Lecture 10: Control Unit 29.11.2010

What is Control? Functional requirements
for CPU
. i 1. Operations
B Architecture determines the CPU 2. Addressingmodes

functionality that is visible to 'programs’ (3. Registers
m Whatis the instruction set ? 4. 1/O module interface
m What do instructions do? 5. Memorymodule
m What operations, opcodes? interface
m Where are the operands? 6. Interrupt processing
m How to handle interrupts? structure

B Control Unit, CU (ohjausyksikk®) determines how these
things happen in hardware (CPU, MEM, bus, 1/0O)
m Whatgate and circuit should do what at any given time
m Selects and gives the control signals to circuits in order
m Physical control wires transmit the control signals
- Timed by clock pulses
- Control unit decides values of the signals
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\‘\ Control Signals ["read” (Stal0 Fig 15.4) ‘ Micro-Operations
. "write” . . .
radd? u Slmpl(=T contr_ol _S|gnals that cause one very small
operation (toiminto)
:a':f,?.l.scig;ﬂk m E.g. Bits move from reg 1 through internal bus to ALU
% B Subcycle duration determined from the longest
Control & H operation
Lutt B During each subcycle multiple micro-operations in
Clock. action t1:MAR « PC
:,\Vm oTsigna ; t2: MBR < MEM[MAR
Contral signals . Som(rz can be done smultarwegusly, [ ]
- Ifin different parts of the circuits 3:1R < (MBR)
B Main task: control data transfers » Must avoid resource conflicts
m Inside CPU: REG < REG, ALU < REG, ALU-ops - WAR or RAW, ALU, bus If implemented
m CPU < MEM (I/O-controller): address, data, control m Some must be executed sequentially LiliaiALY
B Timing (ajoitus), Ordering (jarjestys) to maintain the semantics
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. Instruction cycle (Kaskysykli . Instruction Fetch Cycle
“ y ( ysy ) (Stalo Fig 15.1) “ y

ERETI LTI Example:

t1: MAR « PC

t2: MAR + MMU(MAR
oo Instruction Cycle
Control Bus -
—————————— = =—Wait?

t3: Control Bus « Rea

>
Fetch Tudirect | [ Execute | [Tnterrupt PC+«PC+1
t4: MBR + MEM[MAR]
[uoP] [uOP]

Control Bus « Release B8 -veoy buteresiser Address Data Control

. IR = Instruction register Bus B B
t5: IR + MBR o e g:: us us
(Stalo Fig 12.6)

CPU

=
4!

Memory
|Instr|u'tlnn Cycle

|lnsn1|¢ﬂon Cycle

[uwoP] [uOP] [nOP]
B \When micro-operations address different parts of the .
hardware, hardware can execute them parallel Execution order? What can be executed parallel?

B See Chapter 12 instruction cycle examples (next slide) Wh'Ch micro-ops to same subcycle,
which need own cycle?

Computer Organization Il, Autumn 2010, Teemu Kerola 29.11.2010 5 Computer Organization Il, Autumn 2010, Teemu Kerola 29.11.2010 5

Comp. Org 11, Autumn 2010 1



Lecture 10: Control Unit 29.11.2010

. Instruction Cycle Flow Chart

@  [Instruction Cycle as State-Machine

" IADD r1,r2, r3: .
tl: ALUInL «r2 B |CC: Instruction Cycle Code register’s state
B Operand fetch cycle(s) t2: ALUIn2 - r3
= From register or from memory ALUoper « IR.oper I
m Address translation t3:rl «— ALUout 11 (interrupt) / — \ 00 (fetch) (Stalo Fig 15.3)
B Execute cycle(s) flags < xxx - /-
= Execution often in ALU ) indireet
= Operandsin I1SZ X, Increment and Skip if zero: Setup Read
and control operation t1: MAR <« IR.address mterrupt address
= Result from output t2: MBR <~ MEM[MAR]
to register /memory t3: MBR <~ MBR+1 m';:ff‘ft‘:‘l;“
m flags « status t4: MEM[MAR] «- MBR
B Interrupt cycle(s) if (MBR=0) thenPC <~ PC +1

for enabled )-
interrupt?

m See examples (Ch 12): Pentium
= What to do using same micro-operation?

Conditional
= What micro-ops parallel / sequentially? operation
possible
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. Instruction Cycle Control . .
) Control signals
‘*\ as State-Machine ‘ g

B Micro-operation = CU emits a set of control signals
B Functionality of Control Unit can be presented as state-
machine
m State: What stage of the instruction cycle is going on in CPU

m Substate: timing based, group of micro-operations
executed parallel in one (sub)cycle

B Substate control signals are based on

B Example: processor with single accumulator

Cs

Control signals

sequencing execution

Cio
G ¥ AC

—
» (sub)state itself CUsiER- [ U ® c,-»% %—c,
m Fields of IR-register (opcode, operands) machine s
. * C 1
= Previous results (flags) impl. o A3
= Execution circuits| =
B New state based on previous Control | 3 £lags
interrupts it .
state and flags [ a (Stal0 Fig 15.5)
- see a. 1 B
m Also external interrupts effect the new state flags Lcmj ¢
= Sequencing
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“#. Control Signals and Micro-Operations . Internal Processor Organization
Micro-operations Timing Active Control | . .
Signals B Fig 15.5 too complex wiring for °
1 MAR < (PC) @ C, | Clock? implementation?
. (g LI = Ry €\ e B Use internal processor bus to connect the s ”
@C = (PC) + D> 22 components ’ iiu‘fs
t;; IR — (MBR) C . o )
2 ( = ; B ALU usually has temporary registers Y and Z b H
t;; MAR = (IR(Address)) & Data £
Indirect t,: MBR + Memory C5 G s
/ADD I “E
t;: IR(Address) — (MBR(Address)) €, - MAR < IR.address H
t;; MBR < (PC) & t2: MBR <~ MEM[MAR] o
_— Qw:? — Save-address o t3: Y < MBR
— - e 7 t4:Z < AC+Y >
t5:AC < Z o
t3: Memory < (MBR) Cp. Cy
ALU
Cy = Read control signal to system bus
Cw = Wiite control signal to system bus. (Stal0 Fig 155)
(Stal0 Table 15.1) (Stal0 Fig 15.6)
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i Computer Organization Il

Hardwired implementation

(Langoitettu ohjaus)
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. Hardwired control unit
‘*\ (Langoitettu ohjausyksikkd)

B Can be used when CU’s inputs and outputs fixed

m Functionality described using Boolean logic
m CU implemented by one logical circuit |
A 4

C5 ="read bus to MBR”
B Eg.C5=P*Q*T2 + P*Q*(LDA)*T2 + ... EEEE 7
' v v
Fig15.3, 15.5 and Tbl 15.1
o ——
ICC -bitsPandQ Timing [~ Control DIEE
generator . Unit * Flags

PQ = 00 Fetch Cycle L i e
PQ =01 Indixect Cycle

Co € eee Ce
| Vv v

PQ = 10 Execute Cycl

PQ = 11 Interrupt Cycle (S i 1510)
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i Hardwired Control Unit

B Opcode decoder (4-to-16)
m 4-bitinstruction code as input to CU
m Only one signal active at any given stage

(Stal0 Table 15.3)

1 [ D[] ufor[0[o3[0os 05060708 0o o10]oi]on[o13[on]o1s5]ols
o [0 o o o o]o]ojolololelolelo]ololo atil
o[o[o[t[ofoJoJo|o|o[oooJo[o]o]o 1
oJo[1]ofofofoJo|ofo]o o [ofo[o]o 1 0
oot Jt[ofoJoJolololo]o[olalo 1 oo
0o [1[oJo[o]oJoJo|oJo]o[a[0o]0 T[ofoo]o
o1 lol1fofofofo]o]o|o]o]o D oq0oo]o
of1[1JofofoJoJolololoJola[1[okloo]ololo
o1 [t ]r[ofoJoJofolo[o ][t [a}s[o]o]ololo
T[ofofofofolofofo[olF[1][o0 0Jofofofo]o
1[ofo[1[ofofolo]o 1 [o}% [ofofofofo]o]o
1[o[1[ofofofofolf[1 o}l o]ofofofofo]o]o
1lof[1[1]ofofo 1Jofo[ofofoefofofofo]o]o
T[1]ofoo]o 1 [ofo[o0[o[ofo|o[ofo]o]o]o
T[1]o[1]o 1 [ofo ofofolofofofofolo]o]o
T[11]ooft oJoJofofofoJoJo[ofo]o]o]o
T[1|1[1}a 0Jofo[o[ofo[o|o oo o]|o]o]o

C5: opcode = 5 (bits 11, 12, 13, 14) — signal Ol1 is true (1)
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- Finite State Diagram

RegDst, ExtOp

1:PCWf

ALUSelA
PC

10 OriExec
ALUOp=0
1:ALUSelA

ALUSelB=11,
x: MemtoRgg

ALUSelB=11
ALUOp=Add

1: ALUSelA

4 LWw) R?\%Wr EXtOp)
emtoReg

ALUSelB=1

1:ALUSelA
RegWi
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i State transitions

Next state from current state Alternatively, prior state & condition
State 0 -> Statel S4, S5, S7, S8, S9, S11 -> State 0

State 1 -> S2, S6, S8, S10 - -> Statel
State 2->S5or ... - ->State2
State 3->S9 or ... - ->sState3
State 4 ->State 0 - -> State 4
State 5 -> State 0 State2 & op=SW  ->State 5
State 6 -> State 7 -> State 6
State 7 -> State 0 State 6 -> State 7
State 8 -> State 0 -> State 8
State 9-> State 0 State 3& op =JMP  -> State 9
State 10 -> State 11 -> State 10
State 11 -> State 0 State 10  -> State 11
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i Hardwired Control Summary

B Control signal generation in hardware is fast

B Weaknesses
m CU difficult to design
- Circuit can become large and complex
m CU difficult to modify and change
- Design and 'minimizing’ must be done again after every
change
B RISC-philosophy makes it a bit easier

m Simple instruction set makes the design and implementation
easier
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. - . Microprogrammed Control
‘ Computer Organization Il ‘ (Mikro-ohjelmoitu ohjaus)

B |dea 1951: Wilkes Microprogrammed Control (Maurice Wilkes)

B Execution Engine

m Execution of one machine instruction is done by executing a sequence of
microinstructions (micro-operations)

m Executes each microinstruction by generating the control signals indicated
by the instruction

M icroprog rammed Control (M|kr0_ B Micro-operations stored in control memory as microinstructions
. . . = Firmware (laiteohjelmisto)
ohjelmoitu ohjaus) '

B Each microinstruction has two parts
m What is done during the coming clock cycle?
- Microinstruction indicates the control signe
- Deliver the control signals to circuits
m What/where is the next microinstruction?
- Assumption: next microinstruction from next location
- Microinstruction can contain the address of next microinstruction!

Computer Organization Il, Autumn 2010, Teemu Kerola. 20112010 19 Computer Organization Il, Autumn 2010, Teemu Kerola. 20112010 20

(Stal0 Fig 15.11)

‘ Microinstructions }m ‘ Horizontal microinstruction
cycle
- : routine L] . . .
o o idiect o envetis B All possible control signals are represented in a
W Eachstagein : } e bit vector of each microinstruction
mstruf:ﬂon execution Jump to execnie e m One bit for each signal (1=generate, 0=do not generate)
cycle is represented by — ) L .
a sequence of pesiing m Long instructions if plenty of signals used
n n n ;2 routine
microinstructions that e e ot e B Each microinstruction is a conditional branch
are executed durlng the Jump to opeode routine ‘xecute cycle beginning ;
cyclein that stage : - m What status bit(s) checked
AN utine . . .
. : ) b m Address of the next microinstruction
. Eg in ROM Jump to fetch or interrupt
= Microprogram or o ADD routine I L1 |
firmware T | L Mcroinstruction address
Jump condition
. . —{'ucondilioual
—Zero
—Overflow
: IOF routine (StalO Fig 16.1 a) . S_\:!le::lt::‘cl;::u-ol signals
(Sta1o F|g 162) Jump to fetch or interrupt. Internal CPU control siglmls
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» Vertical Mi inst ti - Microinstruction
ertical Icroinstructon . . .
e N Execution Engine ool
- - nil
B Control signals coded to number (function) M Control Address Register, CAFELL—
. . . . . . . : e=ppf i of™= [ _Control Address Register |
W Decode back to control signals during execution = Which microinstruction next? - s 7" s
- . . . . m  ~instr. pointer, “MiPC” y
Shorter instructions, but decoding takes time B Control memory .
? . . .
= Gatedelay? = Microinstructions o
B Each microinstruction is conditional branch - fetch, indirect,execute, interrupt RSy
(as with horizontal instructions) B Control Buffer Register, CBR
m Register for executing microinstr.
m  ~instr. register, “MilR”
C T T 171 I - o
[ siceomteaction adde. m Generate the signals to circuits
| ;,“ml, condition - Verticals through decoder Next Address
B Sequencing Logic Control
: . I
(Stalo Fig 16.1 b) —_— }Fuwwn codes m Next addressto CAR :
(StalO Fig 16.4) Control Signals ~ Control Signals
‘Within CPU to System Bus
Computer Organization ll, Autumn 2010, Teemu Kerola 29.11.2010 23 Computer Organization ll, Autumn 2010, Teemu Kerola 29.11.2010 24

Comp. Org II, Autumn 2010 4



Lecture 10: Control Unit

29.11.2010

Which Microinstruction
Next?

a) Explicit

B Each instruction has 2
addresses contral

m With the conditions flags
';::\';::.1

that are checked for
branching

m Next instruction from either
address (select using the
flags)

m Oftenjust the next location

address
branch selection

in control memory flazs —»|

- Why store the address?

- No time for addition!
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(Stalo Fig 16.6) ey

Discussion?
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»

Which Microinstruction Next?
b) Implicit
B Assumption: next

microinstruction from next

location in control memory oy
m Must be calculated

B pinstruction has 1 address

control =
N . buffer | control | address i control address
= Still need condition flags et [ ™t

m |f condition=1, ll
use the address
flags m ‘multiplexer
B Address part not always T i
uSed selection — ]
register
= Wasted space (Stal0 Fig 16.7)
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»

. address
c) Variable format ==

Which Microinstruction Next?

B Some bits interpreted
in two ways
m 1 b: Address or not

register

m Only branch instructions )
have address s :

m Branchinstructions do
not have control signals
m |f jump, need to execute
two microinstructions
instead of just one
- Wasted time? flags
- Saved space?

Mdress
selection
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i Which Microinstruction Next?

d) Address generation during execution

B How to locate the correct microinstruction routine?
m Control signals depend on the current machine instruction
B Generate first microinstruction address from op-code (mapping +
combining/adding)
= Most-significant bits of address directly from op-code
m Least-significant bits based on the current situation (0 or 1)
m Example: IBM 3033 Control Address Register (CAR), 13 bit address
- Op-code gives 8 bits -> each sequence 32 micro-instr.
- rest 5 bits based on the certain status bits

00 07 08 09 10 11 12
; . I I ! I (Stal0 Fig 16.9)
ta ig 16.!

! Pt 1t

BAS) BB(4) BC(4) BD4) BE4) BF(7)
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i Which Microinstruction Next?

€) Subroutines and residual control

B Microinstruction can set a special return register with
‘return address’
m No context, just one return allowed (one-level only)
m No nested structure
m Example: LSI-11, 22 bit microinstruction
- Control memory 2048 instructions, 11 bit address
- OP-code determines the first microinstruction address
- Assumption, next is CAR « CAR+1
- Each instruction has a bit: subroutine call or not
- Call:

- Store return address (only the latest one available)
- Jump to the routine (address in the instruction)

- Return:jump to address in return register
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Microinstruction Coding

B Horizontal or Vertical?
m Horizontal: fast interpretation
m Vertical: less bits, smaller space
B Often a compromize, using mixed model

= Microinstruction split to fields, each field is used for certain
control signals

m Excluding signal combinations can be coded in the same field
- NOT: Reg source and destination, two sources — one dest
m Coding decoded to control signals during execution
- Onefield can control decoding of other fields!
B Several shorter coded fields easier for implementation than
one long field
= Several simple decoders

Computer Organization I}, Autumn 2010, Teemu Kerola
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MDR < Register 012345678 910012131415161718
- . . . . L1 h
‘ Microinstruction Coding Register = MDR \|—l—l—l—l—l—l—l—l—l—l—l—l—l—l—l—l—l—l—|.
Field 3
. [0,0,0[0,1,0] | | MAR<Register J| L~ xt g ¢
B Functional encoding (woiminnoittain) (@) Direct encoding R
X . N N . 1 4- ALU operation
m Eachfield controls one specific |4 | T ceranons S5 catiSn 5 - register selection
i LA S A— q 0,0,0 Read irrg operation 6 - Constant
action (e.g., load) e —— — o, 0,)) o )
- Load from accumulator sk logic logic [0,0,1] , ] Write Fontal fnicroinstruction format (Stal0 Fig 16.12)
- Load from memory l l l l l l .
o Vertical vs.
- Load from ... Control signals
i . Horizontal
B Resource encoding (resursseittain) btk [ ] -
m Each field controls specific e ms_| LU gper: i T Microcode (3)
resource (e.g. accumulator) — l — | | — Qoy 1y M0, 0,0, | Acc—acCsRegiste "L
- Load from accumulator i = = ACC —ACC - Register Next microinstruction

- Store to accumulator
- Add to accumulator
- ... accumulator

Register < ACC AeEEE

ACC < Register + 1 CAR=CAR+1

oy, 1Jo 0] | ] ACC < Register address (CAR = CSAR)
1
1

LIS Sy SRS
(Stal0 Fig 16.11) Controlsignals select
9.10. (a) Vertical microinstruction format (by resource)
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i Why microprogrammed control? ‘ Control Summary

B . even when its slower than hardwired control
B Designis simple and flexible - .
= Modifications (e.g. expansion of instruction set) can be added Control S|gnals

very late in the design phase W Hardwired control
= Old hardware can be updated by just changing control memory

- Whole control unit chip in older machines n Microprogrammed control?
m There exists (existed?) development environments for m Control memory, control address, control buffer
microprograms m Horizontal vs. vertical microprogrammed control?
B Backward compatibility m How do you find the next microinstruction?
m Oldinstruction set can be used easily m LS|-11 example
m Just add new microprograms for new machine instructions
B Generality
m One hardware, several different instruction sets
= Oneinstruction set, several different organizations
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i Review Questions / Kertauskysymyksia

B Hardwired vs. microprogrammed control?

B How to determine the address of
microinstruction?

B Whatis the purpose of control memory?
B Horizontal vs. vertical microinstruction?

B Compare microprogram execution to machine
language fetch-execute cycle.

B Microprogrammed vs. hardwired?
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