Neighborhood Search and
Admission Control in Cooperative
Caching Networks

Walter Wong*, Liang Wangt, Jussi Kangasharjuti

*School of Electrical and Computer Engineering, University of Campinas,
Brazil

TDepartment of Computer Science, University of Helsinki, Finland

FHelsinki Institute for Information Technology, University of Helsinki, Finland

Sunday, May 19, 2013

Contents

Motivation
Architecture Design
Caching Strategies
Neighbor Search
Evaluation
Conclusion

Sunday, May 19, 2013

Motivation

Fast grow of user-generated content

According to the Cisco survey, the global IP traffic is expected
to grow four times from 2009 to 2014.

This puts the current Internet infrastructure under high burden.
Content generated once, but consumed many times.

X

3PM

Sunday, May 19, 2013

Motivation

Middle-mile problem

The infrastructure that interconnects the transit points

between different ISPs

P

=
o
Subscribers
g
Data Centers
I) l] | l
v i 1
Last mile Middle mile First mile
HELSINGIN YLIOPISTO
HELSINGFORS UNIVERSITET
UNIVERSITY OF HELSINKI www.helsinki.fi/yliopisto

Sunday, May 19, 2013

Motivation

Improve network efficiency by:
Reduce the redundant data transfer:;
Provide an extended life for the middle mile infrastructure;

Approach

Place network-level routers ("“Content Routers”) in the
network to store popular content

Implement cooperative look-up between caches

Sunday, May 19, 2013

HELSINGIN YLIOPISTO
HELSINGFORS UNIVERSITET
UNIVERSITY OF HELSINKI

Architecture

Client 3

Web Server
Client 1

Request

Network caches

— An exp. how the content routers work in a network topology.
— The CRs use the basic store-n-forward model.

www.helsinki.fi/yliopisto

Sunday, May 19, 2013

HELSINGIN YLIOPISTO
HELSINGFORS UNIVERSITET
UNIVERSITY OF HELSINKI

Architecture

Client 3

Web Server
Client 1

Request

Network caches

— An exp. how the content routers work in a network topology.
— The CRs use the basic store-n-forward model.

www.helsinki.fi/yliopisto

Sunday, May 19, 2013

HELSINGIN YLIOPISTO
HELSINGFORS UNIVERSITET
UNIVERSITY OF HELSINKI

Architecture

Client 3

Web Server
Client 1

Response

Network caches

— When the response travels back to the client, every router it
passes by will cache the content

www.helsinki.fi/yliopisto

Sunday, May 19, 2013

Architecture

Client 2 Client 3

Web Server

Client 1

Network caches

— When the response travels back to the client, every router it
passes by will cache the content

Sunday, May 19, 2013

Architecture

Request

Client 2 Client 3

Web Server

Client 1

Network caches

— Later, Client 3, maybe on the other side of the network,
same content may be requested by different clients.

Sunday, May 19, 2013

Architecture

Request

Client 2 Client 3

Web Server

Client 1

Network caches

— Later, Client 3, maybe on the other side of the network,
same content may be requested by different clients.

Sunday, May 19, 2013

Architecture

Response

Client 3

Web Server
Client 1
Network caches
HELSINGIN YLIOPISTO
HELSINGFORS UNIVERSITET
UNIVERSITY OF HELSINKI www.helsinki.fi/yliopisto

Sunday, May 19, 2013

Architecture

Response

Client 3

Web Server
Client 1
Network caches
HELSINGIN YLIOPISTO
HELSINGFORS UNIVERSITET
UNIVERSITY OF HELSINKI www.helsinki.fi/yliopisto

Sunday, May 19, 2013

Architecture

Basic store-n-forward model
Store everything passes by
Simple to implement
Limitations - low performance & low utilization of storage

Sunday, May 19, 2013

Architecture

Basic store-n-forward model
Store everything passes by
Simple to implement
Limitations - low performance & low utilization of storage

¥\, Request Request Request Request
OV—@@— & — & —~
Il 0
e p—
Response Response Response Response
CR CR CR
Client Server

Sunday, May 19, 2013

Architecture

¥, Request Request Request Request
IV —@&@ — & —&) -}
0
Response Response Response Response
CR CR
Client Server

Basic model’s limitation is due to lacking of good caching strategies
A good caching strategy should:
maximize the utilization of network caches

keep it simple

Sunday, May 19, 2013

Caching Strategies

A Caching strategy consists of 3 parts
Admission policy - what to store?
Replacement policy - what to evict?

Cooperation policy - where to search?

Sunday, May 19, 2013

Neighbor Search Caching
Strategy

Two admission polices - ALL & Cachedbit
ALL - cache everything passes by
Cachedbit - cache based on probability

One replacement policy - LRU

One cooperation policy - Neighbor Search

Sunday, May 19, 2013

Neighbor Search Caching
Strategy - Admission Policy

ALL

Cachedbit

caches everything everywhere
IS probabillistic
Each router caches a chunk with uniform prob.
Set bit in header = No caching downstream

Sunday, May 19, 2013

Neighbor Search Caching
Strategy - Admission Policy

ALL

Cachedbit

caches everything everywhere
IS probabillistic
Each router caches a chunk with uniform prob.
Set bit in header = No caching downstream

Sunday, May 19, 2013

Neighbor Search Caching
Strategy - Admission Policy

ALL

Cachedbit

caches everything everywhere
IS probabillistic
Each router caches a chunk with uniform prob.
Set bit in header = No caching downstream

Sunday, May 19, 2013

Neighbor Search Caching
Strategy - Admission Policy

ALL

Cachedbit

caches everything everywhere
IS probabillistic
Each router caches a chunk with uniform prob.
Set bit in header = No caching downstream

Sunday, May 19, 2013

Neighbor Search Caching
Strategy - Admission Policy

ALL

Cachedbit

caches everything everywhere
IS probabillistic
Each router caches a chunk with uniform prob.
Set bit in header = No caching downstream

Sunday, May 19, 2013

Neighbor Search Caching
Strategy - Admission Policy

ALL

Cachedbit

caches everything everywhere
IS probabillistic
Each router caches a chunk with uniform prob.
Set bit in header = No caching downstream

Sunday, May 19, 2013

Neighbor Search Caching
Strategy - Admission Policy

ALL

Cachedbit

caches everything everywhere
IS probabillistic
Each router caches a chunk with uniform prob.
Set bit in header = No caching downstream

Sunday, May 19, 2013

Neighbor Search Caching
Strategy - Admission Policy

ALL

Cachedbit

caches everything everywhere
IS probabillistic
Each router caches a chunk with uniform prob.
Set bit in header = No caching downstream

Sunday, May 19, 2013

Neighbor Search Caching
Strategy - Cooperation Policy

Exchange information with neighbors
Maintain neighbors’ states
Frequency-based update

— Redundant messages if traffic dynamics is low
— Need to find a proper broadcast frequency

Content-based update

— A proper threshold can reduce overheads

Use Bloom Filter to reduce communication overheads

Sunday, May 19, 2013

Neighbor Search Caching
Strategy - Example

cryptolD RID |Time |IP Neighborhood Table

C

A1..C1 2 23 IP,
S
6

Client 3

Web Server J

Client 1

Sunday, May 19, 2013

Neighbor Search Caching

Strategy - Example

Client 1

cryptolD

Time

IP

A1..C1

23

IP,

Neighborhood Table

Client 3

Web Server J

Sunday, May 19, 2013

Evaluation - Topology

Evaluated on realistic ISP’s network topologies
The topology file is from Rocketfuel project

Both router-level topology and POP-level topology
Router-level exp has better performance due to the longer path

Results are consistent

Network Routers Links POPs
Exodus 338 800 23
Sprint 547 1600 43
AT&T 733 2300 108

NTT 1018 2300 121

Sunday, May 19, 2013

Evaluation - Experiment Design

Server placement - top-20 nodes with highest degree
Client placement - rest of the nodes

We use software routers to construct an overlay on top of
a computing cluster

Sunday, May 19, 2013

Evaluation - Trace & Traffic
Pattern

Use both realistic trace and synthetic trace
Popularity follows Zipf distribution
1/k
k:ao, N) =
f() a?) er]:f:l(l/na)
Realistic trace is from university lab, \alpha value is 0.93
Synthetic trace - use 0.7, 0.9 and 1.1

Traffic pattern - constant and gravity model
Constant - traffic is homogenous from all the clients
Gravity model - amount of traffic based on the population

Sunday, May 19, 2013

Evaluation - Metrics

Hit rate
How much inter-ISP traffic we can reduce
One packet represents one file object
Hit rate is equivalent to the byte hit rate

Avg. hops
Measure the content locality

Locality represents how close the requested content is to
the clients

Sunday, May 19, 2013

Evaluation - Metrics

Footprint reduction
How much intra-ISP traffic we can reduce
How many bytes did not go on how many hops”?

Example:
N hops to egress, cache hit on 1st hop
Traffic without caching is N * content_size
With caching traffic is 1 * content_size
Hence, reduction is (N-1) * content_size
Footprint reduction: (N-1) / N

Sunday, May 19, 2013

Evaluation - Hit Rate

Sprint, =0.9

0.7+ _e_AI—I— _____ _____________________________ _
" || = B = Cachedbit | |

Effect of
admission

policy

Hit Rate

0.2

128 256 512 1024
Cache Size

Sunday, May 19, 2013

Evaluation - Hit Rate

Main lessons:
As admission policy, LRU is the worst in all the cases

Neighbor Search gives a boost in hit rate at a small cost
Good admission policy is still a must

The difference varies on different topologies, but
consistent

Sunday, May 19, 2013

Evaluation - Footprint Reduction

Footprint reduction

How much intra-ISP
traffic we can reduce

Large reduction means
less intra-ISP traffic

0.5

0.45

0.4

0.35

0.3

Footprint Reduction

0.2

0.15

Sprint, =0.9
o’ : = B = Cachedbit
- O R IO + ' NbSA _
-F | | =\~ NbSC
128 256 512 1024

Cache Size

Sunday, May 19, 2013

Evaluation - Footprint Reduction

Main lessons:
NBS* might not perform well for small caches

— the neighbors are unlikely to have the content if a miss
happens

— searching actually causes extra overheads for small cache

Neighbor Search improves quickly as the cache size grows

NbSC is the best strategy is all cases

Sunday, May 19, 2013

Evaluation - Locality

Sprint, 0=0.9
9 ! !
-i- 3 : —— ALL
AV hO S 85+t N U - | = B = Cachedbit |
. | o | 4 NbSA
g p : //’/] j ﬁ

Measure how close the
requested content is to
the clients

Avg. Hops

128 256 512 1024
Cache Size

— We see the same behavior in avg. hops as that in footprint reduction

Sunday, May 19, 2013

Hit Rate

NbS* with Diff. Search Radius

Sprint, a=0.9

0.65[. \’\,A 1
06F R DA AR

3 3 =7
0.55 'j """ j”"”' T
05F RO R S5
0.45r ¢ """ S

K.« : |
QAp = g |4 NbSA, 32 hops ||

o/ - =f\= ' NbSC, 32 hops
035 g/ | =E—NbSA, 1 hop |]

= © = NbSC, 1 hop

128 256 512

1024

Cache Size

0.5

0.45¢

Footprint Reduction

Sprint, a=0.9

04

,,,,,,,

VY
\ .
\
\
\
\
\
\
VY
N

\
\
\
\
\
v
\
\
\
\
\
\
\
\
VY
v

| o NDSA, 32 hops ||
- =Ae= NbSC, 32 hops
| =& NbSA, 1 hop |

= © = NbSC, 1 hop
128 256 512 1024

Cached Size

— In terms of hit rate, larger radius only gives marginal improvement

— In terms of footprint reduction, larger radius increases intra-ISP traffic,
and also increases user latency. The request can go too far.

Sunday, May 19, 2013

NbS* with Diff. Search Radius

Sprint, NbSC Performance with Different Radius

| =€ Hit Rate
- | =B Footprint Reduction | |

0.5

0.45

()
()

0.4
0.35F 1
OB oo e b

0.25f oo E

02]]]]]]] 1
0 2 4 6 8 10 12 14 16
Search Radius

— In terms of hit rate, larger radius only gives marginal improvement

— In terms of footprint reduction, larger radius increases intra-ISP traffic,
and also increases user latency. The request can go too far.

Sunday, May 19, 2013

NbS* with Diff. False Positive
Rate

Sprint, NbSC Performance with different BF False Positive

0.6 , ,

| ‘ —O— Hit Rate
o5f ... | =B Footprint Reduction |-
0.4000-0- © 2]

0 0.02 0.04 0.06 0.08 0.1
False Positive

— Large FP rate won’t hurt hit rate too much

— Large FP rate hurts footprint reduction. Requests can be routed further
because a router thought his neighbor has the content

Sunday, May 19, 2013

Neighbor Search Caching
Strategy - Parameters

Key parameters:
Search radius: 1 hop is enough, more hurts network traffic

False positive rate: 1% is enough

Main lessons learned:
Searching neighbors is highly beneficial
Need admission policy as well

Sunday, May 19, 2013

Conclusion & Future Work

Conclusion

Good caching strategy plays an important role in In-
network caching performance.

Good admission policy helps a lot
Neighbor Search boosts the performance

Future work
Integration to CCNXx prototype.

Sunday, May 19, 2013

Thanks!

Questions?

