Lecture 11: Parallel Processing

. Parallel Processor Architectures
“_\ Flynn’s taxonomy from 1972

Processor Organizations

N

Single Instruction, Single Instruction, Multiple Instruction, Multiple Instruction,
Single Data Stream Multiple Data Stream  Single Data Stream Multiple Data Stream
(SISD) (SIMD) (MISD) (MIMD)}

Uniprocessor

Vector Array Shared Memory Distributed Memory
Processor rocessor (tightly coupled) (loosely coupled)
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Is

Is
CU,

n

CU = control unit

IS = instruction stream
PU = processing unit
DS = data stream

MU = memory unit
LM = local memory

(a) SISD

Shared
Memaory

Ds

PU,

il

(¢) MIMD (with shared memory)

SISD = single instruction,
single data stream

SIMD = single instruction,
nmltiple data stream

MIMD = nmltiple instruction,
multiple data stream
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“&. Processor Organization Structures
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(b) SIMD (with distributed memory)
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Interconnection
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{d) MIMD (with distributed memory)

(Stal0 Fig 17.2)
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Parallel Processor Architectures

B Single instruction, single data stream — SISD
m Uniprocessor
B Single instruction, multiple data stream — SIMD
m Vector and array processors
m Single machine instruction controls simultaneous execution

m Each instruction executed on different set of data by different
processors

B Multiple instruction, single data stream — MISD
m Sequence of data transmitted to set of processors
m Each processor executes different instruction sequence
= Not used

B Multiple instruction, multiple data stream- MIMD

m Set of processors simultaneously execute different instruction
sequences on different sets of data

m SMPs, clusters and NUMA systems

Computer Organization I, Autumn 2010, Teemu Kerola 1.12.2010
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Lecture 11: Parallel Processing 1.12.2010

‘ Multiple instruction, multiple data stream- MIMD

B Differences in processor communication

B Symmetric Multiprocessor (SMP)
m Tightly coupled — communication via shared memory
m Share single memory or pool, shared bus to access memory

m Memory access time of a given memory location is
approximately the same for each processor

B Non-uniform memory access (NUMA)

m Tightly coupled — communication via shared memory

m Access times to differentregions of memory may differ
B Clusters

m Loosely coupled — no shared memory

m Communication via fixed path or network connections

m Collection of independent uniprocessors or SMPs

Computer Organization I, Autumn 2010, Teemu Kerola 1.12.2010 5

‘i\ SMP — Symmetric Multiprocessor

B Two or more similar processors of comparable capacity

B All processors can perform the same functions (hence
symmetric)

B Connected by a bus or other internal connection
B Share same memory and I/O

B |/O access to same devices through same or different
channels

B Memory access time is approximately the same for each
processor

B System controlled by integrated operating system
m providing interaction between processors
m Interaction at job, task, file and data element levels

Computer Organization I, Autumn 2010, Teemu Kerola 1.12.2010 6
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N

SMP — Advantages

B Performance

m Only if some work can be done in parallel

W Availability

m More processors to do the same functions
m Failure of a single processor does not halt the system

B Incremental growth

m Increase performance by adding additional processors
m Is there a limit on this? Bus becomes serious bottleneck?

B Scaling

m Different computers can have different number of processors

m Vendors can offer range of products based on number of
processors

Computer Organization I, Autumn 2010, Teemu Kerola 1.12.2010
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Multi-

Multi-
processing

Multiprogramming vs multiprocessing
(Moniajo)

programming

Time
Process 1 s |
Process 2 2|
Process 3 7 o
(a) Interleaving (multiprogramming, one processor)
Process 1

Process 2 /7777777777

Process 3 (P77 77 777777

(b) Interleaving and overlapping (multiprocessing; multiple processors)

(Stalo Fig 17.3)
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‘ Multiprocessor Organization

Processor

B Processors
m Two or more
m Self-contained
m Additionally, may have
private memory and/or
I/O channels
W Multiport memory
m Shared memory
m Simultaneous access
to separate blocks

M Interconnection
m Time shared bus Main Memory

(most common)

Interconnection
Network

(Stalo Fig 17.4)
1.12.2010 9
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»‘_ Example: SMP Organization

Processor

Processor

Processor

L1 Cache]

L2 Cache

shared bus

110
110 Adapter

Subsytem

2

; le]
(No multicore) Adapter

(Stal0 Fig 17.5) )
Adapter
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k¥ Time-shared bus
Advantages Disadvantages
B Simplicity B Performance limited by
m Addressing, arbitration and bus cycle time

time-sharing logic same as B Each processor should
in uniprocessor system have local cache

B Flexibility
. m Reduce number of bus
m Expand by attaching more
accesses

processors to the bus
M Leads to problems with

W Reliability
mBus is passive, failure of cache coherence
attached device should not m Solvedin hardware - see
cause failure of the whole later

1.12.2010 11

Computer Organization I, Autumn 2010, Teemu Kerola

% New Requirements to Operating System

B Simultaneous concurrent processes
m Reentrant OS routines (only local data, no conc. problems)
m OS data structure synchronization — avoid deadlocks etc.

B Scheduling
m On SMP any processor may execute scheduler at any time

B Synchronization
m Controlled access to shared resources

B Memory management
m Use parallel access options

B Reliability and fault tolerance
m Graceful degradation in the face of single processor failure

1.12.2010 12
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. IBM z990

‘ Multiprocessor
- Structure MEA ]
Dual-core processor chip
CISC superscalar M
256-kB L1 instruction and a

BA
ST
256-kB L1 data cache g =T DAL
MBA
[

Point-to-point conn. to L2
L2 cache, each 32 MB

Clusters of five

Each cluster supports eight

processors and access to

entire_ main memory space
System control element
(SCE) (one of the L2 caches) / \

Arbitrates system comm.

Maintains cache coherence
Memory card

Each 32 GB, Maximum 8

Interconnect to MSC via

synchronous memory s s

interfaces (SMis) MSC = main store control
Mem Ory bUS adapter (M BA) SCE = system cantmlelemenjl

SMI = synchronous memory interface
Interface to 1/0 channels, go
directly to L2 cache (Stal0 Fig 17.6)

Multichip
ceramic
module

memory card memory card
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‘ Cache and Data Consistency
" B Multiple processors with their own caches
m Multiple copies of same data in different caches
m Concurrent modification of the same data

B Could result in an inconsistent view of memory
m Inconsistency — the values in caches are different

B Write back policy
m Write first to local cache and only later to memory

B Write through policy
m The value is written to memory when changed
m Other caches must monitor memory traffic

B Solution: maintain cache coherence

m Keep recently used variables in appropriate cache(s), while
maintaining the consistency of shared variables!

Computer Organization I, Autumn 2010, Teemu Kerola 1.12.2010 14
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‘ Software Solutions for Cache Coherence

B Compiler and operating system deal with problem
B Overhead transferred to compile time

B Design complexity transferred from hardware to
software

B However, software tends to make conservative
decisions

m Inefficient cache utilization - do not cache shared variables

B Analyze code to determine safe periods for caching
shared variables

Computer Organization I, Autumn 2010, Teemu Kerola 1.12.2010 15

‘i‘ Hardware Solutions for Cache Coherence

B Dynamic recognition of potential problems at run time
B More efficient use of cache, transparent to programmer
B Directory protocols

m Collect and maintain information about copies of data in cache

m Directory stored in main memory

m Requests are checked against directory

m Creates central bottleneck

m Effective in large scale systems with complex interconnections
B Snoopy protocols

m Distribute cache coherence responsibility to all cache controllers

m Cache recognizes that a line is shared

m Updates announced to other caches

m Suited to bus based multiprocessor

Computer Organization I, Autumn 2010, Teemu Kerola 1.12.2010 16
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N

Snoopy Cache Protocols

B Write-Invalidate
m Multiple readers, one writer
m Write request invalidates that line in all other caches

m Writing processor gains exclusive (cheap) access until line
required by another processor

m Used in Pentium Il and PowerPC systems
m State of every line marked as modified, exclusive, shared or
invalid (MESI)
B Write-Update
m Multiple readers and writers
m Updated word is distributed to all other processors

B Some systems use an adaptive mixture of both solutions

Computer Organization I, Autumn 2010, Teemu Kerola 1.12.2010 17

i MESI Protocol

B Four states (two bits per tag)
m Modified: modified cache line (only in this cache)
m Exclusive: only in this cache, but the same as memory
m Shared: same as memory, may be in other caches
m Invalid: line does not contain valid data

M E S I
Modified Exclusive Shared Invalid

T]nls cache line Yes Yes Yes No
valid?
The memory : ]

. out of date valid valid —
copy is...
Copies exist in No No Maybe Maybe
other caches?

A write to this does not go to does not go to goes to bus and | | [ goes directly to
line. .. bus bus updates cache bus

Computer Organization I, Autumn 2010, Teemu Kerola
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i'! MESI State Transition Diagram
SH
i V\
I ﬁ
nvalid —RMS—@—P Shared | rH Invalid SHW- Shared
\ ad
@
I
. w
%,
% v : T / d :p\
RH (Modified .« WH Exclusive RH Modified Exclusive
p- -
A/
(a) Line in cache at initiating processor (b) Line in snooping cache
RH Read hit @ Dirty line copyback
RMS Read miss, shared
RME Read miss, exclusive @ Invalidate transaction
WH  Write hit
i WM Write miss L .
(Stal0 Fig 17.6) SHR  Snoop hit on read X Read-with-intent-to-modify
SHW  Snoop hit on write or
read-with-intent-to-modify @ Cache line fill
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\*._ MESI Protocol — state transitions

B Read Miss — generates SHR (snoop hit on read) to others
m Not in any cache — simply read

m Exclusive in some cache — SHR: exclusive 'owner’ indicates sharing
and changes the state of its own cache line to shared

m Shared in some caches — SHR: each signals about the sharing

m Modified on some cache — SHR: memory read blocked, the modified

content comes to memory and this cache from the other cache,
which also changes the state of that line to shared

B Read Hit
B Write Miss — generates SHW (snoop on writes) to others
B Write Hit
Computer Organization I, Autumn 2010, Teemu Kerola 1.12.2010 20
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N

Multithreading

M Process

m Resources
m Scheduling
- Process switch
m 1 or more executable threads
- Private stack, shared resources (e.g., memory)

- Thread switch
- Kernel level threads are OS controlled
- User level threads are process controlled

m Thread level parallelism

Computer Organization I, Autumn 2010, Teemu Kerola 1.12.2010
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Multithreading Types

B [nterleaved multithreading
m “Fine-grained multithreading”,
m Separate hw context (registers) for each thread
m Alternate thread execution after each clock cycle
B Blocked multithreading
m “Coarse grained multithreading”
m Switch thread when previous one is blocked (e.g., cache miss)
B Simultaneous multithreading (SMT)
m Intel “hyperthreading”
m Instructions from multiple threads in superscalar processor
m Many contexts (register sets) at use simultaneously’
B Chip multiprocessing
= “Multicore”
m Many complete cpu’s on one chip, not necessarily symmetric!
m cpu’s (cores) may share some L2 or L3 cache

NN
N T
NN ()
N D

thread switches

@[ [ [+

thread switches

=[S SOk A~
2| [ | | e | e | e
S =[] ™~

=l =il

M el l=l=1F"
=l=1===E

=l eli=] e
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Multithreading Types
[ ]
* ABCD ABCD Y ABCD
oot
A[A g AlA B AJA[N]N ATAININ]
B[B|B = AlA = mm“'A_\NN B|B|B|N =
C Z ; r_rc]el i C|N|N|N ;
D|D|D|D o B|B|B = AJAJAA D|D|D|D =
AlA ‘,_'f B g AlAIN|N 8
B = C =z AJAJAN B|N|N|N =z
—
issue bandrwidth (g) VLIW (h) interleaved
(e) interleaved (f) blocked multithreading
multithreading multithreading VLIW
supersecalar superscalar
ABCD ABCD
A[AIN|N - A[A/A[AB|B|B|C
AlAIN[N] £ D[D[D[AJATA[B[D
£ DID|D/A|AAIB|C
B[B|B|N é B[D[A[A/A/A|B|B
B[N[N|N 5 C[DID{AJAA[A|A
C[NININ E A[B|B|D D DID|D
T (i) blocked (j) simultaneous (k) chip multiprocessor
Flg 17.8 [Sta]_o] multithreading multithreading (multicore)
VLIW (SMT)
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Clusters

M Cluster is a group of
interconnected nodes
m Each node is a whole computer
m Nodes work together as unified
resource
m lllusion of being one machine

m Superior price/performance

Computer Organization I, Autumn 2010, Teemu Kerola

TKTL cluster “Ukko”

(StalO Fig 17.12)

15 chassis
240 blades

Ethernet

N

N X 100 Gbps
\"*-._* m

4

= Commonly for server 10Gbps — — —
== [—==] [— =1
applications . [% [% [%f
== —1 = =1
ite: — — H — =1
W Benefits: Each blade has ==V ==p'' ==F
m Scalability 2 cpus’s with =—4# =4 ==9
. o 4-cores, each ==F =Z=F ==r
m High availability IR Wi
m Load balancing 2-hyperthreads blale computer

Example: blades in one or more chassis
blade (kehikon korttipalvelin)
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‘ Cluster Middleware (Stal0 Fig 17.11)

L !
|
[ | Parallel Applications
|

Sequential Applications. |:|| Parallel Programming Environment ::|

Cluster Middleware
(Single System Image and Availability Infrastructure)

PC/workstation PC/workstation PC/workstation PCrwWorkstation PCiworkstation
I Comm SW I I Comm SW I I Comm SW I I Comm SW I I Comm SW I
Net. Interface HW/| Net. Interface HW/| Net. Interface HW| Net. Interface HW| Net. Interface HWV|

S I AN A A

High Speed Network/Switch

W Unified image to user M Single job management system
m Single system image B Single user interface

B Single point of entry M Single I/O space

MW Single file hierarchy B Single process space

M Single control point B Checkpointing

B Single virtual networking B Process migration
M Single memory space
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»i_ What is NUMA?

B SMP

m Identical processors with uniform memory access (UMA) to
shared memory

- All processors can access all parts of the memory
- Identical access time all memory regions for all processors
B Clusters
m Interconnected computers with NO shared memory

B NUMA Non-Uniform Memory Access
m All processors can access all parts of the memory

m Access times to different regions are different for different
processors

m Cache-Coherent NUMA (CC-NUMA) maintains cache
coherence among caches of various processors

m Maintain transparent system wide memory

Computer Organization I, Autumn 2010, Teemu Kerola 1.12.2010 26
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" CC-NUMA Organization (Stalo Fig 17.13)

Processor Processor SMP Processor Processor
1-1 1-m 2-m
node et

| Diremory'

Processor
N-m

B Independent SMP nodes

B Single addressable memory

B Unique system wide address

B Cache coherence based on
directory

Computer Organization I, Autumn 2010, Teemu Kerola 1.12.2010 27

i CC-NUMA Memory Access

Each processor has local L1 & L2 cache and main memory
Nodes connected by some networking facility
Each processor sees single addressable memory space

Memory request order:
m L1 cache (local to processor)

m L2 cache (local to processor)
m Main memory (local to node)
m Remote memory (in other nodes)
- Delivered to requesting (local to processor) cache

- Needs to maintain cache coherence with other processor’s
caches

B Automatic and transparent

Computer Organization I, Autumn 2010, Teemu Kerola 1.12.2010 28
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Lecture 11: Parallel Processing

% Vector Computation

B SIMD instructions

m One dimensional data

B \When needed?

B When used in HLL code?
m Vector lengths determined by application

B How to implement in HW?
m Vector length determined by HW

Computer Organization I, Autumn 2010, Teemu Kerola
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% Matrix Multiplication with Vectors

serial Fortran
do100i=1,n
do100j=1,n
c(i,j)=0.0
do100k=1,n
c(i,j) = c(i,j) + a(i,k) + b(k,j)
100 continue

B Matrix multiplication:C =Ax B

B Compiler technology for
vector machines is outside
course objectives

B Vector register length varies
B 8 64-bit FP registers?

Computer Organization I, Autumn 2010, Teemu Kerola

(StalO Fig 17.15)

vector

do 100 i=1,n
[c(i))=0.0 G=1,n)]

do 100k = 1,n
| c(ij) = c(i.j) + a(i,k) + b(k,j) (=1.n)]

100 continue

vload vrl, a[k] ; 8 values at a time?
vload vr2, b[k]
vadd vr3, vrl, vr2

vstore vr3, c[k]

1.12.2010 303030
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»

Input
registers

| (11T
I_|_>|:|:|:|:|_>

Pipelined ALU

s, Output

register

(a) Pipelined ALU
(Stalo Fig 17.16)

Memory

Vector Operation Implementation

B Usually vector ops
from registers,
not from memory

Input
registers

Niv2

L
HEEER- S| [DEREWEY

Fa

(C

Output
register
(b) Parallel ALUs
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C S A N
5 t—s| Compare Shift Add - )
‘ Vecto r Yi=»| exponent significand significands Wl |
) Pipeline -
X -
. | Fon T o
Implementation g

Spme | AR SR
: S_JA N [
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Xip3
Yis.
Xps Y1 = S|A|N|—2
wyn—lc]|s|A|N]—u myh—C|s|A|N|— 2
Y.Y:=»|C|S|A|N|— 2 XL.Ya=»|C| S|A|N|— =
Y3u.Y3=>|C|S|A|N|—=3 Y V4= C| S|A|N|—=u
Y V4= | C|S|AIN|—= = Nx:,v:—b- C|SJA|N|—==
x5 ys=—>| C| S[A]N]—= 5 Vo= C| S| A[N|—>z5
(a) Pipelined ALU Y= C] S|AIN|—=%
: 5. Y5—»| C| S| AIN|—= s
o (Stalo Fig 17.17) Yo, Yo | C| S|A|N|— %
u Chammg Y10 V10— C| S| A|N|—> 10
= Vector multiply-add in one vector op W= CLS LA LNf=Fu
C=sc*A+B 1Y = C| S|A|N|=—> 22

(b) Four parallel ALUs IMI
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‘ Parallel Processing Summary

B Paralle processing classification
B SMP, NUMA, CC-NUMA
B SMP: Shared memory becomes bottleneck with many processors
B CC-NUMA
m Performance suffers if too much remote memory access
m  Need good temporal and spatial locality of software with
- L1 & L2 cache design to reduce all memory access
- Virtual memory management move pages to nodes that use
them most
m  Not truly transparent memory access
Page allocation, process allocation and load balancing changes
needed

B Vector instructions

1.12.2010 33

Computer Organization I, Autumn 2010, Teemu Kerola

‘ Review Questions / Kertauskysymyksia

B Cache coherence and MESI protocol

B Differences and similarities of SMP,
NUMA and cluster

B When would you use vector operations?
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