
Lecture 10: Control Unit 29.11.2010

Comp. Org II, Autumn 2010 1

Control Unit (Ohjausyksikkö)

Ch 15-16 [Sta10]

n Micro-operations
n Control signals (Ohjaussignaalit)
n Hardwired control (Langoitettu ohjaus)
n Microprogrammed control (Mikro-ohjelmoitu ohjaus)

Lecture 10

What is Control?

Architecture determines the CPU
functionality that is visible to ’programs’

What is the instruction set ?
What do instructions do?
What operations, opcodes?
Where are the operands?
How to handle interrupts?

Control Unit, CU (ohjausyksikkö) determines how these
things happen in hardware (CPU, MEM, bus, I/O)

What gate and circuit should do what at any given time
Selects and gives the control signals to circuits in order
Physical control wires transmit the control signals

- Timed by clock pulses
- Control unit decides values of the signals

29.11.2010Computer Organization II, Autumn 2010, Teemu Kerola 2

1. Operations
2. Addressing modes
3. Registers
4. I/O module interface
5. Memory module

interface
6. Interrupt processing

structure

Functional requirements
for CPU

Control Signals

Main task: control data transfers
Inside CPU: REG REG, ALU REG, ALU-ops
CPU MEM (I/O-controller): address, data, control

Timing (ajoitus), Ordering (järjestys)
29.11.2010Computer Organization II, Autumn 2010, Teemu Kerola 3

(Sta10 Fig 15.4)”read”
”write”
”add”

Micro-Operations

Simple control signals that cause one very small
operation (toiminto)

E.g. Bits move from reg 1 through internal bus to ALU

Subcycle duration determined from the longest
operation

During each subcycle multiple micro-operations in
action

Some can be done simultaneously,
- If in different parts of the circuits

Must avoid resource conflicts
- WAR or RAW, ALU, bus

Some must be executed sequentially
to maintain the semantics

29.11.2010Computer Organization II, Autumn 2010, Teemu Kerola 4

t1: MAR PC
t2: MBR MEM[MAR]

PC PC + 1
t3: IR MBR)

If implemented
without ALU

Instruction cycle (Käskysykli)

When micro-operations address different parts of the
hardware, hardware can execute them parallel

See Chapter 12 instruction cycle examples (next slide)

29.11.2010Computer Organization II, Autumn 2010, Teemu Kerola 5

(Sta10 Fig 15.1)
Instruction Fetch Cycle

Example:
t1: MAR PC
t2: MAR MMU(MAR)

Control Bus Reserve
t3: Control Bus Read

PC PC + 1
t4: MBR MEM[MAR]

Control Bus Release
t5: IR MBR

29.11.2010Computer Organization II, Autumn 2010, Teemu Kerola 6

(Sta10 Fig 12.6)

Execution order? What can be executed parallel?
Which micro-ops to same subcycle,
which need own cycle?

wait?

Lecture 10: Control Unit 29.11.2010

Comp. Org II, Autumn 2010 2

Instruction Cycle

Operand fetch cycle(s)
From register or from memory
Address translation

Execute cycle(s)
Execution often in ALU
Operands in
and control operation
Result from output
to register /memory
flags status

Interrupt cycle(s)
See examples (Ch 12): Pentium
What to do using same micro-operation?
What micro-ops parallel / sequentially?

29.11.2010Computer Organization II, Autumn 2010, Teemu Kerola 7

ADD r1, r2, r3:
t1: ALUin1 r2
t2: ALUin2 r3

ALUoper IR.oper
t3: r1 ALUout

flags xxx

ISZ X, Increment and Skip if zero:
t1: MAR IR.address
t2: MBR MEM[MAR]
t3: MBR MBR+1
t4: MEM[MAR] MBR

if (MBR=0) then PC PC +1

Conditional
operation
possible

Instruction Cycle Flow Chart
as State-Machine

ICC: Instruction Cycle Code register’s state

29.11.2010Computer Organization II, Autumn 2010, Teemu Kerola 8

(Sta10 Fig 15.3)

Instruction Cycle Control
as State-Machine

Functionality of Control Unit can be presented as state-
machine

State: What stage of the instruction cycle is going on in CPU
Substate: timing based, group of micro-operations
executed parallel in one (sub)cycle

Substate control signals are based on
(sub)state itself
Fields of IR-register (opcode, operands)
Previous results (flags)

= Execution
New state based on previous
state and flags

Also external interrupts effect the new state
= Sequencing

29.11.2010Computer Organization II, Autumn 2010, Teemu Kerola 9

stateIR

CU state-
machine

Flags,
interrupts

CPU

impl.
circuits

Memory bus

Control signals

flags

sequencing execution

Discussion?

Control signals

Micro-operation CU emits a set of control signals

Example: processor with single accumulator

29.11.2010Computer Organization II, Autumn 2010, Teemu Kerola 10

(Sta10 Fig 15.5)

Flags

Control Signals and Micro-Operations

29.11.2010Computer Organization II, Autumn 2010, Teemu Kerola 11

(Sta10 Table 15.1)

??

??

(Sta10 Fig 15.5)

C4 Clock?
Fig 15.5 too complex wiring for
implementation?

Use internal processor bus to connect the
components

ALU usually has temporary registers Y and Z

29.11.2010Computer Organization II, Autumn 2010, Teemu Kerola 12

ADD I:
t1: MAR IR.address
t2: MBR MEM[MAR]
t3: Y MBR
t4: Z AC + Y
t5: AC Z

(Sta10 Fig 15.6)

Internal Processor Organization

Lecture 10: Control Unit 29.11.2010

Comp. Org II, Autumn 2010 3

Computer Organization II

29.11.2010Computer Organization II, Autumn 2010, Teemu Kerola 13

Hardwired implementation

(Langoitettu ohjaus)

Hardwired control unit
(Langoitettu ohjausyksikkö)

Can be used when CU’s inputs and outputs fixed
Functionality described using Boolean logic
CU implemented by one logical circuit

Eg. C5 = P*Q*T2 + P*Q*(LDA)*T2 + ...

29.11.2010Computer Organization II, Autumn 2010, Teemu Kerola 14

(Sta10 Fig 15.10)

Fig 15.3, 15.5 and Tbl 15.1

ICC - bits P and Q

PQ = 00 Fetch Cycle

PQ = 01 Indirect Cycle

PQ = 10 Execute Cycle

PQ = 11 Interrupt Cycle

C5 = ”read bus to MBR”

Hardwired Control Unit
Opcode decoder (4-to-16)

4-bit instruction code as input to CU
Only one signal active at any given stage

29.11.2010Computer Organization II, Autumn 2010, Teemu Kerola 15

C5: opcode = 5 (bits I1, I2, I3, I4) signal O11 is true (1)

(Sta10 Table 15.3)

Finite State Diagram

29.11.2010Computer Organization II, Autumn 2010, Teemu Kerola 16

1: PCWr, IRWr
ALUOp=Add

Others: 0s
x: PCWrCond

RegDst, Mem2R

Ifetch

1: BrWr, ExtOp
ALUOp=Add

Others: 0s

x: RegDst, PCSrc
ALUSelB=10

IorD, MemtoReg

Rfetch/Decode

1: PCWrCond

ALUOp=Sub

x: IorD, Mem2Reg
ALUSelB=01

RegDst, ExtOp

ALUSelA

BrComplete

PCSrc

1: RegDst

ALUOp=Rtype
ALUSelB=01

x: PCSrc, IorD
MemtoReg

ALUSelA

ExtOp

RExec

1: RegDst, RegWr
ALUOp=Rtype

ALUselA

x: IorD, PCSrc
ALUSelB=01

ExtOp

Rfinish

ALUOp=Or

IorD, PCSrc

1: ALUSelA
ALUSelB=11
x: MemtoReg

OriExec

1: ALUSelA

ALUOp=Or
x: IorD, PCSrc

RegWr

ALUSelB=11

OriFinish

ALUOp=Add

PCSrc

1: ExtOp

ALUSelB=11

x: MemtoReg

ALUSelA
AdrCal

ALUOp=Add
x: PCSrc,RegDst

1: ExtOp

ALUSelB=11

MemtoReg

MemWr
ALUSelA

SWMem

ALUOp=Add
x: MemtoReg

1: ExtOp

ALUSelB=11
ALUSelA, IorD

PCSrc

LWmem

ALUOp=Add
x: PCSrc

1: ALUSelA

ALUSelB=11
MemtoReg

RegWr, ExtOp

IorD

LWwr

lw or sw

lw sw
Rtype Ori

beq

0 1 8

10

6
53

2

4
7

11

State transitions

29.11.2010Computer Organization II, Autumn 2010, Teemu Kerola 17

Next state from current state
State 0 -> State1
State 1 -> S2, S6, S8, S10
State 2 -> S5 or …
State 3 -> S9 or …
State 4 ->State 0
State 5 -> State 0
State 6 -> State 7
State 7 -> State 0
State 8 -> State 0
State 9-> State 0
State 10 -> State 11
State 11 -> State 0

Alternatively, prior state & condition
S4, S5, S7, S8, S9, S11 -> State 0
_________________ -> State1
_________________ -> State 2
_________________ -> State 3
_________________ -> State 4

State 2 & op = SW -> State 5
_________________ -> State 6

State 6 -> State 7
_________________ -> State 8

State 3 & op = JMP -> State 9
_________________ -> State 10

State 10 -> State 11

Hardwired Control Summary

Control signal generation in hardware is fast

Weaknesses
CU difficult to design

- Circuit can become large and complex

CU difficult to modify and change
- Design and ’minimizing’ must be done again after every

change

RISC-philosophy makes it a bit easier
Simple instruction set makes the design and implementation
easier

29.11.2010Computer Organization II, Autumn 2010, Teemu Kerola 18

Lecture 10: Control Unit 29.11.2010

Comp. Org II, Autumn 2010 4

Computer Organization II

29.11.2010Computer Organization II, Autumn 2010, Teemu Kerola 19

Microprogrammed Control (Mikro-
ohjelmoitu ohjaus)

Microprogrammed Control
(Mikro-ohjelmoitu ohjaus)

Idea 1951: Wilkes Microprogrammed Control (Maurice Wilkes)

Execution Engine
Execution of one machine instruction is done by executing a sequence of
microinstructions (micro-operations)
Executes each microinstruction by generating the control signals indicated
by the instruction

Micro-operations stored in control memory as microinstructions
Firmware (laiteohjelmisto)

Each microinstruction has two parts
What is done during the coming clock cycle?

- Microinstruction indicates the control signals
- Deliver the control signals to circuits

What/where is the next microinstruction?
- Assumption: next microinstruction from next location
- Microinstruction can contain the address of next microinstruction!

29.11.2010Computer Organization II, Autumn 2010, Teemu Kerola 20

(Sta10 Fig 15.11)

Microinstructions

Each stage in
instruction execution
cycle is represented by
a sequence of
microinstructions that
are executed during the
cycle in that stage

E.g. in ROM
Microprogram or
firmware

29.11.2010Computer Organization II, Autumn 2010, Teemu Kerola 21

(Sta10 Fig 16.2)

Horizontal microinstruction
All possible control signals are represented in a
bit vector of each microinstruction

One bit for each signal (1=generate, 0=do not generate)
Long instructions if plenty of signals used

Each microinstruction is a conditional branch
What status bit(s) checked
Address of the next microinstruction

29.11.2010Computer Organization II, Autumn 2010, Teemu Kerola 22

(Sta10 Fig 16.1 a)

Vertical Microinstruction

Control signals coded to number (function)

Decode back to control signals during execution

Shorter instructions, but decoding takes time
Gate delay?

Each microinstruction is conditional branch
(as with horizontal instructions)

29.11.2010Computer Organization II, Autumn 2010, Teemu Kerola 23

(Sta10 Fig 16.1 b)

Microinstruction
Execution Engine

Control Address Register, CAR
Which microinstruction next?

~ instr. pointer, “MiPC”
Control memory

Microinstructions
- fetch, indirect,execute,interrupt

Control Buffer Register, CBR
Register for executing microinstr.

~ instr. register, “MiIR”
Generate the signals to circuits

- Verticals through decoder

Sequencing Logic
Next address to CAR

29.11.2010Computer Organization II, Autumn 2010, Teemu Kerola 24

(Sta10 Fig 16.4)

Lecture 10: Control Unit 29.11.2010

Comp. Org II, Autumn 2010 5

Which Microinstruction
Next?

a) Explicit

Each instruction has 2
addresses

With the conditions flags
that are checked for
branching
Next instruction from either
address (select using the
flags)
Often just the next location
in control memory

- Why store the address?
- No time for addition!

29.11.2010Computer Organization II, Autumn 2010, Teemu Kerola 25

(Sta10 Fig 16.6)

Discussion?

Which Microinstruction Next?

b) Implicit

Assumption: next
microinstruction from next
location in control memory

Must be calculated

Instruction has 1 address
Still need condition flags
If condition=1,

use the address

Address part not always
used

Wasted space

29.11.2010Computer Organization II, Autumn 2010, Teemu Kerola 26

(Sta10 Fig 16.7)

Which Microinstruction Next?

c) Variable format

Some bits interpreted
in two ways

1 b: Address or not
Only branch instructions
have address
Branch instructions do
not have control signals
If jump, need to execute
two microinstructions
instead of just one

- Wasted time?
- Saved space?

29.11.2010Computer Organization II, Autumn 2010, Teemu Kerola 27

(Sta10 Fig 16.8)

Which Microinstruction Next?

d) Address generation during execution

How to locate the correct microinstruction routine?
Control signals depend on the current machine instruction

Generate first microinstruction address from op-code (mapping +
combining/adding)

Most-significant bits of address directly from op-code
Least-significant bits based on the current situation (0 or 1)
Example: IBM 3033 Control Address Register (CAR), 13 bit address

- Op-code gives 8 bits -> each sequence 32 micro-instr.
- rest 5 bits based on the certain status bits

29.11.2010Computer Organization II, Autumn 2010, Teemu Kerola 28

(Sta10 Fig 16.9)

Which Microinstruction Next?

e) Subroutines and residual control

Microinstruction can set a special return register with
’return address’

No context, just one return allowed (one-level only)
No nested structure
Example: LSI-11, 22 bit microinstruction

- Control memory 2048 instructions, 11 bit address
- OP-code determines the first microinstruction address
- Assumption, next is CAR CAR+1
- Each instruction has a bit: subroutine call or not
- Call:

- Store return address (only the latest one available)
- Jump to the routine (address in the instruction)

- Return: jump to address in return register

29.11.2010Computer Organization II, Autumn 2010, Teemu Kerola 29

Microinstruction Coding

Horizontal or Vertical?
Horizontal: fast interpretation
Vertical: less bits, smaller space

Often a compromize, using mixed model
Microinstruction split to fields, each field is used for certain
control signals
Excluding signal combinations can be coded in the same field

- NOT: Reg source and destination, two sources – one dest
Coding decoded to control signals during execution

- One field can control decoding of other fields!

Several shorter coded fields easier for implementation than
one long field

Several simple decoders

29.11.2010Computer Organization II, Autumn 2010, Teemu Kerola 30

Lecture 10: Control Unit 29.11.2010

Comp. Org II, Autumn 2010 6

Microinstruction Coding

Functional encoding (toiminnoittain)

Each field controls one specific
action (e.g., load)

- Load from accumulator
- Load from memory
- Load from ...

Resource encoding (resursseittain)

Each field controls specific
resource (e.g. accumulator)

- Load from accumulator
- Store to accumulator
- Add to accumulator
- … accumulator

29.11.2010Computer Organization II, Autumn 2010, Teemu Kerola 31

(Sta10 Fig 16.11)

Vertical vs.
Horizontal
Microcode (3)

Next microinstruction
address (CAR = CSAR)

Assumption:
CAR=CAR+1

(by resource)

29.11.2010Computer Organization II, Autumn 2010, Teemu Kerola 32

(Sta10 Fig 16.12)

Why microprogrammed control?

… even when its slower than hardwired control

Design is simple and flexible
Modifications (e.g. expansion of instruction set) can be added
very late in the design phase
Old hardware can be updated by just changing control memory

- Whole control unit chip in older machines
There exists (existed?) development environments for
microprograms

Backward compatibility
Old instruction set can be used easily
Just add new microprograms for new machine instructions

Generality
One hardware, several different instruction sets
One instruction set, several different organizations

29.11.2010Computer Organization II, Autumn 2010, Teemu Kerola 33

Control Summary

Control signals

Hardwired control

Microprogrammed control?
Control memory, control address, control buffer
Horizontal vs. vertical microprogrammed control?
How do you find the next microinstruction?
LSI-11 example

29.11.2010Computer Organization II, Autumn 2010, Teemu Kerola 343434

Review Questions / Kertauskysymyksiä

Hardwired vs. microprogrammed control?

How to determine the address of
microinstruction?

What is the purpose of control memory?

Horizontal vs. vertical microinstruction?

Compare microprogram execution to machine
language fetch-execute cycle.

Microprogrammed vs. hardwired?

29.11.2010Computer Organization II, Autumn 2010, Teemu Kerola 35

