
In-Network Caching vs. Redundancy Elimination
Liang Wang†, Walter Wong∗, Jussi Kangasharju†‡

†Department of Computer Science, University of Helsinki, Finland
∗School of Electrical and Computer Engineering, University of Campinas, Brazil
‡Helsinki Institute for Information Technology, University of Helsinki, Finland

Abstract—Network-level Redundancy Elimination (RE) tech-
niques have been proposed to reduce the amount of traffic in the
Internet. and the costs of the WAN access in the Internet. RE
middleboxes are usually placed in the network access gateways
and strip off the repeated data from the packets. More recently,
generic network-level caching architectures have been proposed
as alternative to reduce the redundant data traffic in the network,
presenting benefits and drawbacks compared to RE. In this paper,
we compare a generic in-network caching architecture against
state-of-the-art redundancy elimination (RE) solutions on real
network topologies, presenting the advantages of each technique.
Our results show that in-network caching architectures outper-
form state-of-the-art RE solutions across a wide range of traffic
characteristics and parameters.

I. INTRODUCTION

The fast growth of Internet bandwidth usage, mainly due
to the exponential increase in Internet videos (YouTube) and
IPTV, has put the Internet infrastructure under high pressure.
According to a Cisco survey [9], by 2014 the network traffic
is expected to approach 64 Exabytes per month, with videos
accounting for more than 91% of global traffic. Redundancy
elimination (RE) techniques have been proposed to handle the
huge amount of data in the access networks. Their main aim is
to remove requests and/or responses of redundant data in the
network, reducing the traffic and costs in the access network.

RE techniques can be classified into two kinds: (a) caching
to remove transfers, and (b) data replacement with a shim
header. Former relies on caching network-level objects and
storing them temporarily in the network. Caching techniques
rely on redundancy of the traffic [1], [4], implying that a large
portion of the network traffic is duplicated and could be cached
for later requests. Another incentive is that storage prices have
decreased faster than bandwidth costs [11].

The second approach replaces redundant data with a shim
header in an upstream middlebox (usually close to the server)
and reconstructing it in a downstream middlebox before deliv-
ering it to the client. Commercial products provide WAN opti-
mization mechanisms through RE in enterprise networks [6],
[13], [19]. Recently, RE has received considerable attention
from the research community [3]–[5], [24]. In [3], the authors
propose a network-wide approach for redundancy elimination
through deployment of routers that are able to remove redun-
dant data in ingress routers and reconstruct it in egress routers.
However, they also require tight synchronization between
ingress and egress routers in order to correctly reconstruct the
packet and they also require a centralized entity to compute the

redundancy profiles. In [24], the authors propose to use caches
in the local host and use prediction mechanisms to inform
servers that they have already the following redundant data.
However, they are not able to share the cached data among
other nodes due to the local characteristic of the cache.

Although both caching and RE have been around in the
research community, there has not been any thorough compari-
son in the effectiveness of the two above-mentioned strategies:
in-network caching vs. redundancy elimination. Work in [16]
combines in-network caching and RE, but limiting the appli-
cability of the solution to a single content source only.

In this paper, we perform a comparison between an in-
network caching architecture (INCA) and state-of-the-art RE
solutions. Although INCA models a generic network caching
architecture, it is effectively CCN-like [12], [22]. However, as
we want to understand the performance differences between
caching and RE, we do consider low-level protocol details.

We perform an extensive comparison, using real network
topologies from Rocketfuel, between INCA and RE. We
have implemented the different solutions on our testbed and
compare them by running them on real network topologies. We
consider the position of a single ISP interested in reducing its
traffic both within and outside of its own network.

Our key findings can be summarized as follows:
• In terms of reducing external network traffic, INCA is

always superior when compared to ISP-internal RE solu-
tions [5]. End-to-end RE solutions [3], [24] can reduce
external traffic, but are outside the control of the ISP;
furthermore, they are not as effective as INCA.

• In terms of reducing internal network traffic, INCA is
in most cases clearly superior to state-of-the-art RE
solutions [5], with at least 50–65% improvements in
internal traffic reduction.

The organization of this paper is as follows. Section II
presents the background information and related work about
in-network caching and redundancy elimination solutions. Sec-
tion III introduces the in-network caching architecture (INCA),
describing its main features. Section IV presents the evaluation
methodology, and the comparison results between INCA and
RE solutions. Finally, Section V summarizes the paper.

II. BACKGROUND

A. Caching
Recently, information-centric networking (ICN), e.g., [12],

[14], [17] has emerged as a more general, network-wide



caching solution. In ICN, content caches in the network (e.g.,
in routers) store content that passes through them and if they
see requests for the same content, they are able to serve it
from their cache. INCA is essentially an ICN architecture, but
our intention is not to provide yet-another-ICN-architecture.
Instead, INCA simply considers the key features of ICN
architectures, namely caching and routing towards some point
of origin for content, and ignores practical, low-level protocol
details. INCA draws inspiration from CCN [12] and our
previous work [22], but does not specify low-level behavior.

Other caching proposals also exist. Cache-and-Forward
(CNF) [15] is an in-network caching architecture where routers
have a large amount of storage. These routers perform content-
aware caching, routing and forwarding packet requests based
on location-independent identifiers, similar to CCN.

B. Redundancy Elimination
Modern RE schemes use a fingerprint-based data stripping

model. Nodes generate a set of fingerprints for each packet
in transit, where each fingerprint can be generated over a
pre-defined block size. Upon detecting a cached fingerprint,
the upstream node replaces the data by a fingerprint and the
downstream node replaces the fingerprint with the original
data, reducing the overall data transmission over the network.
As described in [21], both upstream and downstream nodes
need to be strongly synchronized in order to work correctly.
A similar approach is presented in [2].

Work in [3], [5] proposes to extend the RE technique to
the whole network, i.e., to make RE as a basic primitive
for Internet.The main idea is to collect redundancy profiles
from the network and use a centralized entity to compute
paths between destinations within an ISP with higher RE
capabilities. Therefore, data going through these networks
have higher RE footprint reduction than going to other paths in
the network. Despite the improved RE capacity, it still requires
strong synchronization between the upstream and downstream
routers in order to work properly.

A third RE approach [24] was recently proposed to over-
come the synchronization issue in order to be deployed in
data-center networks. As cloud elasticity favors the migration
and distribution of work among a set of nodes, it is hard to
set up the synchronization between two fixed nodes. Therefore,
the main idea of [24] is to create a local cache together with
a predictive mechanism to acknowledge already cached data
to the server. In this scenario, the service sends a predictive
acknowledgement to the server informing that the requested
data is already present in the client, thus, removing the
redundant data. Despite the improvement over the fixed node
requirement, the use of local storage prevents the sharing
among other nodes, increasing the overall sharing capacity
and hit ratio. Therefore, the RE is not network wide, but for
redundant data that may be requested again in the local node.

III. INCA: IN-NETWORK CACHING ARCHITECTURE

INCA focuses on the following key aspects of ICN archi-
tectures: routing requests for content towards a known point,

Network Routers Links # of POPs
Exodus 338 800 23
Sprint 547 1600 43
AT&T 733 2300 108
NTT 1018 2300 121

TABLE I: Topologies used in experiments

caching of content, and forwarding responses back to the
requesting entity. This model is similar to CCN [12].

A. Basic Model
The basic in-network caching mechanism is performed by

a content router (CR). A CR is a data forwarder similar to a
regular router, but has some internal memory that can be used
to store data in transit. Each piece of content has a chunk ID
as its permanent identifier from a cryptographic hash function.
Any CR on the path between a server and clients caches the
data in its memory. Further requests can be served by the local
copy in the CR. For a further discussion on this model and its
limitations, we refer the reader to [23].

B. Caching in CRs
As in [23], we use three admission policies for deciding

which content a CR caches.
• ALL admits all objects into the storage at the CR. In

other words, every object that transits through the CR is
taken into storage and another object is possibly evicted.
This is the typical behavior of web caches.

• Cachedbit [23] sets one bit in the CR header to indicate
whether a given piece of content has already been cached
or not, preventing duplicated content along the same path.
If the path between the client and server is n hops, then a
CR will cache the content with probability 1/n and once
the content is cached, downstream CRs will not cache it,
with the exception of the last CR on the path which will
always cache it (see Section IV-B for an explanation).

• Neighbor Search (NbSC) [23] works like Cachedbit,
but if a CR encounters a miss, it will query neighboring
CRs for that piece of content. CRs periodically exchange
Bloom filters of their contents with their neighbor CRs.
Please see [23] for details about the size of Bloom filters,
exchange frequency, and query radius.

We use Least Recently Used policy to decide what to evict
when the storage at the CR is full. The results in [23] showed
that a Cachedbit-like admission policy is needed to get good
caching performance, but that the addition of NbSC gives a
considerable boost in reducing network traffic.

IV. EVALUATION & EXPERIMENTAL RESULTS

We chose 4 real-world networks from Rocketfuel [20]:
Exodus, Sprint, AT&T and NTT, and performed a set of
experiments using different cooperative caching strategies. Ta-
ble I shows an overview of the networks. All the experiments
are performed on our department cluster consisting of Dell
PowerEdge M610 nodes. Each node is equipped with 2 quad-
core CPUs, 32GB memory, and connected to 10-Gbit network.
All the nodes run Ubuntu SMP with 2.6.32 kernel.



Our focus in comparison was to compare ICN-like in-
network caching represented by our INCA architecture with
state-of-the-art RE solutions. As points of comparison from the
RE space, we selected three solutions. We picked SmartRE [5]
because it represents a solution internal to a single ISP, much
like INCA could be deployed. As examples of end-to-end RE,
we selected EndRE [2] and PACK [24].

We implemented SmartRE on top of our software router
architecture and used an LP solver to follow the behavior
defined in [5]. For EndRE and PACK, we simply compare the
performance numbers from the original papers to the numbers
of INCA from our experiments.

A. Methodology

We use 105 distinct chunks of 1 KB as our data set in the
experiments. The popularity follows Zipf distribution and the
popularity of the ith most popular chunk is proportional to
1/iα; we use 0.7, 0.9 and 1.1 as α value.

Content popularity on the Internet is known to follow a
Zipf- or a power law distribution [7], [8]. However, in practice
one piece of content would consist of several (tens, hundreds,
or thousands of) packets. In many cases, there are strong
dependencies between packets, i.e., packets belonging to the
same piece of content would often be requested together. We
have decided to use only single chunks to represent all packets
of a piece of content for the reason of reducing the number of
parameters to be explored. There is little available information
about the distribution of size of content pieces, making it
difficult to plug in convincing size distributions. Because of
the strong dependencies, one chunk in our experiment would
translate to several packets in the real world, and thus the
cache sizes would need to be adapted to match that.

The experiment followed the style in [5]. We placed clients
and servers at a POP, to represent all the potential servers or
clients behind that POP. CRs were installed on every router.
We chose top 20 POPs with highest degree as servers, and rest
of the POPs as clients. Exodus has only 10 servers due to its
small size. A client keeps requesting the chunks from different
servers. We experimented two traffic patterns: constant and a
gravity model, similar to [5], but differences were negligible.

The metrics we investigated were:
• Hit rate: What fraction of requests was served by CRs.

Hit rate in our context measures the savings in external
traffic from the providers.

• Content locality: We analyzed the number of hops
needed to get the content to evaluate how the different
algorithms are able to get content close to the users.
Average hop bears a relationship to the access latency.

• Footprint reduction: Network footprint is the product of
the amount of data and the network distance from which
the data was retrieved. It measures the amount of internal
traffic reduction, i.e., a smaller footprint (larger reduction)
means less traffic within the ISP’s network. This metric
was used also in [5] and forms the basis of comparison
between INCA and SmartRE.

Our goal was to see what, if any, performance differences
there are between INCA and the RE solutions, and determine
the causes of the differences. In order to better understand
INCA’s behavior, we evaluated it very closely in terms of
where it places the content and how it uses it.

Note that hit rate does not apply to any of the RE solutions
we used. SmartRE reduces only internal traffic, but has no
effect on external traffic; in essence it has zero hit rate. End-
to-end RE solutions reduce traffic across the whole network,
but an intermediate ISP has no control over it, thus there is no
“hit rate” since the ISP must transit all traffic that it sees,
although the amount of traffic is less than without an RE
solution. Likewise, content locality in SmartRE is subsumed
by footprint reduction and locality does not apply to end-
to-end RE since all content always comes from the origin,
although with eliminated redundancy.

We repeated experiments to eliminate variability in the
results. Confidence intervals were very tight even after 5
repetitions and for clarity reasons we do not show them.

In the following, we first present INCA’s performance in
terms of hit rate and content locality; as discussed above these
do not apply to RE solutions. Then we show the comparison
between INCA and SmartRE for footprint reduction and
compare INCA against end-to-end RE solutions.

B. Experimental Results
1) Hit Rate: Figure 1 shows the hit rates in three networks

we studied. (Exodus yielded similar results and for reasons
of space we omit showing them.) On the x-axis we show the
number of chunks each CR could store and the y-axis shows
the hit rate. Each graph shows 3 curves, one for each admission
policy. Recall that we had 105 chunks in the experiment,
meaning that even with 1000 chunks of storage per CR, one
CR can store only about 1% of the total amount of chunks.

Neighbor Search has the highest hit rate and Cachedbit is
better than ALL policy. The results here are shown for α =
0.9; for α = 0.7 or 1.1 the ranking was the same, but the
absolute values were lower or higher, respectively.

Even though the networks vary considerably in size, it
actually turns out that the network paths between clients and
servers are roughly similar in length in all three networks. This
means that in all networks the caching capacity on a path
is similar, hence getting similar hit rates is to be expected.
This is one of the key findings in our work regarding caching
performance: Caching performance of a CR network depends
mainly on the path lengths and network topology rather than
the absolute number of CRs in the network. There is some
additional evidence in previous studies on Rocketfuel data [10]
to suggest that the different networks share some graph theo-
retical properties. Exactly which properties are important for
caching (besides path length) and how they affect performance
of caching networks is left for further study.

Both NbSC and Cachedbit show clear gains over the ALL
policy. This demonstrates the importance of not wasting stor-
age space as is done by the simple ALL policy, which always
admits every chunk into a CR. In contrast, the other two



128 256 512 1024
0.2

0.3

0.4

0.5

0.6

0.7

Cache Size

H
it 

R
at

e

 Sprint, α= 0.9

 

 

NbSC
Cachedbit
ALL

(a) Sprint

128 256 512 1024
0.2

0.3

0.4

0.5

0.6

0.7

Cache Size

H
it 

R
at

e

 AT&T, α= 0.9

 

 

NbSC
Cachedbit
ALL

(b) AT&T

128 256 512 1024
0.2

0.3

0.4

0.5

0.6

0.7

Cache Size

H
it 

R
at

e

 NTT, α= 0.9

 

 

NbSC
Cachedbit
ALL

(c) NTT

Fig. 1: Hit rate vs. network topology on POP level.

attempt to ensure that at most one copy of a chunk is created
(per path; recall that NbSC uses Cachedbit to decide where
to cache). Since both are probabilistic, it is possible, that no
copies are created.

2) Content Locality: We also investigated how well the
different algorithms were able to get content close to the users.
Figure 2 shows the CDF of the number of hops between
CRs needed to get the content in the AT&T network with
128 chunks of storage per CR for POP-level and router-level
topologies and 512 chunks for POP-level topology. We only
plot the line for the Cachedbit strategy. NbSC uses the same
placement strategy and ALL was typically slightly worse than
Cachedbit. Other networks yielded similar results.

As expected, more storage per CR allows content to be
cached closer to the clients. On the router-level topology, the
paths are slightly longer, but the overall shape of the curve is
similar to POP-level curves.

The slow increase of the CDF indicates that about 30–40%
of the cache hits happen in the first 3 POP-level hops. Partial
explanation of this is the experiment setup where we have
clients behind every non-server POP. This means that a POP
that is the second hop for one client is often also a first hop
for some other client. In the end, these clients end up fighting
for cache space and typically the clients closer to the POP end
up getting their most popular content there. Clients for whom
that POP is the second or further hop, are therefore less likely
to find “new” content there, i.e., content that was not already
cached in the first POP. As the paths get longer, this effect
seems to wane and the CDF starts a faster increase.

We will discuss footprint reduction below and directly
compare INCA with SmartRE.

C. INCA vs. SmartRE

SmartRE [5] uses two network elements, the redundancy
profiler and the redundancy-aware route computation element.
The redundancy profiler collects in-transit data statistics in
order to create a profile of the most popular data to be the
ones to be cached in the routers. The redundancy aware route
computation computes the paths based on the content stored in
the network in order to optimize the redundancy elimination
of the network by solving a linear programming (LP) problem.
The benefit of such centralized element is the fact that it knows

Network FP Reduction
Exodus 27.55%
Sprint 28.79%
AT&T 31.59%
NTT 30.45%

TABLE II: SmartRE footprint reductions in different networks
under ideal conditions

the complete topology and makes it possible to compute a
good result for the RE. A totally decentralized SmartRE model
is not possible since there must be an entity controlling the
synchronization between these points.

SmartRE reduces the network footprint, because the caches
between the ingress and egress store parts of the data and the
ingress simply indicates which parts a cache is to substitute in
a packet. There is no effect on external traffic. The LP solver
knows the redundancy profile of the traffic and calculates a
caching manifest which indicates which parts of which packets
should be decoded at which caches. There is a very strong link
between the total amount of storage in the network and the
length of the sampling period which defines how long traffic is
observed to compute the redundancy profile. According to [5],
sampling periods on the order of a few tens of seconds are to
be expected to be reasonable.

We implemented SmartRE on top of our CR testbed. We
noticed that SmartRE, or rather the LP defined in [5], is very
sensitive to the parameters in the model. Small deviations
often lead to large differences in performance, typically for
the worse. We were able to determine parameters for what
corresponds to the settings in [5] and calculated the footprint
reductions for the same traffic as with INCA. These ideal
footprint reductions are shown in Table II.

Figure 3 shows the internal traffic reduction as measured by
the network footprint reduction. The y-axis shows the fraction
of internal traffic that was reduced by the caches in the CRs.
As with the other metrics, the differences between the three
admission policies are small. Again, NbSC is clearly superior
to Cachedbit which, in turn, is clearly superior to the ALL
policy. Footprint reduction is the reason why we tweaked
Cachedbit to create a copy of the chunk at the CR closest to
the client. Without the additional copy, ALL-policy is better
at footprint reduction than Cachedbit. We observed that this
additional copying drops the hit rate by a negligible amount,



1 2 3 4 5 6 7
0

0.2

0.4

0.6

0.8

1

Hops

C
D

F

AT&T, Cache Size=128, α=0.9

 

 

INCA

(a) POP-level, 128 chunks

1 2 3 4 5 6 7
0

0.2

0.4

0.6

0.8

1

Hops

C
D

F

AT&T, Cache Size=512, α=0.9

 

 

INCA

(b) POP-level, 512 chunks

2 4 6 8 10
0

0.2

0.4

0.6

0.8

1

Hops

C
D

F

AT&T, Cache Size=128, α=0.9

 

 

INCA

(c) Router-level, 128 chunks

Fig. 2: CDF of number of hops to content in AT&T network for α = 0.9

but raises the footprint reduction considerably.
Contrasting the numbers in Table II with the INCA foot-

print reductions in Figure 3, we see that they are similar in
value. For small INCA cache sizes, SmartRE yields a higher
reduction, whereas for larger cache sizes, INCA has the upper
hand. However, even for very modest cache sizes, NbSC is
able to achieve an equal footprint reduction to SmartRE and
for large cache sizes, the footprint reduction is improved by
50–65%. Cooperative caching is therefore much more efficient
at reducing internal traffic than SmartRE.

Recall that our INCA experiments considered one chunk
to represent one file, whereas in the SmartRE experiments, a
chunk is one packet. This means that the footprint reduction
numbers cannot be directly compared since traffic is different
in the two cases. However, based on the numbers presented
in [5], we can infer a mapping between SmartRE and INCA
experiments. In [5] it is shown that SmartRE gets close to its
ideal performance with 6 GB of storage per router. Assuming
the same 6 GB of storage per CR, the case of 1024 chunks of
storage, where 1 chunk equals 1 file, would imply the average
file size to be about 6 MB. If the content is a mixture of text,
images, and short videos, this seems like a reasonable, if not
even conservative, number. (For content consisting mainly of
larger videos, this would not be sufficient.)

We ran experiments with SmartRE where we took the ideal
cache size used to obtain the numbers for Table II, and set it
to 1/2, 1/4, and 1/8 of that value. For each case, we then ran
the experiment to obtain the reduction in footprint. This allows
us to plot the INCA and SmartRE footprint reductions on the
same x-axis, shown in Figure 3. This confirms that INCA is
more efficient in reducing internal traffic in the network. The
additional reduction in traffic varies between almost 200% for
small caches and 50% for large caches.

Cachedbit is similar to the heuristic “Heur1” from [5] in
how it attempts to place the content. In [5], the performance
of these two heuristics was found lacking when compared to
the SmartRE algorithm with its centralized controller deciding
on what to cache where. If the same translates to an INCA
caching network, a centralized controller deciding on place-
ment of chunks in CRs would be a superior choice. How-
ever, similar placement problems are often NP-complete [18],
although some simplifications are likely to yield a linear

program. We have not considered a central placement agent
in INCA, although it could be included in future work.

An important difference is that INCA is able to share cache
space between clients, whereas SmartRE has fixed buckets for
each ingress-egress flow. This gives INCA more possibilities
in exploiting the cached data, thus reducing footprint and
improving hit rate. We believe this sharing of cache space
between all client and server pairs is what gives INCA an
advantage over SmartRE. Contrasting our results to the single
server case presented in [16] is part of our future work.

Comparing INCA with SmartRE, we come to the following
conclusions:

• For external traffic reduction, INCA is always superior,
because SmartRE has no effect on external traffic.

• For internal traffic reduction, performance of INCA (with
neighbor search) is in most cases clearly superior, up to
50–65% more reduction in internal traffic. However, the
differences depend on how the mapping between cache
sizes is done and the file size distribution, thus in different
environments the results could be different.

However, in our experimental environment INCA with
neighbor search is far more effective in reducing both internal
and external traffic.

D. INCA vs. End-to-End RE
Figure 4 shows the bandwidth savings of both INCA and

EndRE [2] on three different networks. We show cache sizes
of 128 and 256 chunks. The bandwidth savings of EndRE
remains the same on three networks because it is end-to-end
solution. The network topology does not affect its perfor-
mance. We can clearly see that INCA is superior to EndRE.
Even the ALL strategy is slightly better than EndRE in all
three networks. PACK [24] is another end-to-end RE solution,
but according to [24], its performance is about 2% worse
than EndRE. Larger cache sizes improve INCA’s performance;
figures not shown due to space limitations. Note that INCA’s
savings are a combination of results shown in Figures 1 and 3.

Anand et al. [4] have evaluated real trace captures and
their results suggest that a middlebox-based solution (i.e.,
something akin to INCA) has an advantage over end-to-end
RE solutions in saving network bandwidth. INCA does have
a definite advantage in not requiring synchronization between



128 256 512 1024
0

0.1

0.2

0.3

0.4

0.5

Cache Size

Fo
ot

pr
in

t R
ed

uc
tio

n

 Sprint, α= 0.9

 

 

NbSC
Cachedbit
ALL
SmartRE

(a) Sprint

128 256 512 1024
0

0.1

0.2

0.3

0.4

0.5

Cache Size

Fo
ot

pr
in

t R
ed

uc
tio

n

 AT&T, α= 0.9

 

 

NbSC
Cachedbit
ALL
SmartRE

(b) AT&T

128 256 512 1024
0

0.1

0.2

0.3

0.4

0.5

Cache Size

Fo
ot

pr
in

t R
ed

uc
tio

n

 NTT, α= 0.9

 

 

NbSC
Cachedbit
ALL
SmartRE

(c) NTT

Fig. 3: Comparing footprints of INCA and SmartRE

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0.5

Sprint AT&T NTT

B
a

n
d

w
id

th
 S

a
vi

n
g

s

INCA vs. EndRE

EndRE
All

Cachedbit
NbSC

(a) 128 chunks of storage

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

Sprint AT&T NTT

B
a

n
d

w
id

th
 S

a
vi

n
g

s

INCA vs. EndRE

EndRE
All

Cachedbit
NbSC

(b) 256 chunks of storage

Fig. 4: INCA vs. EndRE

the server and client and since some content can be served
from CRs along the path, we avoid having to do a round-trip
to the origin of the content, possibly speeding up the transfer.

V. CONCLUSION

In this paper we have compared in-network caching with
standard redundancy elimination solutions in terms of their
effectiveness at reducing network traffic load. As an example
of in-network caching, we have presented INCA, a caching
architecture which aims at capturing the salient features of
information-centric networks. We have kept the design of
INCA minimal and only consider simple solutions for the
problems of caching and routing. Our comparison on Rock-
etfuel topologies shows that INCA is superior to SmartRE in
the ability to reduce external and internal network traffic, with
additional reductions of up to 65% in internal traffic. Similar
results hold for comparisons against end-to-end RE solutions.

REFERENCES

[1] Ager, B.; Schneider, F.; Juhoon Kim; Feldmann, A. Revisiting cacheabil-
ity in times of user generated content. IEEE INFOCOM, March 2010.

[2] B. Aggarwal, et al. Endre: an end-system redundancy elimination service
for enterprises. In Proceedings of NSDI, 2010.

[3] A. Anand, A. Gupta, A. Akella, S. Seshan, and S. Shenker. Packet caches
on routers: the implications of universal redundant traffic elimination.
In ACM SIGCOMM, 2008.

[4] A. Anand, C. Muthukrishnan, A. Akella, and R. Ramjee. Redundancy
in network traffic: findings and implications. In ACM SIGMETRICS,
2009.

[5] A. Anand, V. Sekar, and A. Akella. SmartRE: an architecture for
coordinated network-wide redundancy elimination. In ACM SIGCOMM,
2009.

[6] Bluecoat Mach5. http://www.bluecoat.com/products/mach5.
[7] L. Breslau, P. Cue, P. Cao, L. Fan, G. Phillips, and S. Shenker. Web

Caching and Zipf-like Distributions: Evidence and Implications. In IEEE
INFOCOM, 1999.

[8] M. Cha, H. Kwak, P. Rodriguez, Y.-Y. Ahn, and S. Moon. Analyzing
the video popularity characteristics of large-scale user generated content
systems. IEEE/ACM Trans. Netw., 17(5):1357–1370, 2009.

[9] Cisco Virtual Network. http://www.cisco.com/web/cy/
solutions/sp/sp strategy, 2009.

[10] S. Eum, S. Arakawa, and M. Murata. Toward bio-inspired network
robustness – step 1. modularity. In Proc. of Bionetics, 2007.

[11] IETF Decoupled Application Data Enroute (DECADE) Workgroup.
http://datatracker.ietf.org/wg/decade/, 2011.

[12] V. Jacobson, D. K. Smetters, J. D. Thornton, M. F. Plass, N. H. Briggs,
and R. L. Braynard. Networking named content. In ACM CoNext, 2009.

[13] Juniper WXC590 Application Acceleration Platform.
http://www.juniper.net/us/en/products-services/application-
acceleration/wxc-series.

[14] T. Koponen, M. Chawla, B.-G. Chun, A. Ermolinskiy, K. H. Kim,
S. Shenker, and I. Stoica. A data-oriented (and beyond) network
architecture. ACM SIGCOMM, 2007.

[15] Paul, S. Yates, R. Raychaudhuri, D. Kurose, J. The cache-and-forward
network architecture for efficient mobile content delivery services in
the future internet. Innovations in NGN: Future Network and Services,
pages 367–374, May 2008.

[16] D. Perino, M. Varvello, and K. P. N. Puttaswamy. Icn-re: redundancy
elimination for information-centric networking. In Proceedings of
SIGCOMM ICN workshop, 2012.

[17] Publish/Subscribe Internet Routing Paradigm. Conceptual architecture
of psirp including subcomponent descriptions. Deliverable d2.2, PSIRP
project. , August 2008.

[18] L. Qiu, V. N. Padmanabhan, and G. M. Voelker. On the placement of
web server replicas. In IEEE Infocom, 2001.

[19] Riverbed Wan Optimization. http://www.riverbed.com/us/solutions/
wan\ optimization.

[20] N. Spring, R. Mahajan, and D. Wetherall. Measuring ISP topologies
with rocketfuel. In Proceedings of ACM SIGCOMM, 2002.

[21] N. T. Spring and D. Wetherall. A protocol-independent technique for
eliminating redundant network traffic. In ACM SIGCOMM, 2000.

[22] W. Wong, M. Magalhães and J. Kangasharju. Content Routers: Fetching
Data on Network Path. IEEE ICC, 2011.

[23] W. Wong, L. Wang, and J. Kangasharju. Neighborhood Search and Ad-
mission Control in Cooperative Caching Networks. IEEE GLOBECOM,
2012.

[24] E. Zohar, I. Cidon, and O. O. Mokryn. The power of prediction: cloud
bandwidth and cost reduction. In ACM SIGCOMM, 2011.


