13-th IEEE International Conference on Peer-to-Peer Computing

Measuring Large-Scale Distributed Systems:
Case of BitTorrent Mainline DHT

Liang Wang and Jussi Kangasharju
Department of Computer Science
University of Helsinki, Finland

Abstract—Peer-to-peer networks have been quite thoroughly
measured over the past years, however it is interesting to note that
the BitTorrent Mainline DHT has received very little attention
even though it is by far the largest of currently active overlay
systems, as our results show. As Mainline DHT differs from other
systems, existing measurement methodologies are not appropriate
for studying it. In this paper we present an efficient methodology
for estimating the number of active users in the network. We have
identified an omission in previous methodologies used to measure
the size of the network and our methodology corrects this. Our
method is based on modeling crawling inaccuracies as a Bernoulli
process. It guarantees a very accurate estimation and is able to
provide the estimate in about 5 seconds. Through experiments
in controlled situations, we demonstrate the accuracy of our
method and show the causes of the inaccuracies in previous work,
by reproducing the incorrect results. Besides accurate network
size estimates, our methodology can be used to detect network
anomalies, in particular Sybil attacks in the network. We also
report on the results from our measurements which have been
going on for almost 2.5 years and are the first long-term study
of Mainline DHT.

I. INTRODUCTION

There have been many measurements done on peer-to-
peer networks in general and BitTorrent in particular (see
Section VI for a detailed comparison) over the past years.
However, most of the recent studies, e.g., [1]-[3], have focused
on smaller networks like KAD and Vuze and we are aware of
only two other studies on Mainline DHT [4], [5], but as we
discuss in Section VI, their estimation methods omit a crucial
parameter and thus yield highly inaccurate results.

Because of this, we developed a more accurate method for
measuring the number of nodes in Mainline DHT. Although
we use Mainline DHT as our test case, our methodology
equally applies to any measurement of a large-scale system
based on sampling a part of the system and scaling up to obtain
the number of nodes in the system. Existing studies incorrectly
assumed that combining the results of a small number of
samples will yield a good estimate of the network size. Our
work shows that although the estimate from combined samples
is better than an estimate from a single sample, errors on
the order of tens of percents in the size of the network still
persist. Our methodology fixes this error and yields much more
accurate estimates.

In order to demonstrate the higher accuracy of our method,
we perform extensive validation experiments in a controlled
environment and show that previously presented methods yield
incorrect results. Through an iterative tweaking of previous

978-1-4799-0521-8/13/$31.00 ©2013 IEEE

methods, we show what the causes of the errors are and that
by fixing those issues, correct results can be obtained.

Additionally, we obtain a comprehensive picture of users
of Mainline DHT, which is the largest DHT network in the
Internet. Although our focus is not on presenting the actual
measurement data from Mainline DHT, we will briefly present
the main findings regarding the number of nodes and the churn
patterns, since previous reports on these have been inaccurate.

The contributions of this paper are as follows:

1) We identify a systematic error in previous works mea-
suring the number of nodes in DHT-based BitTorrent
networks (e.g., Mainline DHT, KAD, Vuze) and present
the cause behind it.

2) We develop an efficient and accurate methodology called
Correction Factor for measuring the size of Mainline
DHT. Our methodology gives an accurate estimate of
the system size in less than 5 seconds. The methodology
is based on modeling the inaccuracies of the crawling
as a Bernoulli process.

3) We validate our methodology and justify our claims
about the inaccuracies of previous works by performing
extensive comparison and validation in a controlled
environment, confirming our claims.

4) Applying the methodology to Mainline DHT over a
period of more than 2 years, we discover that the number
of users varies between 15 and 27 million in a day, with
a clear and pronounced daily churn pattern. There was
an increase of about 10% in the number of users from
2011 to 2012, but since then the number of users has
remained stable.

Many of our findings are very different from most of the
results previously presented about BitTorrent-like systems. As
we later show, these differences are mainly due to two factors.
First, previous studies either used different methodologies
or studied different systems; these will naturally produce
different results. Second, some of the previous studies have
used inaccurate methods leading to incorrect results. Our
methodology fixes the inaccuracies and therefore gives more
accurate results.

We would like to point out that our methodology aims at
estimating the size of the network, although as we show in
Section V it has other applications as well. The inaccuracies
in previous work relate only to their estimates of the size
of the network; other parameters such as session lengths,
shared content, etc., are unaffected by the omission in their
measurement methodology.

13-th IEEE International Conference on Peer-to-Peer Computing

This paper is structured as follows. Section II discusses the
merits of different measurement methodologies. In Section III,
we show our crawler design and give details on our mea-
surement methodology. In Section IV, we show how we set
up our monitor system, and discuss how crawler performance
affects results. In Section V we show how our measurement
methodology can also be used to discover Sybil-attacks in the
system. We discuss related work in Section VI, and conclude
our paper in Section VIIL.

II. SYSTEMS AND MEASUREMENTS

Measuring peer-to-peer (P2P) networks and in particular
BitTorrent has been very popular in the networking community
over the last decade. Measurement methods can be divided into
different categories either based on the system or methodology
used. In this section, we first present an overview of Mainline
DHT and compare it with other DHT-based systems. We then
give an overview of measurement methodologies and discuss
their pros and cons.

A. Mainline DHT

Our focus in measuring Mainline DHT (MLDHT) is on
obtaining a system level view of the network. MLDHT is
Kademlia-based protocol, which denotes the distance between
two nodes as the XOR of their IDs. Node ID in MLDHT is
160-bit long and is not persistent, i.e., every time a node joins
the system, it will generate a random ID on the fly. Thus, it
is impossible to measure some metrics such as inter-session
time since it is not possible to correlate users across sessions.

MLDHT is the largest P2P system today with 15-27 million
concurrent users online. Because of its popularity in the real-
world, many modern P2P softwares support the MLDHT
protocol and it has in fact evolved into an ecosystem [6]. This
evolution means that it is not restricted to any particular type of
content or application, and therefore obtaining a system level
view is paramount to a better understanding of this ecosystem.

There is another popular DHT implementation in the Bit-
Torrent world, namely Vuze DHT [7]. Even though both are
based on Kademlia [8], they are fundamentally incompatible
as protocols. Vuze has been estimated to have about 1 million
users [9], [10], but as we show, MLDHT has 10 to 20 times
as many users, making it a more important network.

B. Methodologies

We classify existing BitTorrent measurement methodologies
in two high-level categories: tracker- and DHT-based. These
can be further refined into sub-categories as described below.
Table I shows an overview of the sub-categories and respective
advantages and disadvantages. In this section, we focus on
the differences in methodologies and return to contrasting our
results with related work more closely in Section VI.

Tracker-based

Tracker-based measurements can be divided into three sub-
categories:

« Instrumenting a client
e Monitoring a swarm

o Using tracker logs

Research with instrumented clients, e.g., [6], [11]-[13],
allows collecting of data directly from the users and permits
looking at system performance as users would perceive it.
Because users join swarms and data can only be collected
based on what the client sees, instrumented clients are ac-
tually also swarm-based measurements. A major issue in
using instrumented clients is the risk of obtaining a biased
measurement, since only data from users who have specifically
installed the instrumented client is obtained. Existing studies
typically do not address this issue of possible bias.

Swarm-based measurement in general focuses on a single
swarm or a set of swarms and monitors the behavior of peers
in that swarm. Monitoring can happen either with instrumented
clients (who need to be a part of the swarm) or by joining the
swarm and logging all the information that the measurement
client sees. Swarm-based measurement is appropriate when
investigating that particular swarm (or similar swarms), but
is inappropriate for investigating the complete system. For
example, client behavior in a swarm for a popular movie
is going to be very different from clients in an unpopular
swarm for an electronic book. Measuring session lengths
for the whole system is also impossible with swarm-based
measurements.

In both swarm-based measurement and instrumented client
measurements, there is also the risk that the measurement is
biased by the measurement clients. This is because BitTorrent
clients cluster based on their upload bandwidths [14], [15] and
the measurement client might not get even a good picture of
the swarm due to its limited upload bandwidth.

Besides swarm-based research, there are also some work
based on analyzing tracker logs [6], [16]-[18]. Tracker-based
measurement gives a broader view than swarm-based measure-
ment, since a tracker typically hosts many swarms. However,
even popular trackers have a biased view of the system as a
whole. For example, Chinese users represent a large fraction of
BitTorrent users, but mainly use trackers inside China which
are not covered by popular international trackers. As Zhang
et al. [18] show, there are a lot of private trackers in use,
making it impossible to obtain a good system-level view from
tracker-based analysis.

DHT-based

There are three popular DHT-based systems, KAD, Vuze,
and MLDHT. They are all based on the Kademlia DHT,
however MLDHT is different from the other two, requiring
a slightly adapted measurement methodology. Measurements
of KAD and Vuze have been very popular recently [1]-[3], [9],
[10], [17], [19]-[21]. The main difference between the systems
is that KAD has permanent IDs and Vuze assigns IDs based
on IP address to clients. In MLDHT a client chooses a new
ID for every session.

Steiner et al. [2], [19] state that they were able to crawl
an 8-bit zone in KAD network within 2.5 seconds, and a full
crawl in 8 minutes. This is possible because of the persistent
IDs which means that any IDs collected during previous crawls
can be reused in subsequent crawls. In MLDHT with dynamic
IDs, this is not possible and thus MLDHT requires more time
to crawl a similar zone.

13-th IEEE International Conference on Peer-to-Peer Computing

Method

Advantages

Disadvantages

Related

Instrumented client

Direct access to user behavior

Data comes only from instrumented clients
not all clients
Biased by client selection

. | L6l [11]-[13]

Swarm monitoring

Focuses on content

Results only applicable to that swarm
Biased by swarm selection

[16], [17]

Tracker logs

Focuses on content
Better coverage than single swarms

Biased by tracker selection

(6], [16]-{18]

Persistent DHT

Fast comprehensive crawls possible

System-level view

Studying session times difficult

Content monitoring difficult

[19]-[21]

[11-[3], [9], [10], [17],

Dynamic DHT

Fast crawls possible
System-level view

Content monitoring difficult

(4]

TABLE I: Classification of measurement methodologies for BitTorrent-like systems

In general, the methods for persistent and dynamic DHT IDs
are similar, i.e., crawling a specific zone or injecting sybils into
the system. General rules of thumb dictate that the duration
of a crawl should be as short as possible to obtain a good
snapshot and duplicates should be filtered out from the results.
However, previous research work on MLDHT, KAD, and Vuze
all contain a methodological omission. They fail to take into
account the “missing node” problem (see Section III-D) which
means that their results are incorrect. By failing to account for
the nodes missed in a crawl, scaling up the node density from
the observed crawl will lead to an incorrect estimate of the
overall system size. As our results show, for MLDHT this
error would be around several tens of percents.

C. Background on MLDHT

We now present a short overview of how MLDHT operates,
as this is fundamental to the design of our measurement
system. In the BitTorrent system, to join a swarm, a peer needs
to get meta information first. In standard BitTorrent, the meta
information can be obtained from the torrent file, which also
contains a list of centralized trackers to help a peer get the
initial peer set to bootstrap the download.

Partly due to legal issues, but also based on improving
the service availability and system robustness, distributed
trackers have been developed. BitTorrent has two independent,
incompatible distributed tracker implementations, even though
both are based on the Kademlia DHT [8]. One is VUZE [7]
and the other is MLDHT.

MLDHT implements the minimum functionality of Kadem-
lia. In MLDHT, both peers and content each have a 160-bit
string as its ID. Content IDs are also known as infohashes.
A peer uses this infohash to obtain the meta information and
initial peer set. MLDHT supports four control messages:

1) PING: probe a node’s availability. If the node fails to
respond for some period of time, it will be purged out
of the routing table.

2) FIND_NODE: given a target ID, this message is used to
find the & closest neighbors of the ID.

3) GET_PEERS: given an infohash, get the initial peer set.

4) ANNOUNCE_PEER: a peer announces it belongs to a
swarm.

Figure 1 illustrates normal operation in MLDHT. Suppose
we have 3 nodes A, B and C. A holds a file with infohash

Peer 11

A (Peer 29)

Peer 33

‘Announce Peer

(29,59)

Peer 78 [] [] Peer 36

Peer 71

B (Peer 57)

Fig. 1: Normal operation of MLDHT

x = 59. Assume B is responsible for storing x its peer set.
Node C wants to download the file.

First, A publishes the file by storing = at B. A calls
GET_PEERS iteratively to get closer and closer to B, and
finally reaches it. Then, A uses ANNOUNCE_PEER to tell B
he is sharing a file with infohash x. B stores A’s contact
information in the corresponding peer set for z. Since A is
the publisher, it is the only one in the peer set at the moment.

When A sends the GET_PEERS messages, two possibilities
emerge. If the queried node knows this infohash already and
stores some peers in the corresponding peer set, it will respond
with the peer set. If it does not know the infohash, it will
respond with the £ closest nodes to the infohash in its routing
table. In such a way, A will get closer and closer to B, and
finally reach B and the search finishes. FIND_NODE, which
we use in our work, behaves the same way, except that = in
this case represents a node instead of content.

For C to download the file, it should get x first. It will pro-
ceed exactly the same as A did before by using GET_PEERS
to approach B. Since B already saved the peer set for 2, C' can
obtain the initial peer set from B. C joins the swarm, sets up
connections to the peers in peer set, and gets metadata (torrent-
file) from other peers using BitTorrent extension protocols
[22], [23]. Then the download process starts. In our work,
we do not consider the download process.

13-th IEEE International Conference on Peer-to-Peer Computing

[II. METHODOLOGY

The known crawling methods are based on starting from an
n-bit zone, which means that all the nodes in that zone share
a prefix of n bits in their IDs. We have decided to scale up
the node density from a suitably selected zone and use that
result as an estimate of the network size. We will first focus
on evaluating different zone sizes and then derive a bound
for the error in our method. The difference between our work
and the previous ones is we have well-defined methodology
to validate our experiment design and the results.

A. Assumptions

This kind of measurement method is based on the assump-
tion that nodes are uniformly distributed in the ID space. In
principle, the MLDHT protocol should guarantee a uniform
distribution of node’s ID. However, we cannot take this for
granted since not all the implementations conform to the
protocol, and the abuse of certain IDs has already been
observed in other P2P networks as Steiner et al. reported in [2].

We carefully examined a large set of samples (over 32000)
crawled from the different parts of MLDHT, and found the
node IDs follow a uniform distribution. We did observe some
abused IDs such as ID 0, but they only contribute a trivial
amount of nodes to the whole MLDHT, and can be safely
neglected in our case.

B. Choosing a Zone

We pick a random ID as our node ID, then we try to collect
all the nearby nodes by exploiting the FIND_NODE operation.
To bootstrap this process, we maintain a set of active nodes
of several thousands, and randomly choose 100 to put them
in a FIFO queue. Then we perform a BFS iteratively to get
enough nearby nodes.

Since the node IDs are assumed to be distributed uniformly
in the ID space, there should be no correlation among session
length, content and other factors. We have extensively sampled
many different parts of the ID space and have observed the
assumption about uniformly distributed IDs to hold.

Figure 2 shows the number of nodes in different n-bit zones
in one sample. Recall that nodes in an n-bit zone share an n-bit
prefix. We can see the curve exhibits stable behavior between
5 bit-zone and 25-bit zone.

Then we have to answer the first question: which zone we
should use to scale up? For the first question, although using
a large zone (small n) would seem attractive, this method is
expensive in practice. The reason is as the zone size increases,
the crawling time and traffic overheads increase exponentially
instead of linearly, which is also revealed by Memon et al.
in [3] when they were crawling KAD. At the same time, lots
of nodes are missed due to the crawler’s performance limit.
Furthermore, because crawling a large zone takes a long time,
normal system churn can affect the results during the crawl,
leading to hard-to-estimate errors. In this paper, our aim is to
obtain an estimate quickly and accurately with low overheads,
hence a large zone is not appropriate.

However, a very small zone also has its own problems. Due
to the missing node issue, which will be discussed below, it

1e+7

1e+6Leeooe

1e+5 %
1e+4 %
1e+3 °

1e+2 Qs

of nodes
o

1e+1 To)
1e+0

o]

OW

0 5 10 15 20 25 30
n-bit zone

Fig. 2: Number of nodes discovered by our crawler in different
n-bit zones. There were about 20 million nodes in the system
when the experiment was performed. With 5-bit zone, the
crawler reached its performance limit and many nodes were
missed. Beyond a 24-bit zone, the node density is so sparse
that the crawler cannot find any other nodes except itself.

is inevitable that some nodes will be missed in each crawl. If
we choose a very small zone (large n), the slight fluctuation
caused by the missing nodes will be magnified after scaling
up, leading to a significant (and random) difference in the
estimate. The huge fluctuation can be amortized over a large
set of simultaneous samples. However, this method is also
expensive for a continuous monitoring system.

By testing different zone sizes, we decided to use the 12-bit
zone to derive the estimate, since it achieves relatively good
trade-off between the overheads and accuracy. We can finish
a crawl in about 5 seconds and the sample variation is small.
We must point out 12-bit zone is not the only choice; any zone
between 9-bit to 14-bit zones works well in our experiments.
The only difference between different zone sizes is that they
have different correction factors (see Section III-D).

C. Scaling Up

The second question we need to answer is: can we safely
scale up the node density of a given zone to derive the network
size? The answer is in fact NO, simply because a crawler
cannot collect all the nodes in a zone and some of them will
be missed. This question is overlooked by most of the previous
work. Most related work simply scales up the number of nodes,
but as we show in this paper, this leads to an incorrect result. It
is because of this incorrect scaling that we know the previous
methodologies to contain an error.

In [2], Steiner et al. set up two crawlers at different vantage
points and combine the views in an attempt to get a better
estimate. They mentioned that one crawler sometimes saw
fewer nodes than the other, and they blamed this on network
connectivity. In such cases, they just merged two node sets.
However, there is a subtlety hidden here, since they did not
explicitly mention whether one node set is a proper subset of
the other or whether “fewer” simply means “less in number”
but does not take a stand on the overlap between the sets.
Although such a combination of views is legitimate, two views

13-th IEEE International Conference on Peer-to-Peer Computing

6000

5500

5000

4500

4000

of distinct nodes

3500,

3000

5 10 15 20
of merged samples

Fig. 3: Number of nodes in merged samples

is not enough to get a correct estimate, which is well illustrated
by Figure 3.

In our study, we consider the missing node issue as a
systematic measurement error, and model the whole process as
a Bernoulli process. We present how we tackle this problem in
Section III-D. In order to justify the need for this approach, we
performed an experiment in which 20 simultaneous samples
are crawled within the same 12-bit zone. Each sample’s 12-
bit zone contains about 4000 nodes. Figure 3 plots how the
number of distinct nodes increases as we merge the samples
one by one. As more samples are merged, the number of
distinct nodes increases logarithmically. The experiment tells
us that each sample only covers a part of the 12-bit zone,
thus it shows that the missing node problem exists. As the
samples are collected simultaneously, we can ignore the effects
of churn on the result. As an example, considering the method
from [2] where they combine two samples, they would extract
about 4000 distinct nodes, when we know from combining 20
samples that there are at least 5500 distinct nodes in the zone.
Using these numbers and scaling them up to get an estimate
of the whole network size would yield an error of 37.5%.

D. Correction Factor

The missing node issue degrades the accuracy of the es-
timate. The reason can be multifold, e.g., firewalls, network
connectivity, congestion, different implementations, peer’s ab-
normal behavior etc. Previous works typically attempt to
prove the accuracy of their measurement by showing the
small variations of samples without considering this issue.
However, small variation cannot guarantee the accuracy if the
measurement method is not designed to handle missing nodes.

To get around this issue, we assume that our crawler will
always miss some IDs when it is crawling a 12-bit zone. Then
we can model our sampling process as a Bernoulli process. For
each ID in the zone, we have two options — “being selected”
or "being missed”. If the probability of “being selected” is p
(then the missing rate is 1 — p), all we need for an accurate
estimate of the number of nodes in the zone is an estimate of

p.

50

I
o

B
[

=

of estimates of p
3 8
—
—]

—_
o
L

0
0.7 0.75 0.8 0.85 0.9

estimate of p

0.95

Fig. 4: The distribution of 500 estimations for p

To this end, we devised an experiment. First, we insert a
special ID, say z, into the zone to be crawled. Second, we
let the crawler keep crawling this zone repeatedly to obtain
a series of samples. By counting in how many samples x
appears, we can estimate the value of p.

It is obvious that the more simultaneous samples we have,
the more accurate the estimation of p will be. So in practice,
we insert 50 IDs into a specific 12-bit zone, and start multiple
crawlers simultaneously. In such a way, the measurement
efficiency can be improved significantly, because we can get
50 estimations of p in a single experiment. We ignored the
influence of inserting multiple IDs, since their percentage is
always well below 1% of the actual IDs in this zone. Then
we generate another 50 random IDs and repeat the experiment
again. In total, we carried out 10 experiments and obtained 500
estimations of p. We ran Jarque—Bera' test on our estimations,
the null hypothesis was accepted with a significance value
o = 0.05. Figure 4 shows the distribution of these estimations
with normal distribution fit.

In our experiments, the average of p is 0.8276, sam-
ple deviation is 0.0280, so the 95% confidence interval is
[0.7716,0.8836]. In other words, let M be the actual popu-
lation size of MLDHT, and m be our estimation from 12-bit
zone. The true M will fall in [1.132%m, 1.296 * m] with 95%
confidence. We call this multiplier Correction Factor (CF) and
it is given by C'F = 1%.

We also investigated the coverage in 13—16 bit zones, for
example in a 13-bit zone, the average p is 0.8343, and sample
deviation is 0.0266. The results derived from different zones
with the corresponding correction factor are similar.

To verify our result for p, we ran two parallel experiments.
We collected several samples in a 12-bit zone and combined
the samples. After dropping duplicates, the number of unique
nodes increases as shown in Figure 3. Because the result
converges, we can use this to estimate p. We matched this
estimate with the estimate of p given by the Bernoulli process
described above and found out that they match. This serves as
validation of our estimate of p.

1Jarque—Bera test is a test of normality. The null hypothesis is “the data is
drawn from normal distribution(skewness and excess kurtosis are both zero)”.

13-th IEEE International Conference on Peer-to-Peer Computing

We must point out that p is subject to many factors like
network connectivity and congestion, and may change over
time. Thus the value of p should be calibrated periodically in
order to keep the accuracy at the required level. However, for
a continuous monitoring system, performing such experiments
for each crawl is extremely expensive. We will show how we
tackle this problem in designing our monitor system in Section
IV-A.

E. Validation of Methodology

We validated each step of our methodology from the as-
sumptions to the final outcome. Our repeated samplings con-
firm that the assumption about IDs being uniformly distributed
is justified; results in Section III-A demonstrate this.

In order to model the sampling as a Bernoulli process,
we assumed that the crawler will always miss some nodes
in a crawl. This assumption is verified by the results in
Sections III-B and III-D and Figure 4. The same results also
verify the accuracy of our estimate for p. Furthermore, we
performed a controlled emulation experiment described below
on our cluster to obtain a ground truth against which we can
compare our results.

The best way to demonstrate the validity of our methodol-
ogy is recreating a realistic scenario in a closed environment.
To this end, we designed and performed an emulation using
one million BitTorrent clients in a large-scale experiment
on our department cluster. The cluster consists of 240 Dell
PowerEdge M610 nodes and each node is equipped with 2
quad-core CPUs, 32GB memory, and connected to 10-Gbit
network. All the nodes run Ubuntu SMP with 2.6.32 kernel.

To make the experiment setting more in line with the real
world, we used three different MLDHT client implementations
in our experiments: Mainline BT, Aria and libtorrent. Each
of these is a popular client used currently on MLDHT, and
because they use the same DHT, they are compatible at the
protocol level. We also tested a heterogeneous situation by
mixing different fractions of each clients together. In each
experiment, we deployed one million MLDHT nodes on 200
machines, i.e., 5000 instances per machine. Figure 5 shows
the value of p obtained by our crawler for four different traffic
mixes using either 10-bit or 12-bit zones.

For each p value, experiments were repeated 50 times and
arithmetic mean is used. Table II shows a more detailed view
of the parameters, including p, its standard deviation, and the
95% confidence interval for the correction factor. As we show
later, running a large number of parallel samples will allow to
reduce the confidence intervals to arbitrarily small.

As we can see from the results, there is no significant
difference in p value in different mixtures, even though a
network with only Mainline BT clients always has a slightly
higher value. Given the consistency of the results, we can
consider that all three implementations follow faithfully the
MLDHT’s official specifications. A 10-bit zone’s p value is
always smaller than a 12-bit zone’s, but corresponding stdev
is also smaller. This result is also consistent with our previous
discussion that a larger zone provides a more stable estimation
but suffers from lower coverage.

1 10-bit zone
I I 12-bit zone | |

0.9
o 08F [] —] m
=}
©
>
o 0.7t

0.61

0.5

1:0:0 8:1:1 6:2:2 4:3:3

Mix Percent (MLBT:ARIA:LIBT)

Fig. 5: 10-bit and 12-bit zone’s p value as a function of
different mix percents of three applications. stdev is small
therefore omitted from the figure. 10-bit zone’s stdev is consis-
tently smaller than 12-bit zone’s. (MLBT: Mainline BitTorrent;
ARIA: Aria; LIBT: libtorrent)

We also evaluated to what extent firewalled nodes can
affect accuracy of our measurement. (As discussed in more
detail in Section IV-D and in [12], firewalled nodes can
represent a significant fraction of the nodes in the network.)
According to MLDHT protocol, firewalled nodes and stale
routing information should be purged out of routing tables
within 15 minutes. We are not so concerned with stale routing
information, since it is easily handled by MLDHT clients.
However, firewalled nodes can still enter and stay in other
nodes’ routing tables via different ways. Because various
BitTorrent (protocol) level operations can trigger the nodes
being inserted into the routing table. For example, if a node
behind a firewall initiates a connection to a node outside
the firewall, the second node will keep the firewalled node’s
information in its routing table, even though it is not able to
initiate connections reversely. We simulated such a situation
by mixing different fractions (< 30%) of firewalled nodes
into the system and adding some synthetic BT-level activities.
The measured p value still remains at the same level, giving
us confidence that our methodology does not suffer from the
presence of a large fraction of firewalled nodes.

F. Implications

The above experiment has several implications regarding
our measurement methodology and large-scale system mea-
surements in general. First, the results of the controlled exper-
iment show that our methodology, in particular the correction
factor, are indeed correct and a vital component of a measure-
ment framework. Our crawler is shown to work efficiently
in realistic scenarios and to provide accurate estimates of the
network size. Second, in a stable network with little churn, val-
ues of p are rather stable. This implies that the inaccuracies in
measurements are due to MLDHT’s inherent design properties.
In practice, the MLDHT protocol cannot guarantee returning
the actual k closest neighbors, which results in the need to
have the correction factor. Third, the differences in p values
for differently sized zones are smaller in a stable network. We
observed differences of 2-4% in value of p between 10-bit and

13-th IEEE International Conference on Peer-to-Peer Computing

TABLE 1II: 10-bit and 12-bit zone’s p value with 95% confidence interval as a function of different mix percents of three

App Percent (%) 10-bit 12-bit
MLBT | ARIA | LIBT p stdev Corr. Factor p stdev Corr. Factor
100 0 0 0.8215 | 0.0173 | (1.1681,1.2708) | 0.8437 | 0.0263 | (1.1157,1.2641)
80 10 10 0.8045 | 0.0164 | (1.1943,1.2958) | 0.8213 | 0.0291 | (1.1370,1.3104)
60 20 20 0.8198 | 0.0211 | (1.1601,1.2860) | 0.8501 | 0.0243 | (1.1127,1.2477)
40 30 30 0.8109 | 0.0190 | (1.1780,1.2938) | 0.8372 | 0.0257 | (1.1254,1.2726)

applications. (MLBT: Mainline BitTorrent; ARIA: Aria; LIBT: libtorrent)
Simultaneous samples | 1 2 4 8 16 20
Without CF 13,021,184 16,642,048 19,390,464 21,254,144 22,245,376 22,540,288
With CF 21,951,659 22,077,793 22,187,636 22,328,867 22,915,635 23,195,538
Error 40.68% 24.62% 12.61% 4.81% 2.92% 2.82%

TABLE III: Estimation with and without correction factor. The numbers report the estimated size of the network when running

n simultaneous samples. (CF: Correction Factor)

12-bit zones in our controlled test, whereas we have observed
differences of 6-9% in the real MLDHT. As the zone gets
larger, p decreases which makes the accuracy of the estimate
lower, necessitating the use of the correction factor. Scaling
the node density without considering the correction factor is
guaranteed to underestimate the network size, but there is
no way to estimate how much lower it is. Our methodology
eliminates this problem.

The correction factor is independent of the underlying
crawling method and can be applied to any existing crawler.
Using a very large number of simultaneous samplers in parallel
obviates the need for the correction factor, but requires a con-
siderable expenditure in resources for crawling. The correction
factor strikes a trade-off, by allowing a much lower use of
measurement resources and still obtaining the same level of
accuracy as a large number of simultaneous samples would
provide. Table III shows the network size estimated by using
a different number of simultaneous parallel samplers with and
without the correction factor. As we see, using only 1 or 2
samplers, as seems common in literature, will yield an error on
the order of 20-40%. Naturally, as shown in Table III multiple
parallel samplers improve the accuracy of our method as well,
although the error between 1 and 20 parallel samplers is only
on the order of 5%. However, correction factor does not give
an answer for exact causes of missing node issue which can
be manifold. Finding those causes will be our future work.

IV. EXPERIMENTS

We now present the implementation of our crawler and
discuss practical aspects related to data collection.

A. System Architecture

Figure 6 shows the four principal components of our system.
An efficient Crawler lies at the core of the whole system.
It can finish a crawl within 5 seconds, trying to gather
as many nodes as possible in a target zone. Beneath the
crawler, the Maintainer component maintains a set of over
3000 active nodes, and randomly provides 100 nodes among
these long-lived nodes to bootstrap the crawler. The Injector
component is responsible for injecting controlled nodes into
the monitored target zone. Then the sample will be sent to

MLDHT Monitor System

Crawler Analyzer

- J

Fig. 6: Principal components of monitoring system

Analyzer component, where the p value will be calculated
by checking the occurrence of controlled nodes. Finally, the
estimate and other relevant information will be stored in the
database and visualized by Visualizer component.

As mentioned before, for each crawl, obtaining several
hundreds of simultaneous samples to calculate p is expensive.
So in practice, p is the moving average of all available
measurements and is calculated and refreshed in each crawl
by putting more weight on the new value. The formula we
use is p = 0.2 % pyyq + 0.8 * ppew. It turns out p value in our
system 1is rather stable, always around 82%.

B. Deployment

We use two nodes for sampling, both Dual Intel Xeon E5440
@ 2.83GHz with quad cores, 32 GB memory and Gigabit
connection to the Internet. The operating system is Debian
SMP with Linux 2.6 kernel. On each node, we set up a crawler
with its own sampling policy. One is called Fixpoint Crawler,
which always uses the same target ID when sampling. The
other is called Randompoint Crawler, which generates a new
random target ID whenever it takes a sample. The sampling
frequency is twice per hour, and there is 15-minute difference
between the two crawlers.

There are two reasons for setting up a pair of crawlers.
The first reason is to prevent the sample gaps due to the

13-th IEEE International Conference on Peer-to-Peer Computing

application failure. The second is to assess the accuracy of
the captured data by cross-correlating the samples from two
parallel measurements.

We have been collecting data since December 17, 2010 and
the monitoring is on-going. We have had only a few small
gaps in the collection process until now. The duration for
capturing a snapshot varies within 5 seconds, depends on the
network size at that time. On average, each sample contains
about 20,000 distinct IDs from different zones. The data we
have collected and the code for our crawler are available
for other researchers. Please see http://www.cs.helsinki.fi/u/
jakangas/MLDHT/ for more details.

C. Duplicated IDs

The crawler records ID, IP and port of a node in a crawl.
Basically, we only need to handle two types of duplicates.
The first is the case of same ID and IP but different port. We
count such multiple records as one node since it is typically the
result of a client listening on multiple ports. The other one is
the case of same ID but different IP. There are two possibilities
for this kind of duplicates. The first is pure collision, which
is very rare and the second is due to modified clients. In both
cases, we count them as one node by selecting one of the
IPs randomly. We consider this acceptable, since such cases
contribute a negligible part in a sample.

D. Non-responding Nodes

Non-responding nodes refer to the nodes who fail to answer
our FIND_NODE queries. One possibility is the node is behind
a firewall, another possibility is the node has already left the
network and the routing information is stale. Unfortunately
there is no reliable means of distinguishing between these
two cases. On average, non-responding nodes constitute about
30% of our nodes, and this percentage remains quite stable in
all the samples. Other studies, e.g., [12], have found similar
numbers for firewalled nodes. Stale routing information should
be purged in about 15 minutes on average, but this depends
on the actual implementation of the client. We have seen that
a large fraction of those non-responding nodes are present in
several consecutive samples, leading towards the conclusion
that they are behind firewalls. However, a more thorough study
would be needed to validate this.

As presented in Section III-E, we tested the performance of
our crawler in a controlled environment with around one third
of the nodes being behind a firewall. As our results showed,
our methodology is robust against firewalled nodes and we do
not need to consider any special procedures for them.

E. Crawler Performance Issues

As [17], [24] pointed out before, a crawler must be well
designed and carefully tuned. This is not trivial but is critical
for measurement accuracy. To save time and reduce devel-
opment complexity, some previous work, e.g., [4], developed
their crawler from the third party library, and used it in the
experiments. However, those libraries are usually intended for
general use as parts of normal clients and are not specialized
for measurements.

In order to show that general purpose libraries are not
suitable for system measurement, we developed a crawler
based on the libtorrent library. libtorrent is a popular open
source library for BitTorrent protocol. Several popular BitTor-
rent clients (e.g. Deluge, LimeWire, rTorrent) are developed
with this library, and it is also used in some research work.

In the first version, we only made marginal modifications
to libtorrent and kept most of the default settings. We also
avoided unnecessary tweaks. The crawler suffered from low
efficiency and high inaccuracy. The estimated network size
reported by the crawler is only 1/6 of the actual number
obtained by our special-purpose crawler. Furthermore, the
difference in the estimate of the network size between [4] and
our work is about a factor of 6, leading us to conjecture that the
difference in the results is largely due to the implementation
of the crawler. In the second and third version, we tuned
some parameters and also tweaked the code in libtorrent to
improve the crawling efficiency. Even though the tuned version
can crawl faster and discover more nodes within a zone, the
reported value is still only 1/4 to 1/3 of the actual value, which
is far from accurate.

We therefore looked into libtorrent code and carefully ex-
amined its design. The reason for inefficient performance is the
results of many factors; some commonly used mechanisms like
banning suspicious nodes, abandoning malformed messages
can severely degrade crawler’s performance and accuracy.
Queue size, bucket size, complicated routing table operations,
and callback functions further make the crawler’s efficiency
deteriorate rapidly. For a crawler, the most used method is
obtaining a node set from a specific zone, so speed of the
crawler is the most important factor considering the conver-
gence speed. In a distributed system with high churn, crawling
speed effectively determines the quality of a snapshot.

We then further modified our libforrent test case and added a
correction module into the libtorrent crawler. This correction
module consisted of the Injector and Analyzer components
from our own crawler. Based on these, we were able to
determine that the libtorrent crawler can discover only about
32% of the actual nodes within the zone. After we applied our
correction factor (Section III-D), the results were consistent
with our own MLDHT crawler. This test confirms that a
correct and efficient implementation of a crawler is vital to
getting accurate measurements. A slow crawler, like used
in [4], will yield inaccurate results.

F. MLDHT Evolution

Figure 7 shows the number of nodes in MLDHT during
one week in March 2011, March 2012, and April 2013. The
number of users shown, 24 to 27 million at peak, is typical
and the roughly 10 million users of daily churn is also typical.
The churn is mainly generated by European, in particular East
European users; details are not shown due to space constraints.
The weeks shown are typical for the years they depict and
the roughly 10% growth from 2011 to 2012 happened mostly
gradually, although there was a marked increase in Fall of
2011. From 2012 to 2013, the size of the network has remained
roughly stable.

13-th IEEE International Conference on Peer-to-Peer Computing

2011.08.07 - 2011.03.13

3e+07

2012.03.05 - 2012.03.11 =
2013.04.08 - 2013.04.14 ==

2.8e+07

2.6e+07 |
2.4e+07 |

2.2e+07

2e+07
1.8e+07
1.6e+07

Estimate # of nodes

1.4e+07

Mon Tue

Wed Thu

Fri Sat Sun

Fig. 7: One week 2011, 2012, and 2013. The weeks show the typical daily churn, mainly caused by East European users. The
typical number of users increased by about 10% from 2011 to 2012, but has remained stable since then.

1.2
[T
o 1 </
0.8
0 5 10 15 20
1.2
£ A\ A AN A~ A
o 0.8 \ AVl v V'V VW
0 5 10 15 20
> 12
g 1
o 08
0 5 10 15 20
(a) In a normal day
1.2
Lol-] /V\NJV\f\M
0.8
0 5 10 15 20
1.2 A
t 1 /\/\/ AA /\A/\ A /\ /\ A
NN VAR 724" i VAA =AY,
. y Vi
0 5 10 15 20
> 12
2 1
3 o8 >
0 5 10 15 20

(b) During a Sybil-Attack

Fig. 8: Evolution of three system metrics in a day, from top
Correction Factor, RTT, and node density. Values have been
normalized to the average value over that day.

V. CORRECTION FACTOR AND ANOMALY DETECTION

Despite the large churn in the system, the correction factor
is a rather stable system value. Therefore it can also be used as
system health indicator and detect system anomalies. Figure 8a
shows the evolution of three system metrics: correction factor,
average RTT (Round-Trip Time), and node density over 24
hours. For the ease of comparison, the values have been
normalized to the average value of that day. From the figure,
we can easily see that correction factor is the only metric
which remains stable throughout the whole day.

However, system anomalies, especially Sybil-attacks, can
significantly influence the correction factor. In our previous
work [27], we reported a real-world Sybil-attack in MLDHT
on Jan. 6, 2011. The attack was from two virtual machines
of Amazon EC2, and started from 6:00 am. Figure 8 presents
evolution of three metrics captured by our monitor system
during the attack. From Figure 8b, we can see the correction
factor increased by about 20% when the attack was launched
and it recovered to the normal level after the attack ceased.
At the same time, there is no noticeable changes in the other
two metrics. For detailed analysis of these attacks in MLDHT,
please refer to [27].

The reason for this increase is that in a Sybil-attack like
this, the attacker inserts a large number of sybils in the
network (or part of it). Our sampling process is affected by
this and the probability p that a node is present in a sample
decreases (see Section III-D). Correspondingly, the correction
factor increases. This is expected, since the attack increases
the number of nodes in the network and the correction factor
captures and corrects inaccuracies in the sampling process; the
increase is necessary to obtain the correct estimate of the size
of the network.

VI. RELATED WORK

There have been a lot of measurement work on different P2P
networks, such as [1]-[3], [9], [10], [17], [19]-[21], [24], [27],
but most of them studied KAD or Vuze DHT, and only [4],
[5], [27] are MLDHT related. In [27], Wang et al. studied
two major Sybil-attacks in MLDHT and reported large-scale
anomalies in the real-world system by their honeypot design.

In [25], Kostoulas et al. gave a thorough and general survey
on various techniques for group size estimation of large-scale
distributed systems. In [3], Memon et al. monitored 32000
peers in KAD using a single PC. They intercepted most of
the traffic to the monitored nodes. Their crawler Montra is
introduced in [24] where they also extensively discuss practical
issues related to crawling P2P networks. In [17], Stutzbach et
al. also point out several pitfalls that can cause significant bias
in the sample.

In [1], [2], [19], Steiner et al. used crawler Blizzard to study
KAD. Their work showed China is the biggest country in
KAD, and they also showed the popularity of KAD in Europe.
Our findings mostly concur with these results. In [10], Steiner
et al. crawled Azureus DHT by exploiting REQUEST_STATS

13-th IEEE International Conference

on Peer-to-Peer Computing

and REPLY_STATS messages in Azureus DHT protocol.
They found out that there are 3—4.5 million users in KAD,
followed by Azureus with about 1 million users. According to
our research, there are over 27 million users in MLDHT (at
peak time). We adapted our sampling method from their work
to be able to handle the much larger MLDHT network. Their
original sampling method suffers from the missing node issue
(Section III-D).

[11], [21] focused on content and publishing activities
on popular P2P networks. Zhang et al. carried out a thor-
ough study on BitTorrent ecosystem in [6]. Their method is
monitoring large amount of swarms from popular BitTorrent
portals. As mentioned in [6], this can cause bias in the
measurement since some countries, e.g., China and India, are
underrepresented. In [26], Iosup et al. tried to produce an
accurate geo-snapshot for BitTorrent network by using trace
files from Supernova.org. Their work, besides being rather old,
suffers from the same limitations as [6] since it ignores all
users not using those particular sites.

In [4], Junemann et al. did very similar work as ours.
However, there is big difference in the estimate of the network
size. Their estimate is about 5 to 7 million, whereas ours
can be over 27 million. We suspect the reason is that they
adopted a third-party plugin, libtorrent, in their implementa-
tion for accessing the DHT. Since libtorrent is not designed for
sampling the network, it ignores convergence speed, missing
nodes, and other aspects. As a result, the node density is
severely underestimated. Our method remedies this problem
and in addition also allows us to tell the exact estimation
error. A similar problem also exists in [5] where they estimate
MLDHT size based on a modified plugin from Vuze. The
key reason behind the difference in the results is that both of
these works ignore the missing node issue. As we showed in
Section IV-E, crawler performance is one of the key factors
in getting a right estimate and plain libtorrent is not sufficient
for actual measurement work.

VII. CONCLUSION

In this paper, we have developed a fast and accurate method
for estimating the number of nodes in the BitTorrent Mainline
DHT network. We have identified the missing node problem
as a key omission in previous work and show how to fix this
via modeling the crawling as a Bernoulli process. Our method
provides much more accurate results and is able to run in about
5 seconds. Our correction factor can also be used to identify
Sybil-attacks in the system.

We have validated our methodology by taking previously
developed measurement methodologies and shown in a con-
trolled environment that they lead to an incorrect estimate in
the number of nodes. We also show that practical crawler
implementation issues can easily lead to large errors.

Concerning the actual number of nodes in the system, our
results show that the number varies between 15 and 27 million
per day with a very clear daily churn pattern. European users
dominate both in terms of number of users and over the course
of the past 30 months of our study we have seen that the
number of users increased by about 10% from 2011 to 2012,
but has remained stable since then.

10

[1]

[2]
[3]

[4]

[5]

[6]

[7]
[8]

[9]

[10]

(11]

[12]

[13]

[14]

[15]

[16]

(17]

(18]
[19]

[20]

[21]
[22]
(23]
[24]

[25]

[26]

(27]

REFERENCES

M. Steiner, T. En-Najjary, and E. Biersack, “Long term study of peer
behavior in the KAD DHT,” IEEE/ACM Transactions on Networking,
vol. 17, no. 5, pp. 1371-1384, 2009.

M. Steiner, E. Biersack, and T. Ennajjary, “Actively monitoring peers
in KAD,” in Proceedings of IPTPS, 2007.

G. Memon, R. Rejaie, Y. Guo, and D. Stutzbach, “Large-scale moni-
toring of DHT traffic,” in Proceedings of international conference on
Peer-to-peer systems, 2009.

K. Junemann, P. Andelfinger, J. Dinger, and H. Hartenstein, “Bitmon:
A tool for automated monitoring of the bittorrent dht,” in Conference
on Peer-to-Peer Computing, Aug. 2010, pp. 1-2.

J. Timpanaro, T. Cholez, I. Chrisment, and O. Festor, “Bittorrent’s
mainline dht security assessment,” in IFIP International Conference on
NTMS, feb. 2011, pp. 1 -5.

C. Zhang, P. Dhungel, D. Wu, and K. Ross, “Unraveling the bittorrent
ecosystem,” IEEE Transactions on Parallel and Distributed Systems,
vol. PP, no. 99, p. 1, 2011.

Vuze, “Distributed hash table,” http://wiki.vuze.com/w/DHT.

P. Maymounkov and D. Mazieres, “Kademlia: A peer-to-peer infor-
mation system based on the xor metric,” in Proceedings of IPTPS,
Cambridge, MA, Mar. 7-8, 2002.

J. Falkner, M. Piatek, J. John, A. Krishnamurthy, and T. Anderson,
“Profiling a million user DHT,” in Proceedings of ACM conference on
Internet measurement, 2007.

M. Steiner and E. W. Biersack, “Crawling azureus,” Institut Eurecom,
France, Tech. Rep. EURECOM+2495, 06 2008.

R. Cuevas, M. Kryczka, A. Cuevas, S. Kaune, C. Guerrero, and
R. Rejaie, “Is content publishing in bittorrent altruistic or profit-driven?”
in Proceedings of ACM CoNext, dec 2010.

J. Pouwelse, P. Garbacki, D. Epema, and H. Sips, “The bittorrent p2p
file-sharing system: Measurements and analysis,” Peer-to-Peer Systems
1V, pp. 205-216, 2005.

J. S. Otto, M. A. Sanchez, D. R. Choffnes, F. E. Bustamante, and
G. Siganos, “On blind mice and the elephant: understanding the net-
work impact of a large distributed system,” in Proceedings of ACM
SIGCOMM, 2011.

A. Legout, N. Liogkas, E. Kohler, and L. Zhang, “Clustering and sharing
incentives in bittorrent systems,” in Proceedings of ACM SIGMETRICS,
2007.

M. Meulpolder, J. Pouwelse, D. Epema, and H. Sips, “Modeling and
analysis of bandwidth-inhomogeneous swarms in bittorrent,” in Confer-
ence on Peer-to-Peer Computing, sep. 2009, pp. 232 —241.

M. Izal, G. Urvoy-Keller, E. W. Biersack, P. Felber, A. Al Hamra,
and L. Garcés-Erice, “Dissecting BitTorrent: Five months in a torrent’s
lifetime,” in Proceedings of Passive and Active Measurements, Apr.
2004.

D. Stutzbach and R. Rejaie, “Understanding churn in peer-to-peer
networks,” in Proceedings of ACM conference on Internet measurement.
ACM, 2006, pp. 189-202.

C. Zhang, P. Dhungel, Z. Liu, and K. Ross, “Bittorrent darknets,” in
IEEE INFOCOM. 1IEEE, 2010, pp. 1-9.

M. Steiner, T. En-Najjary, and E. Biersack, “A global view of kad,”
Proceedings of ACM conference on Internet measurement, Oct 2007.
M. Steiner, T. En-Najjary, and E. Biersack, “Exploiting KAD: possible
uses and misuses,” ACM SIGCOMM Computer Communication Review,
vol. 37, no. 5, pp. 65-70, 2007.

S. Wolchok and J. Halderman, “Crawling BitTorrent DHTSs for Fun and
Profit,” in Proc. 4th USENIX Workshop on Offensive Technologies, 2010.
A. N. Greg Hazel, “Bep 9: Extension for peers to send metadata files,”
http://www.bittorrent.org/beps/bep_0009.html, 2008.

G. H. Arvid Norberg, Ludvig Strigeus, “Bep 10: Extension protocol,”
http://www.bittorrent.org/beps/bep_0010.html, 2008.

D. Stutzbach and R. Rejaie, “Capturing accurate snapshots of the
gnutella network,” in IEEE INFOCOM, 2005.

D. Kostoulas, D. Psaltoulis, I. Gupta, K. Birman, and A. Demers, “Active
and passive techniques for group size estimation in large-scale and
dynamic distributed systems,” Journal of Systems and Software, vol. 80,
no. 10, pp. 1639-1658, 2007.

A. Iosup, P. Garbacki, J. Pouwelse, and D. Epema, “A scalable method
for taking detailed and accurate geo* snapshots of large P2P networks,”
TU Delft, PDS-2005-002, ISSN 1387-2109, Tech. Rep., 2005.

L. Wang and J. Kangasharju, “Real-world sybil attacks in BitTorrent
Mainline DHT,” in Proceedings of IEEE Globecom, Dec. 2012.

