
Parallel Processing

Ch 17 [Sta10]

Taxonomy
SMP
Cache Coherence – MESI Protocol
NUMA and CC-NUMA
Vector Computation

Lecture 11

Parallel Processor Architectures
Flynn’s taxonomy from 1972

1.12.2010Computer Organization II, Autumn 2010, Teemu Kerola 2

(Sta10 Fig 17.1)

??

Processor Organization Structures

1.12.2010Computer Organization II, Autumn 2010, Teemu Kerola 3
(Sta10 Fig 17.2)

Parallel Processor Architectures

Single instruction, single data stream – SISD
Uniprocessor

Single instruction, multiple data stream – SIMD
Vector and array processors
Single machine instruction controls simultaneous execution
Each instruction executed on different set of data by different
processors

Multiple instruction, single data stream – MISD
Sequence of data transmitted to set of processors
Each processor executes different instruction sequence
Not used

Multiple instruction, multiple data stream- MIMD
Set of processors simultaneously execute different instruction
sequences on different sets of data
SMPs, clusters and NUMA systems

1.12.2010Computer Organization II, Autumn 2010, Teemu Kerola 4

Multiple instruction, multiple data stream- MIMD

Differences in processor communication
Symmetric Multiprocessor (SMP)

Tightly coupled – communication via shared memory
Share single memory or pool, shared bus to access memory
Memory access time of a given memory location is
approximately the same for each processor

Non-uniform memory access (NUMA)
Tightly coupled – communication via shared memory
Access times to different regions of memory may differ

Clusters
Loosely coupled – no shared memory
Communication via fixed path or network connections
Collection of independent uniprocessors or SMPs

1.12.2010Computer Organization II, Autumn 2010, Teemu Kerola 5

SMP – Symmetric Multiprocessor

Two or more similar processors of comparable capacity
All processors can perform the same functions (hence
symmetric)
Connected by a bus or other internal connection
Share same memory and I/O
I/O access to same devices through same or different
channels
Memory access time is approximately the same for each
processor
System controlled by integrated operating system

providing interaction between processors
Interaction at job, task, file and data element levels

1.12.2010Computer Organization II, Autumn 2010, Teemu Kerola 6

SMP – Advantages

Performance
Only if some work can be done in parallel

Availability
More processors to do the same functions
Failure of a single processor does not halt the system

Incremental growth
Increase performance by adding additional processors
Is there a limit on this? Bus becomes serious bottleneck?

Scaling
Different computers can have different number of processors
Vendors can offer range of products based on number of
processors

1.12.2010Computer Organization II, Autumn 2010, Teemu Kerola 7

Multiprogramming vs multiprocessing
(Moniajo)

1.12.2010Computer Organization II, Autumn 2010, Teemu Kerola 8

Multi-
programming

Multi-
processing

(Sta10 Fig 17.3)

Multiprocessor Organization

1.12.2010Computer Organization II, Autumn 2010, Teemu Kerola 9
(Sta10 Fig 17.4)

Processors
Two or more
Self-contained
Additionally, may have
private memory and/or
I/O channels

Multiport memory
Shared memory
Simultaneous access
to separate blocks

Interconnection
Time shared bus
(most common)

Example: SMP Organization

1.12.2010Computer Organization II, Autumn 2010, Teemu Kerola 10

(Sta10 Fig 17.5)

(No multicore)

Time-shared bus

Advantages
Simplicity

Addressing, arbitration and
time-sharing logic same as
in uniprocessor system

Flexibility
Expand by attaching more
processors to the bus

Reliability
Bus is passive, failure of
attached device should not
cause failure of the whole

Disadvantages

Performance limited by
bus cycle time
Each processor should
have local cache

Reduce number of bus
accesses

Leads to problems with
cache coherence

Solved in hardware - see
later

1.12.2010Computer Organization II, Autumn 2010, Teemu Kerola 11

New Requirements to Operating System

Simultaneous concurrent processes
Reentrant OS routines (only local data, no conc. problems)
OS data structure synchronization – avoid deadlocks etc.

Scheduling
On SMP any processor may execute scheduler at any time

Synchronization
Controlled access to shared resources

Memory management
Use parallel access options

Reliability and fault tolerance
Graceful degradation in the face of single processor failure

1.12.2010Computer Organization II, Autumn 2010, Teemu Kerola 12

IBM z990
Multiprocessor
Structure

Dual-core processor chip
CISC superscalar
256-kB L1 instruction and a
256-kB L1 data cache
Point-to-point conn. to L2

L2 cache, each 32 MB
Clusters of five
Each cluster supports eight
processors and access to
entire main memory space

System control element
(SCE) (one of the L2 caches)

Arbitrates system comm.
Maintains cache coherence

Memory card
Each 32 GB, Maximum 8
Interconnect to MSC via
synchronous memory
interfaces (SMIs)

Memory bus adapter (MBA)
Interface to I/O channels, go
directly to L2 cache

1.12.2010Computer Organization II, Autumn 2010, Teemu Kerola 13

(Sta10 Fig 17.6)

Cache and Data Consistency
Multiple processors with their own caches

Multiple copies of same data in different caches
Concurrent modification of the same data

Could result in an inconsistent view of memory
Inconsistency – the values in caches are different

Write back policy
Write first to local cache and only later to memory

Write through policy
The value is written to memory when changed
Other caches must monitor memory traffic

Solution: maintain cache coherence
Keep recently used variables in appropriate cache(s), while
maintaining the consistency of shared variables!

1.12.2010Computer Organization II, Autumn 2010, Teemu Kerola 14

Software Solutions for Cache Coherence

Compiler and operating system deal with problem

Overhead transferred to compile time

Design complexity transferred from hardware to
software

However, software tends to make conservative
decisions

Inefficient cache utilization - do not cache shared variables

Analyze code to determine safe periods for caching
shared variables

1.12.2010Computer Organization II, Autumn 2010, Teemu Kerola 15

Hardware Solutions for Cache Coherence

Dynamic recognition of potential problems at run time
More efficient use of cache, transparent to programmer
Directory protocols

Collect and maintain information about copies of data in cache
Directory stored in main memory
Requests are checked against directory
Creates central bottleneck
Effective in large scale systems with complex interconnections

Snoopy protocols
Distribute cache coherence responsibility to all cache controllers
Cache recognizes that a line is shared
Updates announced to other caches
Suited to bus based multiprocessor

1.12.2010Computer Organization II, Autumn 2010, Teemu Kerola 16

Snoopy Cache Protocols

Write-Invalidate
Multiple readers, one writer
Write request invalidates that line in all other caches
Writing processor gains exclusive (cheap) access until line
required by another processor
Used in Pentium II and PowerPC systems
State of every line marked as modified, exclusive, shared or
invalid (MESI)

Write-Update
Multiple readers and writers
Updated word is distributed to all other processors

Some systems use an adaptive mixture of both solutions

1.12.2010Computer Organization II, Autumn 2010, Teemu Kerola 17

MESI Protocol
Four states (two bits per tag)

Modified: modified cache line (only in this cache)
Exclusive: only in this cache, but the same as memory
Shared: same as memory, may be in other caches
Invalid: line does not contain valid data

1.12.2010Computer Organization II, Autumn 2010, Teemu Kerola 18

MESI State Transition Diagram

1.12.2010Computer Organization II, Autumn 2010, Teemu Kerola 19

(Sta10 Fig 17.6)

MESI Protocol – state transitions

Read Miss – generates SHR (snoop hit on read) to others
Not in any cache – simply read
Exclusive in some cache – SHR: exclusive ’owner’ indicates sharing
and changes the state of its own cache line to shared
Shared in some caches – SHR: each signals about the sharing
Modified on some cache – SHR: memory read blocked, the modified
content comes to memory and this cache from the other cache,
which also changes the state of that line to shared

Read Hit

Write Miss – generates SHW (snoop on writes) to others

Write Hit

1.12.2010Computer Organization II, Autumn 2010, Teemu Kerola 20

Multithreading

Process
Resources
Scheduling

- Process switch

1 or more executable threads
- Private stack, shared resources (e.g., memory)
- Thread switch

- Kernel level threads are OS controlled
- User level threads are process controlled

Thread level parallelism

1.12.2010Computer Organization II, Autumn 2010, Teemu Kerola 21

Multithreading Types
Interleaved multithreading

“Fine-grained multithreading”,
Separate hw context (registers) for each thread
Alternate thread execution after each clock cycle

Blocked multithreading
“Coarse grained multithreading”
Switch thread when previous one is blocked (e.g., cache miss)

Simultaneous multithreading (SMT)
Intel “hyperthreading”
Instructions from multiple threads in superscalar processor
Many contexts (register sets) at use simultaneously’

Chip multiprocessing
“Multicore”
Many complete cpu’s on one chip, not necessarily symmetric!
cpu’s (cores) may share some L2 or L3 cache

1.12.2010Computer Organization II, Autumn 2010, Teemu Kerola 22

1.12.2010Computer Organization II, Autumn 2010, Teemu Kerola 23

Fig 17.8 [Sta10]

Multithreading Types

+
?

Clusters

Cluster is a group of
interconnected nodes

Each node is a whole computer

Nodes work together as unified

resource

Illusion of being one machine

Commonly for server

applications

Benefits:
Scalability

High availability

Load balancing

Superior price/performance

1.12.2010Computer Organization II, Autumn 2010, Teemu Kerola 24

(Sta10 Fig 17.12)

Example: blades in one or more chassis
blade (kehikon korttipalvelin)

TKTL cluster “Ukko”

Each blade has
2 cpus’s with
4-cores, each
one with
2-hyperthreads

15 chassis
240 blades

10 Gbps

Cluster Middleware

Unified image to user
Single system image

Single point of entry
Single file hierarchy
Single control point
Single virtual networking
Single memory space

Single job management system
Single user interface
Single I/O space
Single process space
Checkpointing
Process migration

1.12.2010Computer Organization II, Autumn 2010, Teemu Kerola 25

(Sta10 Fig 17.11)

What is NUMA?

SMP
Identical processors with uniform memory access (UMA) to
shared memory

- All processors can access all parts of the memory
- Identical access time all memory regions for all processors

Clusters
Interconnected computers with NO shared memory

NUMA Non-Uniform Memory Access
All processors can access all parts of the memory
Access times to different regions are different for different
processors
Cache-Coherent NUMA (CC-NUMA) maintains cache
coherence among caches of various processors
Maintain transparent system wide memory

1.12.2010Computer Organization II, Autumn 2010, Teemu Kerola 26

CC-NUMA Organization

Independent SMP nodes

Single addressable memory

Unique system wide address

Cache coherence based on

directory
1.12.2010Computer Organization II, Autumn 2010, Teemu Kerola 27

(Sta10 Fig 17.13)

SMP
node Cache

Coherence

CC-NUMA Memory Access

Each processor has local L1 & L2 cache and main memory
Nodes connected by some networking facility
Each processor sees single addressable memory space
Memory request order:

L1 cache (local to processor)
L2 cache (local to processor)
Main memory (local to node)
Remote memory (in other nodes)

- Delivered to requesting (local to processor) cache
- Needs to maintain cache coherence with other processor’s

caches
Automatic and transparent

1.12.2010Computer Organization II, Autumn 2010, Teemu Kerola 28

Vector Computation

SIMD instructions
One dimensional data

When needed?
When used in HLL code?

Vector lengths determined by application

How to implement in HW?
Vector length determined by HW

1.12.2010Computer Organization II, Autumn 2010, Teemu Kerola 292929

Matrix Multiplication with Vectors

1.12.2010Computer Organization II, Autumn 2010, Teemu Kerola 303030

do 100 i = 1,n
do 100 j = 1, n

c(i,j) = 0.0
do 100 k = 1,n

c(i,j) = c(i,j) + a(i,k) + b(k,j)
100 continue

do 100 i = 1,n
c(i,j) = 0.0 (j=1,n)
do 100 k = 1,n
c(i,j) = c(i,j) + a(i,k) + b(k,j) (j=1,n)

100 continue

serial vector
(Sta10 Fig 17.15)

…
vload vr1, a[k] ; 8 values at a time?
vload vr2, b[k]
vadd vr3, vr1, vr2
….
vstore vr3, c[k]

Matrix multiplication: C = A x B

Compiler technology for
vector machines is outside
course objectives

Vector register length varies

8 64-bit FP registers?

Fortran

Vector Operation Implementation

1.12.2010Computer Organization II, Autumn 2010, Teemu Kerola 313131

(Sta10 Fig 17.16)

Usually vector ops
from registers,
not from memory

Vector
Pipeline
Implementation

1.12.2010Computer Organization II, Autumn 2010, Teemu Kerola 323232

(Sta10 Fig 17.17)
Chaining

Vector multiply-add in one vector op
C = sc * A + B

Discussion?

Parallel Processing Summary

Paralle processing classification
SMP, NUMA, CC-NUMA
SMP: Shared memory becomes bottleneck with many processors
CC-NUMA

Performance suffers if too much remote memory access
Need good temporal and spatial locality of software with

- L1 & L2 cache design to reduce all memory access
- Virtual memory management move pages to nodes that use

them most
Not truly transparent memory access
- Page allocation, process allocation and load balancing changes

needed
Vector instructions

1.12.2010Computer Organization II, Autumn 2010, Teemu Kerola 33

Review Questions / Kertauskysymyksiä

Cache coherence and MESI protocol
Differences and similarities of SMP,
NUMA and cluster
When would you use vector operations?

1.12.2010Computer Organization II, Autumn 2010, Teemu Kerola 34

