
Neighborhood Search and Admission Control in
Cooperative Caching Networks

Walter Wong⇤, Liang Wang†, Jussi Kangasharju†‡

⇤School of Electrical and Computer Engineering, University of Campinas, Brazil
†Department of Computer Science, University of Helsinki, Finland

‡Helsinki Institute for Information Technology, University of Helsinki, Finland

Abstract—In-network caching of content is a popular technique
for eliminating redundant traffic from the network and improve
the performance of network applications. In this paper we present
a novel cooperative caching strategy to improve performance of
in-network caches. Our cooperative scheme is composed of an
admission policy for the incoming data and a content exchange
protocol between neighbor network caches to improve the search
zone. The admission policy enforces that a previously cached data
is not unnecessary replicated in other caches, resulting in more
space for new data. The content exchange protocol allows for
exchange on cached data, increasing the hit rate for incoming
requests. The benefits are twofold: first, we reduce the redundant
content caching in the network, and second, we improve the hit
rate by informing the content cached in the nearby caches. As a
proof-of-concept, we have implemented a prototype and evaluated
its performance using different large-scale topologies against
standard non-cooperative caching algorithms. Our numerical
results show that both admission and content exchange policies
yield large performance gains over standard algorithms.

I. INTRODUCTION

The hype with user generated content (UGC) such as
Youtube videos and IPTV, has put the current Internet infras-
tructure under high burden. According to a Cisco survey [1],
the global IP traffic is expected to grow four times from 2009
to 2014, approaching 64 Exabytes per month in 2014, and by
that time, various forms of video (TV, video-on-demand, and
P2P) will exceed 91% of the traffic.

Despite these predictions, ISPs lack incentives to upgrade
their infrastructure, an issue known as the middle mile problem
[2]. The middle mile is the infrastructure that interconnects the
transit points between different ISPs, and ISPs do not have
enough incentives to upgrade this infrastructure because they
do not receive any direct revenue from that upgrade. On the
flip side, ISPs have incentives to upgrade the last mile, which
is the infrastructure that connects subscribers to the Internet.
Also, content providers have incentives to upgrade the first
mile to provide better service availability and user experience.

In order to reduce the immediate upgrade pressure in the
infrastructure, ISPs have deployed Web caches [3] in their
networks to reduce the redundant traffic passing through their
networks. Caches provide a simple but effective storage mech-
anism to reduce the latency and bandwidth usage. Content
delivery networks (CDNs) have been deployed in the Internet
to improve the user experience by placing content in the client
side of the network, i.e., in the same ISP or close to it, reducing

the latency and eventual bandwidth bottlenecks between ISPs.
There are two main incentives for the usage of caches in
the Internet. First, storage prices have decreased substantially
faster than bandwidth costs. Second, data consumption is time-
correlated in the Internet, i.e., a given piece of data is produced
once and consumed many times in the Internet following
a Zipf probabilistic distribution [4]. Recent surveys [5], [6]
confirm that a large portion of the network traffic is redundant
and could easily be cached.

In this paper, we propose a cooperation protocol for network
caches to improve the caching capacities. The general idea
is to use content routers to provide routing and caching
capabilities together in the network. Additionally, these content
routers implement a novel admission control in the caches,
described as cached-bit, and a content look up procedure
described as neighbor search. The cached-bit strategy reduces
the redundant data in the network through a bit set in the
content header and the neighbor search procedure allows
for content discovery in the neighbor caches, resulting in
footprint reduction. As a proof-of-concept, we implemented
the caching network together with these caching strategies
and evaluated them experimentally through emulation using
Rocketfuel topologies. We compare the bandwidth savings,
cache hit and the control overhead against simpler models.

The organization of this paper is as follows. Section II
describes background about in-network caching and Bloom
filters. Section III proposes the routing mechanism based on
exchanged cache digests. Section IV presents the prototype
implementation and describes the evaluation in several scenar-
ios. We present and discuss the results in Section V Section
VI presents the related work and compares with our approach.
Finally, Section VII summarizes the paper.

II. BACKGROUND

The basic in-network caching mechanism is performed by a
content router (CR) [7]. A CR is a data forwarder similar to a
regular router, but it also has internal memory that can be used
to store data in transit. The simplest model works as follows:
first, for each data response, any CR on the path between
a server and clients caches the data in their memory. Further
requests can be served by the local copy in the CR. This model
is simple and works just as a network storage mechanism
with a simple income queue, presenting some benefits such as



Fig. 1: Basic store-n-forward content router.

reduction in the content retrieval latency and bandwidth usage.
Fig. 1 illustrates an example of CR in a network topology.

The simple CR model has limitations, especially in sce-
narios where they need to work as a single system. First,
the usual admission policy is basically to cache everything
that is possible, meaning that all in-transit data should be
cached in the CR. However, CRs have limited storage capacity
and they need more fine grained admission control policies to
filter the insertion of new entries in the caches. Second, there
is no cooperation between CRs, leading them to cache the
same piece of content in the network. For example, a line
of CRs between a client and a server will cache the same
content, reducing the effectiveness of the caching mechanism.
Therefore, we focus on two main topics: cache admission
policies and cache cooperation strategies.

In [7], we proposed the general idea of a neighbor search
mechanism that improves the cache hit ratio in cooperative
caching networks. The idea is to allow queries to be diverted
to neighbor caches, resulting in higher hit rate. However, this
strategy alone does not improve the hit rate much due to the
fact that all caches tends to have the same content in a linear
path. Therefore, neighbor searching in CRs that have the same
content results in poor performance. Another limitation of the
old neighbor search strategy is that each CR holds a pointer
to the CR that has the content, requiring additional memory
to store neighbor information. In this paper we propose a
new admission policy that improves the efficiency of storage
space use and propose a new neighbor search algorithm
combined with Bloom filters to store neighbor information.
Bloom filters are space efficient structures that allows for
aggregated neighbor information storage, resulting in higher
hit ratio. Bloom filters are detailed below.

III. COOPERATIVE CACHING STRATEGY

Our cooperative caching strategy is composed of an admis-
sion policy and a content discovery protocol. We first describe
the admission policy, followed by the neighbor search scheme
with Bloom filters and the combination of both of them.

A. Admission Policy

An admission policy of a CR decides whether a piece of data
should be cached or not. For network caching scenarios, we
need a simple yet effective way to decide the admission since
the CRs work as routers and need fast decisions. According
to [4], the cache hit rate grows logarithmically with the cache
size. Thus, it is interesting if we could aggregate the cache
sizes by removing all the redundant content in these caches.

As a solution, we propose the cached bit admission control.
The cached bit is a single bit set in the header informing

Fig. 2: Basic cache-and-forward with Cached Bit strategy.

whether a given piece of data has already been cached in the
network or not. Whenever there is a message carrying some
data, the first CR that caches the data also sets the bit in the
header, informing further CRs along the path that piece of
content has already been cached in the network. Therefore,
other CRs know that they do not need to cache that piece of
content again. The benefit of this approach is that the overall
caching capacity can be improved in the network. Compared
to the cache all admission policy, the cached bit can reduce
the amount of redundant data in the network. The cached bit
policy solves the previous limitation of the CR model in [7],
where caches along the path had the same content. In this
approach, just one CR has a given piece of content. Fig. 2
illustrates the basic CR model with the cached bit strategy.

In this example, the content server answers with data to
client one (red line). The CR with id = 13 caches the data,
thus, neither CR with id = 07 nor CR with id = A1 will
cache the same data again. Thus, the cached bit reduces the
amount of replicated data along a network path. Despite the
improvement with the cached bit policy, we can see that if
there is a second client (client 2) located in another edge of
the topology, she will not benefit from the cached bit policy.

B. Neighbor Search with Bloom Filters

The Neighbor Search (NbS) strategy is a cooperative
scheme to improve the hit rate in the cases shown in the above
example where subsequent requests for the same content do
not follow the path of the original request. This increases
chances of finding the content and improves hit rate and
reduces network traffic. The basic model is illustrated in Fig. 3.

Each CR has a neighbor table, where each entry contains
a content ID and the interface where the data came from.
Hence, upon receiving a content request, the CR looks up in
the neighbor table for the entry, and if positive, it forwards
to the interface where the data was last seen. We use Content
Bloom Filters (CBF) to store content identifiers from neigh-
boring CRs. Each CR broadcasts to its immediate neighbors a
Bloom filter informing its currently cached content. Receiving
neighbors add this CBF in their neighbor tables, allowing
for opportunistic content routing towards CRs that have the
content. The benefit of the augmented neighbor search model



Fig. 3: Content BF distribution in a network.

Fig. 4: CR neighbor look up table.

with Bloom filters is to allow re-directions towards CRs that
may have the content with much high probability. Effectively
this aggregates the storage of all neighbor CRs, and a request
does not query a single CR, but a set of CRs in the network.

Fig. 4 illustrates how CBFs can be used to take the routing
decisions. First, the content ID is hashed using the internal
hash functions (three in this example). Then it will generate
a BF mask that is going to be used against the neighbor
CBFs stored in memory. In this example, the CRs stores the
neighbor CBFs and neighbors-of-neighbors CBFs, indicated
by the distance in the number of hops.1

CBFs have some drawbacks, false misses and false hits.
False miss is when a piece of content is present in a CR, but
the CBF does not reflect it. A false hit is when a CR does not
contain the data anymore, but the CBF still has it.

C. Neighbor Search with Cached Bit

Combining the cached bit admission policy with the neigh-
bor search cooperation strategy aims to improve the cache hit
rate further. Cached bit reduces redundant data in the network.
As the hit rate is logarithmically proportional to the cache
size, the reduction of the replicated data increases the storage
capacity and the hit rate as well. Neighbor Search increases the
search space by aggregating a set of CRs in one larger storage.
As consequence, a single query may implicitly go through
several CRs for a cache hit. CRs work both cooperatively to
reduce the redundant data and also increase the query space.

D. Refreshal Procedure

The CBF generation and refreshal is triggered by two
events. First, at regular intervals, CRs generate CBFs and

1The number of hops can be tuned depending on the amount of memory
available in the CRs.

advertise them, for example, every second. The main ben-
efit of this approach is that the overhead generated by the
CBF exchange is known a priori and can be used in a
network management system. CRs can also be configured to
invalidate CBFs after that interval, thus, reducing problems
with failovers. The drawback of this approach is that CRs
do not analyze the data in-transit, for example, in-transit
content refreshal. In this scenario, if the data changes too
fast, the source CR is not able to update the CBF quickly to
reflect its current state, increasing the number of false misses.
Conversely, if changes are slow, there will be a number of
unnecessary updates with small changes in the CBF.

Second, a CR sends an updated CBF when a certain number
of events have happened such that, e.g., a given fraction of
content in the CR is not represented in the CBF. The benefit
of this approach is that it adapts to the real network conditions,
for example, if suddenly the network changes due to popular
content, it can quickly update its neighbors. However, this
means that the amount of network traffic is unpredictable,
since a flash crowd will trigger a lot of CBF updates. Fig. 3
illustrates an example of CBF broadcast to the immediate
neighbors. The CRs populate their routing tables with the
CBFs which are used in the routing decision towards the most
likely location where the content is located.

E. Miscellaneous

The bootstrapping procedure is straightforward: CRs peri-
odically broadcast CBF to its immediate neighbors, informing
which content it has. Receiving CRs add an entry in the
neighbor list and use it for further forwarding decisions.
Failovers can also be detected in the same way. Each CBF has
a validity associated and when it expires, the CR invalidates
that entry and does not use that entry for the routing purposes.

Extending the query area represented by the CBFs would
be possible when allowing CRs to forward CBFs from other
CRs. This may result in routing loops so we would need to
add identifiers in CBFs to indicate which is the original source
CR so that CRs receiving duplicate CBFs would be able to
drop them.

IV. IMPLEMENTATION & EVALUATION

We have implemented a CR prototype in Python. Our eval-
uations are performed on self-developed experiment platform,
the core of which is software-implemented router. Software-
implemented router simulates a realistic router. On our experi-
ment platform, each router and the links between them can be
configured individually in terms of link bandwidth, delay, loss
rate and so on. User modules like queuing policy and caching
strategy can be easily plugged into router.

Fig. 5 shows the packet header used in the neighbor search
mechanism. The header has six fields and it was designed to
be aligned to 32 bits. The type field has 4 bits that defines
the type of the message. The TTL has a 8-bit field defining
the time-to-live of the message. The loop-BF is a 116-bit field
containing a BF of all IDs of CRs that the message has been
through, in order to prevent loops. The CR ID is a 128-bit



Fig. 5: Neighbor search header.

field containing the CR ID of the source CR. The nonce is
a 128-bit field containing a number that is used as message
identifier between CRs, i.e., a receiving CR can distinguish the
order of the received messages in order to update the neighbor
table. The CBF is the content BF containing a set of content
IDs aggregated in the BF, to be used as neighbor information.

A. Testbed Set-up

All the experiments are performed on our department cluster
consisting of 240 Dell PowerEdge M610 nodes. Each node
is equipped with 2 quad-core CPUs, 32GB memory, and
connected to a 10-Gbit network. All the nodes run Ubuntu
SMP with 2.6.32 kernel. The experiment platform will allocate
necessary physical resources according to the simulated ISP
network size. If ISP’s network size is larger than the actual
cluster size, routers will be multiplexed onto one node.

B. Methodology

We use the following metrics to evaluate our proposal:
• Hit Rate: What fraction of requests was served by CRs.

Because all objects are of the same size, the hit rate is
also the byte hit rate.

• Average Number of Hops: Average number of hops that
a request need to go in the network before finding a cache
or a server that holds a copy of the requested data.

• Footprint Reduction: Network footprint is the product
of the amount of data and the network distance from
which the data was retrieved. It measures the amount of
internal traffic reduction, i.e., a smaller footprint (larger
reduction) means less traffic within the ISP’s network.

In the experiments, we used two POP-level topologies from
real ISP networks [8], the Sprint and AT&T networks. For the
deployment, in each network, we selected the top 20 routers
with highest degrees as servers, and the rest as clients. The
clients keep requesting data from the servers in the experiment,
and the requests are uniformly distributed to different servers.

The request pattern follows Zipf distribution with ↵ = 0.9,
which is very close to real-life distribution shown in [6]. We
also tested two traffic patterns, one is the constant traffic rate,
while the other follows a gravity model used in [9]. In gravity
model, the fraction of the traffic from each client is determined
by the city population. However, no significant difference in
results has been found in the evaluation.

Our request trace requests chunks of content, which are
assumed to be independent of each other (the popularity of
chunks follows the above Zipf distribution). We assigned each

CR with storage capacity of a certain number of chunks and
assumed that every CR in the network had the same amount
of storage. We report our results as a function of the per-CR
storage, which at the largest sizes (1024 chunks) was around
1% of the total amount of content.

V. EXPERIMENTAL RESULTS

We used the three metrics explained above: hit rate, average
number of hops and footprint reduction. For the experiments,
we use 4 different strategies as defined in Section III:

• ALL: no admission policy, CR caches everything
• CachedBit: one CR caches the content along a path
• NbSA: Neighbor search with ALL policy
• NbSC: Neighbor search with CachedBit admission policy
Figures 6 and 7 show the results for Sprint and AT&T

networks, respectively. The graphs show hit rate, average hops,
and footprint reduction. X-axis is the per-CR storage capacity.

Concerning hit rate, ALL strategy has the worst perfor-
mance because all CRs along the same path store the same
content. Therefore, if there is a miss in one CR, then, it is
likely that all CRs in the same path will result in cache miss
as well. CachedBit stores at most one copy per path, so it is
better able to use the storage and a miss at one CR might be
a hit in the next CR. NbSA strategy allows for content lookup
within a set of CRs, resulting in a combination of a CR with all
its neighbors, thus, increasing the search domain. As a result,
it has a better performance than ALL and CachedBit. The
best performance comes from the combination of CachedBit
and Neighbor search since CachedBit reduces redundant data.
Compared to ALL, NbSC can increase the hit ratio up to 50%
at a small cost.

Concerning average hops, the same ranking between the
strategies holds. One point of importance is the behavior of
ALL and NbSA for small cache sizes. When encountering
a miss, NbSA searches around for the content, but because
of the small cache sizes, the other CRs are unlikely to have
the content, hence the searching actually costs a lot of traffic.
Therefore, neighbor search strategies might not perform well
for small caches. However, it performs better as the cache size
grows. Again, the combination of CachedBit and Neighbor
Search results in the smallest number of hops.

As for footprint reduction, we see the same behavior and
ranking as with hit rate and average hops, including NbSA’s
weakness with small cache sizes. Again, the performance of
NbSC is the best of them.

In the next set of experiments, we evaluate the performance
of neighbor search versus how many hops away we look for
cached content. Results are in Figures 8 and 9 for Sprint
and AT&T, respectively. As expected, querying a larger set
of neighbors yields a slightly higher hit rate, and at the cost
of increased network traffic. However, hit rate improves much
faster by increasing the per-CR storage than extending the
search radius, thus there is little benefit from searching for
content from far away. The ranking between NbSA and NbSC
remains the same with NbSC having the advantage, even with



128 256 512 1024
0.2

0.3

0.4

0.5

0.6

0.7

Sprint, α=0.9

Cache Size

H
it 

R
at

e

 

 
ALL
Cachedbit
NbSA
NbSC

(a) Hit rate.

128 256 512 1024
6

6.5

7

7.5

8

8.5

9
Sprint, α=0.9

Cache Size

Av
g.

 H
op

s

 

 
ALL
Cachedbit
NbSA
NbSC

(b) Average number of hops.

128 256 512 1024
0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5
Sprint, α=0.9

Cache Size

Fo
ot

pr
in

t R
ed

uc
tio

n

 

 

ALL
Cachedbit
NbSA
NbSC

(c) Footprint reduction.

Fig. 6: Comparison between ALL, CachedBit, NbSA and NbSC in the Sprint Network.

128 256 512 1024
0.2

0.3

0.4

0.5

0.6

0.7

AT&T, α=0.9

Cache Size

H
it 

R
at

e

 

 
ALL
Cachedbit
NbSA
NbSC

(a) Hit Rate

128 256 512 1024
5.5

6

6.5

7

7.5

8

8.5
AT&T, α=0.9

Cache Size

Av
g.

 H
op

s

 

 
ALL
Cachedbit
NbSA
NbSC

(b) Average Number of Hops

128 256 512 1024
0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

AT&T, α=0.9

Cache Size

Fo
ot

pr
in

t R
ed

uc
tio

n

 

 

ALL
Cachedbit
NbSA
NbSC

(c) Footprint Reduction

Fig. 7: Comparison between ALL, CachedBit, NbSA and NbSC in the AT&T Network.

128 256 512 1024

0.35

0.4

0.45

0.5

0.55

0.6

0.65
Sprint, α=0.9

Cache Size

H
it 

R
at

e

 

 

NbSA, 32 hops
NbSC, 32 hops
NbSA, 1 hop
NbSC, 1 hop

(a) Hit rate.

128 256 512 1024
6

6.5

7

7.5

8

8.5

9
Sprint, α=0.9

Cache Size

Av
g.

 H
op

s

 

 
NbSA, 32 hops
NbSC, 32 hops
NbSA, 1 hop
NbSC, 1 hop

(b) Average number of hops.

128 256 512 1024

0.2

0.25

0.3

0.35

0.4

0.45

0.5
Sprint, α=0.9

Cached Size

Fo
ot

pr
in

t R
ed

uc
tio

n

 

 

NbSA, 32 hops
NbSC, 32 hops
NbSA, 1 hop
NbSC, 1 hop

(c) Footprint reduction.

Fig. 8: Search zone effects for 1 hop and 32 hop search radii and both admission policies, Sprint network

the larger search radius. This underscores the importance of
the admission policy.

In the next experiment, we analyze the impact of the Bloom
filters and the false positive rate. All the previous experiments
have been performed with a 1% false positive rate. False
positives happen when a CR has a content Bloom filter that
is unsynchronized with the source CR. Therefore, the CR
forwards the request to a peer CR that actually does not have
that content anymore, resulting in cache miss.

We experimented with 0.1%, 1%, and 5% false positive
rates for both neighbor search mechanisms, with 1 hop search

radius. We found out that the difference in performance
between 0.1% and 1% false positive rates was negligible, i.e.,
it is not necessary to use very large bloom filters in an attempt
to minimize the number of false positives. Going to a 5% false
positive rate had a negative effect on performance, in particular
on average hops and footprint reduction, but less so with hit
rate. For example, for the AT&T network with CR cache size
of 512 chunks, the footprint reduction was 40% and 24% for
false positive rates of 0.1% and 5%, respectively.

The BF overhead is m = � n ln p
(ln 2)2 , for a given false positive

rate p and number of entries n. Assuming a cache size C and



128 256 512 1024

0.4

0.45

0.5

0.55

0.6

0.65

0.7

AT&T, α=0.9

Cache Size

H
it 

R
at

e

 

 

NbSA, 32 hops
NbSC, 32 hops
NbSA, 1 hop
NbSC, 1 hop

(a) AT&T Hit Rate

128 256 512 1024
5.5

6

6.5

7

7.5

8

8.5
AT&T, α=0.9

Cache Size

Av
g.

 H
op

s

 

 
NbSA, 32 hops
NbSC, 32 hops
NbSA, 1 hop
NbSC, 1 hop

(b) AT&T Average Number of Hops

128 256 512 1024
0.2

0.25

0.3

0.35

0.4

0.45

0.5

AT&T, α=0.9

Cached Size

Fo
ot

pr
in

t R
ed

uc
tio

n

 

 

NbSA, 32 hops
NbSC, 32 hops
NbSA, 1 hop
NbSC, 1 hop

(c) AT&T Footprint Reduction

Fig. 9: Search zone effects for 1 hop and 32 hop search radii and both admission policies, AT&T network

an average file size F , the number of bits needed by a BF
is equal to m = � C ln p

F (ln 2)2 . In terms of memory consumption
q, namely the percent of cache needed to store the BF, is
q = km

C = � k ln p
F (ln 2)2 , assuming each router has k neighbors on

average. The formula shows that for larger file sizes, we will
have smaller BF and vice-versa. Also, additional neighbors
require more memory to store the neighbors’ BFs.

Figure 10 expands on the results on effects of bloom filter
false positive rate and search radius on hit rate and footprint
reduction for NbSC in the Sprint network. Results for AT&T
network and NbSA are similar and are not shown. The results
show that the hit rate remains practically the same across
different false positive rates but the footprint reduction drops as
the conditions get worse. This is expected since a cache miss
due to an unsynchronized Bloom filter (large false positive
rate) will result in additional hops and it does not influence the
content cached in the network. As consequence of the increase
in the number of hops, the footprint reduction decreases.

Fig. 10b shows the comparison of hit ratio, footprint reduc-
tion as a function of the search radius. As the results show,
the number of searched zones have a small effect when the
search zone increases from one to two, but larger search zones
result in a drop in footprint reduction, since we search content
wider, but often without finding it.

A. Summary of Results

We summarize our main findings as follows:

• Admission policy in CRs is very important in ensuring
good performance. This is evidenced by the better perfor-
mance of the strategies using the Cached Bit admission
policy vs. the admit-all policy.

• Searching content in neighbor CRs is beneficial, but
even a single hop search radius is typically sufficient for
getting good gains and increasing search radius yields
diminishing returns.

• Bloom filter size (and the associated false positive rate)
is not critical and a false positive rate of 1% appears
sufficient.

VI. RELATED WORK

In [10], [11], the authors present an analytical model for data
transfer, bandwidth and caching performance in information-
centric networks. The proposed model uses a traffic generator
with variable request rate for different parts of the same
content, different caching capacities along the same path
towards a piece of content and the LRU replacement policy
within the network caches. Compared to our model, we use
a simpler traffic generator that requests the content chunks
based on a Zipf distribution, and our focus is on evaluating the
admission policy and the caching strategy, leaving the analysis
as future work. As our results show, admission policy is critical
for good caching performance.

Internet Cache Protocol (ICP) [12] was proposed to increase
the cooperation among Web-caches. Whenever a Web-cache
receives a client query, it holds the query and multicasts an
ICP message to all peer Web-caches to query for the requested
content. Upon receiving the answer from some Web-cache, it
stores locally a copy of the requested data and forwards to
the data to the client. Although ICP could increase the hit
ratio, the protocol increased the bandwidth usage due to the
multicast query to all Web-cache peers. SummaryCache [13]
was proposed to overcome ICP’s limitation by reducing the
number of queries that a Web-cache needed to send. Each
Web-cache broadcasts a Bloom filter with its current content
to all peers and upon receiving a query, it checks which Bloom
filter has the content and sends just to those Web-caches.
Compared to our model, CRs can not hold the request while
it looks for content since it is in the network level. Hence, the
ICP model can not be applied to our model, which is much
more constrained in terms of storage and latency.

Content Centric Network (CCNx) [14] is a content-oriented
communication model driven by interests. Content requests
are identified by URLs and they are routed directly based
on URLs towards the server. Caches on the path are able to
identify these requests and answer with the requested data if
they have cached, otherwise, they forwards the requests and
mark their interest in the content. Despite the similar approach
in the caching model, our proposal implements more efficient
caching strategies with cached-bit and neighbor search to



0 0.02 0.04 0.06 0.08 0.1
−0.1

0

0.1

0.2

0.3

0.4

0.5

0.6
Sprint, NbSC Performance with different BF False Positive

False Positive
 

 
Hit Rate
Footprint Reduction

(a) NbSC Performance vs. BF false positive rates in
Sprint network.

0 2 4 6 8 10 12 14 16
0.2

0.25

0.3

0.35

0.4

0.45

0.5
Sprint, NbSC Performance with Different Radius

Search Radius
 

 
Hit Rate
Footprint Reduction

(b) NbSC Performance vs. Radius.

Fig. 10: Performance comparison of NbSC vs. false positive rates and radius, 128 chunks of per-CR storage

increase the caching capacity and efficiency in the network.
Our CR model is very close to CCN, but we do not explicitly
consider how the requests are sent and interpreted by the CRs.

Content-centric Caching (CONIC) [15] is a clean-slate ap-
proach for content retrieval in caches based on Conic Routers
(CR). Clients requesting data send requests to the servers and
CRs on the path intercept the request and query other clients
cache for the content. CONIC works for HTTP data and has
look up latency associated for each request.

Cache-and-Forward (CNF) [16] is an in-network caching
architecture where routers have a large amount of memory for
storage. These routers perform content-aware caching, routing
and forward packet requests based on location-independent
identifiers. In contrast, we provide extra features to improve
the cache hit in the network and also content search capabili-
ties. Also, we are not restricted to HTTP as CNF is.

Cachecast [17] proposes a redundant traffic elimination
technique in the multicast communication. They place small
caches on links that inspects all frames and replaces with a
shim header that represents the redundant data and the shim
header is translated to the actual data in the destination. Our
work is different since instead of removing redundant traffic,
we assume that clients can use caches as alternative sources.

These approaches are architectural in nature, and do not
investigate the effectiveness of the distributed caching from
caching effectiveness point of view, which is our focus.

VII. CONCLUSION

In this paper we have presented an admission policy and
a neighbor search mechanism for in-network caching archi-
tectures. Our admission policy attempts to ensure only a
single cached copy of a piece of content, via informing other
content routers via a bit in the header. The neighbor search
strategy implements a cache cooperation protocol to exchange
information about cached data between peer caches, allowing
for content search in neighbor caches. Our key findings in
the paper are that an admission policy is needed for good
performance and that neighbor search is beneficial in finding
content in nearby CRs, thus avoiding the need to retrieve the
content from the origin. We have implemented and evaluated
the admission policy and neighbor search protocol and the

results show an increase of 33% on the hit ratio and decrease
of 23% and 20% on the average number of hops and footprint
reduction.

REFERENCES

[1] [online] Cisco Virtual Network, “http://www.cisco.com/web/cy/ solu-
tions/sp/sp strategy,” 2009.

[2] T. Leighton, “Improving performance on the internet,” Commun. ACM,
vol. 52, no. 2, pp. 44–51, 2009.

[3] P. Rodriguez, C. Spanner, and E. W. Biersack, “Analysis of web
caching architectures: Hierarchical and distributed caching,” IEEE/ACM
Transactions on Networking, vol. 9, pp. 404–418, 2001.

[4] L. Breslau, P. Cue, P. Cao, L. Fan, G. Phillips, and S. Shenker, “Web
Caching and Zipf-like Distributions: Evidence and Implications,” in
IEEE INFOCOM, pp. 126–134, 1999.

[5] B. Ager, F. Schneider, J. Kim, and A. Feldmann, “Revisiting cacheability
in times of user generated content,” in IEEE Global Internet Symposium,
Mar. 2010.

[6] A. Anand, C. Muthukrishnan, A. Akella, and R. Ramjee, “Redundancy
in network traffic: findings and implications,” in ACM SIGMETRICS,
2009.

[7] W. Wong, M. Giraldi, M. Magalhaes, and J. Kangasharju, “Content
routers: Fetching data on network path,” IEEE ICC, June 2011.

[8] N. Spring, R. Mahajan, D. Wetherall, and T. Anderson, “Measuring
isp topologies with rocketfuel,” IEEE/ACM Transactions on Networking,
vol. 12, pp. 2 – 16, feb. 2004.

[9] A. Anand, V. Sekar, and A. Akella, “Smartre: an architecture for co-
ordinated network-wide redundancy elimination,” SIGCOMM Comput.
Commun. Rev., vol. 39, no. 4, pp. 87–98, 2009.

[10] G. Carofiglio, M. Gallo, L. Muscariello, and D. Perino, “Modeling data
transfer in content-centric networking,” in Proceedings of ITC, 2011.

[11] L. Muscariello, G. Carofiglio, and M. Gallo, “Bandwidth and storage
sharing performance in information centric networking,” in ACM SIG-
COMM ICN Workshop, 2011.

[12] D. Wessels and K. Claffy, “RFC 2186: Internet Cache Protocol (ICP),
version 2,” Sept. 1997.

[13] L. Fan, P. Cao, J. Almeida, and A. Z. Broder, “Summary cache:
a scalable wide-area web cache sharing protocol,” IEEE/ACM Trans.
Netw., vol. 8, pp. 281–293, June 2000.

[14] V. Jacobson, D. K. Smetters, J. D. Thornton, M. F. Plass, N. H. Briggs,
and R. L. Braynard, “Networking named content,” in ACM CoNext,
2009.

[15] Y. Zhu, M. Chen, and N. Akihiro, “Conic: Content-oriented network
with indexed caching,” Global Internet Symposium, 2010.

[16] Paul, S. Yates, R. Raychaudhuri, D. Kurose, J., “The cache-and-forward
network architecture for efficient mobile content delivery services in
the future internet,” Innovations in NGN: Future Network and Services,
pp. 367–374, May 2008.

[17] P. Srebrny, T. Plagemann, V. Goebel, and A. Mauthe, “Cachecast:
Eliminating redundant link traffic for single source multiple destination
transfers,” ICDCS, 2010.


