Lecture 10: Control Unit 29.11.2010

What is Control? Functional requirements
for CPU
. i 1. Operations
B Architecture determines the CPU 2. Addressingmodes

functionality that is visible to 'programs’ (3. Registers
m Whatis the instruction set ? 4. 1/O module interface
m What do instructions do? 5. Memorymodule
m What operations, opcodes? interface
m Where are the operands? 6. Interrupt processing
m How to handle interrupts? structure

B Control Unit, CU (ohjausyksikk®) determines how these
things happen in hardware (CPU, MEM, bus, 1/0O)
m Whatgate and circuit should do what at any given time
m Selects and gives the control signals to circuits in order
m Physical control wires transmit the control signals
- Timed by clock pulses
- Control unit decides values of the signals

Computer Organization II, Autumn 2010, Teemu Kerola 20.11.2010 2
\‘\ Control Signals ["read” (Stal0 Fig 15.4) ‘ Micro-Operations
. "write” . . .
radd? u Slmpl(=T contr_ol _S|gnals that cause one very small
operation (toiminto)
:a':f,?.l.scig;ﬂk m E.g. Bits move from reg 1 through internal bus to ALU
% B Subcycle duration determined from the longest
Control & H operation
Lutt B During each subcycle multiple micro-operations in
Clock. action t1:MAR « PC
:,\Vm oTsigna ; t2: MBR < MEM[MAR
Contral signals . Som(rz can be done smultarwegusly, []
- Ifin different parts of the circuits 3:1R < (MBR)
B Main task: control data transfers » Must avoid resource conflicts
m Inside CPU: REG < REG, ALU < REG, ALU-ops - WAR or RAW, ALU, bus If implemented
m CPU < MEM (I/O-controller): address, data, control m Some must be executed sequentially LiliaiALY
B Timing (ajoitus), Ordering (jarjestys) to maintain the semantics
Computer Organization II, Autumn 2010, Teemu Kerola 20.11.2010 3 Computer Organization II, Autumn 2010, Teemu Kerola 20.11.2010 4
. Instruction cycle (Kaskysykli . Instruction Fetch Cycle
“ y (ysy) (Stalo Fig 15.1) “ y

ERETI LTI Example:

t1: MAR « PC

t2: MAR + MMU(MAR
oo Instruction Cycle
Control Bus -
—————————— = =—Wait?

t3: Control Bus « Rea

>
Fetch Tudirect | [Execute | [Tnterrupt PC+«PC+1
t4: MBR + MEM[MAR]
[uoP] [uOP]

Control Bus « Release B8 -veoy buteresiser Address Data Control

. IR = Instruction register Bus B B
t5: IR + MBR o e g:: us us
(Stalo Fig 12.6)

CPU

=
4!

Memory
|Instr|u'tlnn Cycle

|lnsn1|¢ﬂon Cycle

[uwoP] [uOP] [nOP]
B \When micro-operations address different parts of the .
hardware, hardware can execute them parallel Execution order? What can be executed parallel?

B See Chapter 12 instruction cycle examples (next slide) Wh'Ch micro-ops to same subcycle,
which need own cycle?

Computer Organization Il, Autumn 2010, Teemu Kerola 29.11.2010 5 Computer Organization Il, Autumn 2010, Teemu Kerola 29.11.2010 5

Comp. Org 11, Autumn 2010 1

Lecture 10: Control Unit 29.11.2010

. Instruction Cycle Flow Chart

@ [Instruction Cycle as State-Machine

" IADD r1,r2, r3: .
tl: ALUInL «r2 B |CC: Instruction Cycle Code register’s state
B Operand fetch cycle(s) t2: ALUIn2 - r3
= From register or from memory ALUoper « IR.oper I
m Address translation t3:rl «— ALUout 11 (interrupt) / — \ 00 (fetch) (Stalo Fig 15.3)
B Execute cycle(s) flags < xxx - /-
= Execution often in ALU) indireet
= Operandsin I1SZ X, Increment and Skip if zero: Setup Read
and control operation t1: MAR <« IR.address mterrupt address
= Result from output t2: MBR <~ MEM[MAR]
to register /memory t3: MBR <~ MBR+1 m';:ff‘ft‘:‘l;“
m flags « status t4: MEM[MAR] «- MBR
B Interrupt cycle(s) if (MBR=0) thenPC <~ PC +1

for enabled)-
interrupt?

m See examples (Ch 12): Pentium
= What to do using same micro-operation?

Conditional
= What micro-ops parallel / sequentially? operation
possible
Computer Organization ll, Autumn 2010, Teemu Kerola 29.11.2010 7 Computer Organization ll, Autumn 2010, Teemu Kerola 29.11.2010 8
. Instruction Cycle Control . .
) Control signals
‘*\ as State-Machine ‘ g

B Micro-operation = CU emits a set of control signals
B Functionality of Control Unit can be presented as state-
machine
m State: What stage of the instruction cycle is going on in CPU

m Substate: timing based, group of micro-operations
executed parallel in one (sub)cycle

B Substate control signals are based on

B Example: processor with single accumulator

Cs

Control signals

sequencing execution

Cio
G ¥ AC

—
» (sub)state itself CUsiER- [U ® c,-»% %—c,
m Fields of IR-register (opcode, operands) machine s
. * C 1
= Previous results (flags) impl. o A3
= Execution circuits| =
B New state based on previous Control | 3 £lags
interrupts it .
state and flags [a (Stal0 Fig 15.5)
- see a. 1 B
m Also external interrupts effect the new state flags Lcmj ¢
= Sequencing
Computer Organization l, Autumn 2010, Teemu Kerola 29.11.2010 9 Computer Organization l, Autumn 2010, Teemu Kerola 29.11.2010 10
“#. Control Signals and Micro-Operations . Internal Processor Organization
Micro-operations Timing Active Control | . .
Signals B Fig 15.5 too complex wiring for °
1 MAR < (PC) @ C, | Clock? implementation?
. (g LI = Ry €\ e B Use internal processor bus to connect the s ”
@C = (PC) + D> 22 components ’ iiu‘fs
t;; IR — (MBR) C . o)
2 (= ; B ALU usually has temporary registers Y and Z b H
t;; MAR = (IR(Address)) & Data £
Indirect t,: MBR + Memory C5 G s
/ADD I “E
t;: IR(Address) — (MBR(Address)) €, - MAR < IR.address H
t;; MBR < (PC) & t2: MBR <~ MEM[MAR] o
_— Qw:? — Save-address o t3: Y < MBR
— - e 7 t4:Z < AC+Y >
t5:AC < Z o
t3: Memory < (MBR) Cp. Cy
ALU
Cy = Read control signal to system bus
Cw = Wiite control signal to system bus. (Stal0 Fig 155)
(Stal0 Table 15.1) (Stal0 Fig 15.6)
Computer Organization l, Autumn 2010, Teemu Kerola 29.11.2010 1 Computer Organization l, Autumn 2010, Teemu Kerola 29.11.2010 12

Comp. Org II, Autumn 2010 2

Lecture 10: Control Unit

29.11.2010

i Computer Organization Il

Hardwired implementation

(Langoitettu ohjaus)

Computer Organization Il, Autumn 2010, Teemu Kerola. 20112010 13

. Hardwired control unit
‘*\ (Langoitettu ohjausyksikkd)

B Can be used when CU’s inputs and outputs fixed

m Functionality described using Boolean logic
m CU implemented by one logical circuit |
A 4

C5 ="read bus to MBR”
B Eg.C5=P*Q*T2 + P*Q*(LDA)*T2 + ... EEEE 7
' v v
Fig15.3, 15.5 and Tbl 15.1
o ——
ICC -bitsPandQ Timing [~ Control DIEE
generator . Unit * Flags

PQ = 00 Fetch Cycle L i e
PQ =01 Indixect Cycle

Co € eee Ce
| Vv v

PQ = 10 Execute Cycl

PQ = 11 Interrupt Cycle (S i 1510)

Computer Organization Il, Autumn 2010, Teemu Kerola. 20112000 14

i Hardwired Control Unit

B Opcode decoder (4-to-16)
m 4-bitinstruction code as input to CU
m Only one signal active at any given stage

(Stal0 Table 15.3)

1 [D[] ufor[0[o3[0os 05060708 0o o10]oi]on[o13[on]o1s5]ols
o [0 o o o o]o]ojolololelolelo]ololo atil
o[o[o[t[ofoJoJo|o|o[oooJo[o]o]o 1
oJo[1]ofofofoJo|ofo]o o [ofo[o]o 1 0
oot Jt[ofoJoJolololo]o[olalo 1 oo
0o [1[oJo[o]oJoJo|oJo]o[a[0o]0 T[ofoo]o
o1 lol1fofofofo]o]o|o]o]o D oq0oo]o
of1[1JofofoJoJolololoJola[1[okloo]ololo
o1 [t]r[ofoJoJofolo[o][t [a}s[o]o]ololo
T[ofofofofolofofo[olF[1][o0 0Jofofofo]o
1[ofo[1[ofofolo]o 1 [o}% [ofofofofo]o]o
1[o[1[ofofofofolf[1 o}l o]ofofofofo]o]o
1lof[1[1]ofofo 1Jofo[ofofoefofofofo]o]o
T[1]ofoo]o 1 [ofo[o0[o[ofo|o[ofo]o]o]o
T[1]o[1]o 1 [ofo ofofolofofofofolo]o]o
T[11]ooft oJoJofofofoJoJo[ofo]o]o]o
T[1|1[1}a 0Jofo[o[ofo[o|o oo o]|o]o]o

C5: opcode = 5 (bits 11, 12, 13, 14) — signal Ol1 is true (1)

Computer Organization Il Autumn 2010, Teemu Kerola 20112000 15

- Finite State Diagram

RegDst, ExtOp

1:PCWf

ALUSelA
PC

10 OriExec
ALUOp=0
1:ALUSelA

ALUSelB=11,
x: MemtoRgg

ALUSelB=11
ALUOp=Add

1: ALUSelA

4 LWw) R?\%Wr EXtOp)
emtoReg

ALUSelB=1

1:ALUSelA
RegWi

Computer Organization Il, Autumn 2010, Teemu Kerola 20112010 16

i State transitions

Next state from current state Alternatively, prior state & condition
State 0 -> Statel S4, S5, S7, S8, S9, S11 -> State 0

State 1 -> S2, S6, S8, S10 - -> Statel
State 2->S5or ... - ->State2
State 3->S9 or ... - ->sState3
State 4 ->State 0 - -> State 4
State 5 -> State 0 State2 & op=SW ->State 5
State 6 -> State 7 -> State 6
State 7 -> State 0 State 6 -> State 7
State 8 -> State 0 -> State 8
State 9-> State 0 State 3& op =JMP -> State 9
State 10 -> State 11 -> State 10
State 11 -> State 0 State 10 -> State 11
Computer Organization I, Autumn 2010, Teemu Kerola 2011200 17

i Hardwired Control Summary

B Control signal generation in hardware is fast

B Weaknesses
m CU difficult to design
- Circuit can become large and complex
m CU difficult to modify and change
- Design and 'minimizing’ must be done again after every
change
B RISC-philosophy makes it a bit easier

m Simple instruction set makes the design and implementation
easier

Computer Organization I}, Autumn 2010, Teemu Kerola 20112010 18

Comp. Org 11, Autumn 2010

Lecture 10: Control Unit 29.11.2010

. - . Microprogrammed Control
‘ Computer Organization Il ‘ (Mikro-ohjelmoitu ohjaus)

B |dea 1951: Wilkes Microprogrammed Control (Maurice Wilkes)

B Execution Engine

m Execution of one machine instruction is done by executing a sequence of
microinstructions (micro-operations)

m Executes each microinstruction by generating the control signals indicated
by the instruction

M icroprog rammed Control (M|kr0_ B Micro-operations stored in control memory as microinstructions
. . . = Firmware (laiteohjelmisto)
ohjelmoitu ohjaus) '

B Each microinstruction has two parts
m What is done during the coming clock cycle?
- Microinstruction indicates the control signe
- Deliver the control signals to circuits
m What/where is the next microinstruction?
- Assumption: next microinstruction from next location
- Microinstruction can contain the address of next microinstruction!

Computer Organization Il, Autumn 2010, Teemu Kerola. 20112010 19 Computer Organization Il, Autumn 2010, Teemu Kerola. 20112010 20

(Stal0 Fig 15.11)

‘ Microinstructions }m ‘ Horizontal microinstruction
cycle
- : routine L] . . .
o o idiect o envetis B All possible control signals are represented in a
W Eachstagein : } e bit vector of each microinstruction
mstruf:ﬂon execution Jump to execnie e m One bit for each signal (1=generate, 0=do not generate)
cycle is represented by —) L .
a sequence of pesiing m Long instructions if plenty of signals used
n n n ;2 routine
microinstructions that e e ot e B Each microinstruction is a conditional branch
are executed durlng the Jump to opeode routine ‘xecute cycle beginning ;
cyclein that stage : - m What status bit(s) checked
AN utine . . .
. :) b m Address of the next microinstruction
. Eg in ROM Jump to fetch or interrupt
= Microprogram or o ADD routine I L1 |
firmware T | L Mcroinstruction address
Jump condition
. . —{'ucondilioual
—Zero
—Overflow
: IOF routine (StalO Fig 16.1 a) . S_\:!le::lt::‘cl;::u-ol signals
(Sta1o F|g 162) Jump to fetch or interrupt. Internal CPU control siglmls
Computer Organization ll, Autumn 2010, Teemu Kerola 29.11.2010 21 Computer Organization ll, Autumn 2010, Teemu Kerola 29.11.2010 22
» Vertical Mi inst ti - Microinstruction
ertical Icroinstructon . . .
e N Execution Engine ool
- - nil
B Control signals coded to number (function) M Control Address Register, CAFELL—
. : e=ppf i of™= [_Control Address Register |
W Decode back to control signals during execution = Which microinstruction next? - s 7" s
- m ~instr. pointer, “MiPC” y
Shorter instructions, but decoding takes time B Control memory .
? . . .
= Gatedelay? = Microinstructions o
B Each microinstruction is conditional branch - fetch, indirect,execute, interrupt RSy
(as with horizontal instructions) B Control Buffer Register, CBR
m Register for executing microinstr.
m ~instr. register, “MilR”
C T T 171 I - o
[siceomteaction adde. m Generate the signals to circuits
| ;,“ml, condition - Verticals through decoder Next Address
B Sequencing Logic Control
: . I
(Stalo Fig 16.1 b) —_— }Fuwwn codes m Next addressto CAR :
(StalO Fig 16.4) Control Signals ~ Control Signals
‘Within CPU to System Bus
Computer Organization ll, Autumn 2010, Teemu Kerola 29.11.2010 23 Computer Organization ll, Autumn 2010, Teemu Kerola 29.11.2010 24

Comp. Org II, Autumn 2010 4

Lecture 10: Control Unit

29.11.2010

Which Microinstruction
Next?

a) Explicit

B Each instruction has 2
addresses contral

m With the conditions flags
';::\';::.1

that are checked for
branching

m Next instruction from either
address (select using the
flags)

m Oftenjust the next location

address
branch selection

in control memory flazs —»|

- Why store the address?

- No time for addition!

Computer Organization I}, Autumn 2010, Teemu Kerola

instructi
(Stalo Fig 16.6) ey

Discussion?

29.11.2010

fon

25

»

Which Microinstruction Next?
b) Implicit
B Assumption: next

microinstruction from next

location in control memory oy
m Must be calculated

B pinstruction has 1 address

control =
N . buffer | control | address i control address
= Still need condition flags et [™t

m |f condition=1, ll
use the address
flags m ‘multiplexer
B Address part not always T i
uSed selection —]
register
= Wasted space (Stal0 Fig 16.7)

Computer Organization I}, Autumn 2010, Teemu Kerola 29.11.2010

26

»

. address
c) Variable format ==

Which Microinstruction Next?

B Some bits interpreted
in two ways
m 1 b: Address or not

register

m Only branch instructions)
have address s :

m Branchinstructions do
not have control signals
m |f jump, need to execute
two microinstructions
instead of just one
- Wasted time? flags
- Saved space?

Mdress
selection

Computer Organization I}, Autumn 2010, Teemu Kerola

29.11.2010

27

i Which Microinstruction Next?

d) Address generation during execution

B How to locate the correct microinstruction routine?
m Control signals depend on the current machine instruction
B Generate first microinstruction address from op-code (mapping +
combining/adding)
= Most-significant bits of address directly from op-code
m Least-significant bits based on the current situation (0 or 1)
m Example: IBM 3033 Control Address Register (CAR), 13 bit address
- Op-code gives 8 bits -> each sequence 32 micro-instr.
- rest 5 bits based on the certain status bits

00 07 08 09 10 11 12
; . I I ! I (Stal0 Fig 16.9)
ta ig 16.!

! Pt 1t

BAS) BB(4) BC(4) BD4) BE4) BF(7)

Computer Organization I}, Autumn 2010, Teemu Kerola 20112010 28

i Which Microinstruction Next?

€) Subroutines and residual control

B Microinstruction can set a special return register with
‘return address’
m No context, just one return allowed (one-level only)
m No nested structure
m Example: LSI-11, 22 bit microinstruction
- Control memory 2048 instructions, 11 bit address
- OP-code determines the first microinstruction address
- Assumption, next is CAR « CAR+1
- Each instruction has a bit: subroutine call or not
- Call:

- Store return address (only the latest one available)
- Jump to the routine (address in the instruction)

- Return:jump to address in return register

Computer Organization I}, Autumn 2010, Teemu Kerola 20.11.2010

29

Microinstruction Coding

B Horizontal or Vertical?
m Horizontal: fast interpretation
m Vertical: less bits, smaller space
B Often a compromize, using mixed model

= Microinstruction split to fields, each field is used for certain
control signals

m Excluding signal combinations can be coded in the same field
- NOT: Reg source and destination, two sources — one dest
m Coding decoded to control signals during execution
- Onefield can control decoding of other fields!
B Several shorter coded fields easier for implementation than
one long field
= Several simple decoders

Computer Organization I}, Autumn 2010, Teemu Kerola

Comp. Org 11, Autumn 2010

20.11.2010 30

Lecture 10: Control Unit 29.11.2010

MDR < Register 012345678 910012131415161718
- L1 h
‘ Microinstruction Coding Register = MDR \|—l—l—l—l—l—l—l—l—l—l—l—l—l—l—l—l—l—l—|.
Field 3
. [0,0,0[0,1,0] | | MAR<Register J| L~ xt g ¢
B Functional encoding (woiminnoittain) (@) Direct encoding R
X . N N . 1 4- ALU operation
m Eachfield controls one specific |4 | T ceranons S5 catiSn 5 - register selection
i LA S A— q 0,0,0 Read irrg operation 6 - Constant
action (e.g., load) e —— — o, 0,)) o)
- Load from accumulator sk logic logic [0,0,1] ,] Write Fontal fnicroinstruction format (Stal0 Fig 16.12)
- Load from memory l l l l l l .
o Vertical vs.
- Load from ... Control signals
i . Horizontal
B Resource encoding (resursseittain) btk [] -
m Each field controls specific e ms_| LU gper: i T Microcode (3)
resource (e.g. accumulator) — l — | | — Qoy 1y M0, 0,0, | Acc—acCsRegiste "L
- Load from accumulator i = = ACC —ACC - Register Next microinstruction

- Store to accumulator
- Add to accumulator
- ... accumulator

Register < ACC AeEEE

ACC < Register + 1 CAR=CAR+1

oy, 1Jo 0] |] ACC < Register address (CAR = CSAR)
1
1

LIS Sy SRS
(Stal0 Fig 16.11) Controlsignals select
9.10. (a) Vertical microinstruction format (by resource)

Computer Organization Il, Autumn 2010, Teemu Kerola 20112010 31 Computer Organization Il, Autumn 2010, Teemu Kerola 20112010 32

i Why microprogrammed control? ‘ Control Summary

B . even when its slower than hardwired control
B Designis simple and flexible - .
= Modifications (e.g. expansion of instruction set) can be added Control S|gnals

very late in the design phase W Hardwired control
= Old hardware can be updated by just changing control memory

- Whole control unit chip in older machines n Microprogrammed control?
m There exists (existed?) development environments for m Control memory, control address, control buffer
microprograms m Horizontal vs. vertical microprogrammed control?
B Backward compatibility m How do you find the next microinstruction?
m Oldinstruction set can be used easily m LS|-11 example
m Just add new microprograms for new machine instructions
B Generality
m One hardware, several different instruction sets
= Oneinstruction set, several different organizations
Computer Organization l, Autumn 2010, Teemu Kerola 29.11.2010 33 Computer Organization l, Autumn 2010, Teemu Kerola 20.11.2010 343434

i Review Questions / Kertauskysymyksia

B Hardwired vs. microprogrammed control?

B How to determine the address of
microinstruction?

B Whatis the purpose of control memory?
B Horizontal vs. vertical microinstruction?

B Compare microprogram execution to machine
language fetch-execute cycle.

B Microprogrammed vs. hardwired?

Computer Organization I}, Autumn 2010, Teemu Kerola 20112010 35

Comp. Org 11, Autumn 2010 6

