0.719 0.498 5.25 5.52 5.93 5.31 5.57
AS2914 0.950 0.270 0.003 0.289 0.002 0.972 0.699 0.348 0.763 0.350 5.90 6.22 6.36 6.01 6.20
AS3257 0.950 0.337 0.010 0.375 0.006 0.975 0.813 0.562 0.841 0.574 5.30 5.81 6.03 5.45 5.84
AS3356 0.950 0.185 0.004 0.228 0.003 0.973 0.507 0.351 0.582 0.361 3.84 4.38 4.26 4.23 4.18
AS3967 0.943 0.270 0.010 0.301 0.007 0.963 0.567 0.434 0.627 0.428 5.05 5.39 5.98 5.11 5.81
AS6461 0.922 0.351 0.117 0.389 0.052 0.953 0.638 0.575 0.698 0.567 3.34 3.55 3.57 3.42 3.41
AS7018 0.927 0.238 0.004 0.286 0.003 0.973 0.597 0.401 0.648 0.379 5.60 5.68 6.27 5.50 6.23

Table 1: Maximum load and routing length for various AS topologies with the following embedding/content addressing
schemes: KB-Kleinberg Embedding, PH -Prefix Embedding with standard hashing,PTA: Prefix Embedding with topology-
aware keys, PSH -Prefix-S Embedding with standard hashing,PSTA: Prefix-S Embedding with topology-aware keys

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1.1

 0 100 200 300 400 500 600 700

C
um

ul
at

iv
e

Fr
ac

tio
n

of
 K

ey
s

Rank

Kleinberg Embedding
PREFIX embedding

PREFIX Embedding, TAKs
PREFIX-S embedding

PREFIX-S embedding, TAKs

(a) Storage

 0.0001

 0.001

 0.01

 0.1

 1

 1 10 100 1000

Fr
ac

tio
n

of
 K

ey
s

Rank

Kleinberg Embedding
PREFIX embedding

PREFIX Embedding, TAKs
PREFIX-S embedding

PREFIX-S embedding, TAKs

(b) Traffic

Figure 1: Load Distribution: a) CDF of storage by rank, b) fraction of traffic ranked

to distribute the load uniformly. We evaluated our solution
thoroughly and showed it outperforms others in realistic set-
tings.

7. ACKNOWLEDGEMENTS
This work was partially supported by the Academy of Fin-

land in the EINS project (grant no. 275938).

8. REFERENCES

[1] C. Dannewitz, J. Golic, B. Ohlman, B. Ahlgren.
Secure Naming for a Network of Information. IEEE
Global Internet Symposium, pages 1–6, March 2010.

[2] A. Cvetkovski and M. Crovella. Hyperbolic embedding
and routing for dynamic graphs. In INFOCOM 2009,
IEEE, pages 1647–1655. IEEE, 2009.

[3] A. Cvetkovski and M. Crovella. Hyperbolic embedding
and routing for dynamic graphs. In INFOCOM 2009,
IEEE, pages 1647 –1655, april 2009.

[4] F. Hermans, E. C.-H. Ngai, and P. Gunningberg.
Mobile sources in an information-centric network with
hierarchical names : An indirection approach. In Proc.
7th Swedish National Computer Networking
Workshop, 2011.

[5] J. Herzen, C. Westphal, and P. Thiran. Scalable
routing easy as pie: A practical isometric embedding
protocol. In ICNP, 2011.

[6] A. Hofer, S. Roos, and T. Strufe. Greedy embedding,
routing and content addressing for darknets. In
NetSys, 2013.

[7] V. Jacobson, D. K. Smetters, J. D. Thornton, M. F.
Plass, N. H. Briggs, and R. L. Braynard. Networking
named content. In ACM Conext, 2009.

[8] D.-h. Kim, J.-h. Kim, Y.-s. Kim, H.-s. Yoon, and
I. Yeom. Mobility support in content centric networks.
In SIGCOMM ICN workshop, 2012.

[9] R. Kleinberg. Geographic routing using hyperbolic
space. In INFOCOM, 2007.

[10] T. Koponen, M. Chawla, B.-G. Chun, A. Ermolinskiy,
K. H. Kim, S. Shenker, and I. Stoica. A data-oriented
(and beyond) network architecture. SIGCOMM
Comput. Commun. Rev., 37(4):181–192, 2007.

[11] Publish/Subscribe Internet Routing Paradigm.
Conceptual architecture of psirp including
subcomponent descriptions. Deliverable d2.2, PSIRP
project. , August 2008.

[12] G. Tyson, N. Sastry, I. Rimac, R. Cuevas, and
A. Mauthe. A survey of mobility in
information-centric networks: Challenges and research
directions. In Mobihoc NOM Workshop, 2012.

[13] L. Wang, O. Waltari, and J. Kangasharju. Mobiccn:
Mobility support with greedy routing in
content-centric networks. In IEEE Globecom, 2013.

