
Superscalar- processing

Stallings 2010: Ch 14

Instruction dependences
Register renaming
Pentium / PowerPC

Lecture 9

Pipelined Processor

29.11.2010Computer Organization II, Autumn 2010, Teemu Kerola 222

http://en.wikipedia.org/wiki/File:MIPS_Architecture_%28Pipelined%29.svg

Superscalar processors

Goal
Concurrent execution of scalar instructions

Several independent pipelines
Not just more stages in one pipeline
Own functional units in each pipeline

29.11.2010Computer Organization II, Autumn 2010, Teemu Kerola 3

Sta10 Fig 14.1

Instruction-
level
parallelism

Ancient!

Sta10 Tbl 14.1

Superscalar

29.11.2010Computer Organization II, Autumn 2010, Teemu Kerola 4

(Sta10 Fig 14.2)

Only one instruction
execute at one time

Two instructions
executed at the
same time.

Each execute stage split
into 2 “half-stages”

http://www.coe.uncc.edu/~jbyun1/papers/MIPS_3.pdf

Superscalar processor

Efficient memory usage
Fetch several instructions at once, prefetching (ennaltanouto)
Data fetch and store (read and write)
Concurrency

Several instructions of the same process executed
concurrently on different pipelines

Select executable instruction (ready for execute stage) from the
prefetched instruction following a policy
(in-order issue/out-of-order issue)

Finish more than one instruction during each cycle
Instructions may complete in different order than started (out-
of-order completion)

When is it ok for an instruction finish before the preceeding
ones?

29.11.2010Computer Organization II, Autumn 2010, Teemu Kerola 5

Effect of Dependencies

True Data/Flow Dependency (datariippuvuus)
Read after Write (RAW)
The latter instruction needs data from former instruction

Procedural/Control Dependency (kontrolliriippuvuus)
Instruction after the jump executed only,
when jump does not happen
Superscalar pipeline has more instructions to waste
Variable-length instructions: some additional parts known only
during execution

Resource Conflict (Resurssiriippuvuus)
One or more pipeline stage needs the same resource
Memory buffer, ALU, access to register file, ...

29.11.2010Computer Organization II, Autumn 2010, Teemu Kerola 6

add r1,r2

move r3,r1

jnz r2, 100
add r1, =1

Typo on p. 545, line 2 [Stal10]

fadd f1, f2, f4
fadd f4, f5, f6

Effect of dependencies

29.11.2010Computer Organization II, Autumn 2010, Teemu Kerola 7

(Sta10 Fig 14.3)

d

WAR and WAW Dependencies

i: ”write” R1 true data dependency (RAW)

………

j: ”read” R1

i: ”read” R1 antidependency (WAR)

……..

j: ”write” R1

i: ”write” R1

…….

j: ”write” R1 output dependency (WAW)

29.11.2010Computer Organization II, Autumn 2010, Teemu Kerola 8

data dependent instruction j cannot
be executed before instruction i

Anti- and output dependency allow
change in execution order for instructions
i and j, but afterwards must be checked
that the right value and result remains

Typo on p. 550, line 2 from bottom [Stal10]

Dependencies Specific to
Out-of-order Completion

Output Dependency (Kirjoitusriippuvuus)
write-after-write (WAW)
Two instructions alter the same register or memory
location, the latter in the original code must stay

Antidependency (Antiriippuvuus)
Write-after-read (WAR)
The former read instruction must be able to fetch
the register content, before the latter write stores
new value there

Alias?
Two registers use indirect references to the same
memory location?
Different virtual address, same physical address?
What is visible on instruction level (before MMU)?

29.11.2010Computer Organization II, Autumn 2010, Teemu Kerola 9

move r2,r1
add r1,r4,r5

load r1,X
add r2,r1,r3
add r1,r4,r5

store R5, 40(R1)

load R6, 0(R2)
=?

How to Handle Dependencies?

Starting point
All dependences must be handled one way or other

Simple solution (like before)
Special hardware detects dependency and
force the pipeline to wait (bubble)

Alternative solution (like before, bit more important now)
Compiler generates instructions in such a way that there will be
NO dependencies
No special hardware

- simpler CPU that need not detect dependencies
Compiler must have very detailed and specific information about
the target processor’s functionality

- which dependencies must/can be solved by compiler?

29.11.2010Computer Organization II, Autumn 2010, Teemu Kerola 10

ILP vs. Machine Parallelism

Instruction-level parallelism, ILP (käskytason rinnakkaisuus)

Independent instructions that could be executed in parallel by
overlapping
Theoretical upper limit for parallel execution of instructions

- Depends on the code

Machine parallelism (konetason rinnakkaisuus)
Ability of the processor to actually execute instructions parallel
How many instructions can be fetched and executed at the
same time?
~ How many pipelines can be used
Always smaller than instruction-level parallelism

- Cannot exceed what instructions allow, but can limit the
true parallelism

- Dependences solved inefficiently, bad optimization?

29.11.2010Computer Organization II, Autumn 2010, Teemu Kerola 11

load r1 r2

add r3 r3+1

add r4 r4, r2

Superscalar execution

29.11.2010Computer Organization II, Autumn 2010, Teemu Kerola 12

dispatch (vuorottaminen, lähettää suorittamaan)

issue (laukaisu, liikkeellelaskeminen)

”check in”

”departure”

(no wait) (wait?)

(wait?)

waiting to
execute

(Sta10 Fig 14.6) in-order issue vs.
out-of-order issue

in-order complete vs.
out-of-order complete

compiler
generated

Superscalar Execution

Instruction fetch (käskyjen nouto)
Branch prediction (hyppyjen ennustus)

prefetch (ennaltanouto) from memory to CPU
Dispatch to instruction window (valintaikkuna)

Instruction issue (käskyn päästäminen hihnalle)
Check (and remove) data, control and resource dependencies
Reorder; issue suitable instructions to pipelines
Pipelines proceed without waits

Instruction complete, retire (suoritus valmistuu)
Commit or abort (hyväksy tai hylkää)

- Usually all state changes occur here
Check and remove write and antidependencies

wait / reorder (järjestä uudelleen)

29.11.2010Computer Organization II, Autumn 2010, Teemu Kerola 13

In-order Issue, In-order Complete

Traditional sequential execution order

No need for instruction window

Instructions dispatched to pipelines in original order
(determined by the compiler)

Compiler handles most of the dependencies
Still need to check dependencies, if needed add bubbles
Can allow overlapping on multiple pipelines

Instructions complete and commit in original order
Cannot pass, overtake (ohittaa) on other pipeline
Several instructions can complete at same time
Commit/Abort

29.11.2010Computer Organization II, Autumn 2010, Teemu Kerola 14

In-order Issue, In-order Complete Pipeline

29.11.2010Computer Organization II, Autumn 2010, Teemu Kerola 15

(Sta10 Fig 14.4a)

Fetch 2 instructions at the same time

I1 needs 2 cycles for execution

I3 and I4: resource dependency

I4 I5: data dependency

I5 and I6: resource dependency

Decode clean before fetching next two instructions
Instructions queue for execution in decode unit
Writes delayed to maintain in-order completion

In-order Issue, Out-of-order Complete

Like previous, but
- Allow commit in different
order than issued order
(allow passing)
- Clear write and antidep.
before writing the results

29.11.2010Computer Organization II, Autumn 2010, Teemu Kerola 16

(Sta10 Fig 14.4b)

Fetch 2 instructions at the same time

I1 needs 2 cycles for execution

I3 and I4: resource dependency

I4 I5: data dep.

I5 and I6: resource dependency

Out-of-order Issue, Out-of-order Complete

Dispatch instructions for execution in any
suitable order

Need instruction window
Processor looks ahead (at the future instructions)
Must concider the dependencies during dispatch

Allow instructions to complete and commit
in any suitable order

Check and clear
write dependencies and antidependencies

29.11.2010Computer Organization II, Autumn 2010, Teemu Kerola 17

Out-of-order issue, Out-of-order Completion

29.11.2010Computer Organization II, Autumn 2010, Teemu Kerola 18

(Sta10 Fig 14.4c)Instruction window,
(just a buffer, not a pipeline stage)

Fetch 2 instructions at the same time

I1 needs 2 cycles for execution

I3 and I4: resource dependency

I4 I5: data dependency

I5 and I6: resource dependency

Discussion?

Solve Dependencies by Register Renaming

Some dependencies are caused by register names, not data
The same name could be used for several independent elements
Thus, instructions have
unneeded write and antidependencies
Causing unnecessary waits

Solution: Register renaming
Hardware must have more registers (than visible to the
programmer and compiler)
Hardware allocates new real registers during execution
in order to avoid name-based dependencies (nimiriippuvuus)

Need
More internal registers (register files, register set),

e.g. Pentium II has 40 working registers
Hardware can allocate and manage registers, and perform the
mapping dynamically at execution time

29.11.2010Computer Organization II, Autumn 2010, Teemu Kerola 19

R3 R3 + R5
R4 R3 + 1
R3 R5 + 1
R7 R3 + R4

name
dependency
vs. data
dependency?

Register Renaming

29.11.2010Computer Organization II, Autumn 2010, Teemu Kerola 20

Anti dependency (WAR):
i3 must not write R3 before i2
has read the value from R3

Output dependency (WAW):
i3 must not write R3
before i1 writes R3 R3 R3 + R5 (i1)

R4 R3 + 1 (i2)
R3 R5 + 1 (i3)
R7 R3 + R4 (i4)

R3b R3a + R5a (i1)
R4b R3b + 1 (i2)
R3c R5a + 1 (i3)
R7b R3c + R4b (i4)

Rename R3
use work registers R3a, R3b, R3c
Other registers similarly:
R4b, R5a, R7b

No more dependencies
based on names!

Solution

Discussion?

Typo on p. 552, line 15 [Stal10]

Impact of Additional Hardware
base: out-of-order issue

+ld/st: base and duplicate load/store unit for data cache

+alu: base and duplicate ALU

29.11.2010Computer Organization II, Autumn 2010, Teemu Kerola 21

(Sta10 Fig 14.5)

(Smit89 – pretty old stuff!)

Superscalar
Conclusion

Several functionally independent units
Efficient use of memory hierarchy

Allows parallel memory fetch and store
Instruction prefetch

Branch prediction important
Hardware-level logic for dependency detections

Circuits to pass information for other functional unit at the
same time as storing to register or memory

Hardware-level logic to issue several independent
instructions

Dependencies issue order
Hardware-level logic to maintain correct completion order

Dependencies commit-order

29.11.2010Computer Organization II, Autumn 2010, Teemu Kerola 22

Sta10Fig 14.6

Superscalar Pentium 4

29.11.2010Computer Organization II, Autumn 2010, Teemu Kerola 23
(Sta10 Fig 14.7)

L1
 in

st
ru

ct
io

n
ca

ch
e

Pentium 4 Pipeline
Outside CISC (IA-32)

Inside execution in micro-operations (ops) as RISC
Fetch CISC instruction and translate it to one or more ops to
L1-level cache (trace cache)
Rest of the superscalar pipeline operates with these fixed-
length micro-operations (118b)

Long pipeline
Extra stages (5 and 20) for propagation delays

29.11.2010Computer Organization II, Autumn 2010, Teemu Kerola 24

(Sta10 Fig 14.8)

Generation of Pentium
Pipeline ops

a) Fetch IA-32 instruction from L2 cache and generate ops to L1
Uses Instruction Lookaside Buffer (I-TLB)
and Branch Target Buffer (BTB)
- four-way set-associative cache, 512 lines
1-4 ops (=118 bit RISC) per instruction (most cases),
if more then stored to microcode ROM

b) Trace Cache Next Instruction Pointer - instruction selection
Dynamic branch prediction based on history (4-bit)
If no history available, Static branch prediction
- backward, predict ”taken”
- forward, predict ”not taken”

c) Fetch instruction from L1-level trace cache
d) Drive – wait (instruction from trace cache to rename/allocator)

29.11.2010Computer Organization II, Autumn 2010, Teemu Kerola 25

(Sta10 Fig 14.9 a-d)

ba

Pentium Pipeline
Resource allocation

e) Allocate resources
3 micro-operations per cycle
Allocate an entry from Reorder Buffer (ROB) for the ops
(126 entries available)
Allocate one of the 128 internal work registers for the result
And, possibly, one load (of 48) OR store (of 24) buffer

Register renaming
Clear name dependencies by renaming

(16 architectural regs to 128 physical registers)
If no free resource, wait (out-of-order)

ROB-entry contains bookkeeping of the instruction progress
Micro-operation and the address of the original IA-32 instr.
State: scheduled, dispatched, completed, ready
Register Alias Table (RAT):

which IA-32 register which physical register
29.11.2010Computer Organization II, Autumn 2010, Teemu Kerola 26

(Sta10 Fig 14.9e)

e

Pentium Pipeline
Window of Execution

f) Micro-Op Queueing
2 FIFO queues for ops

- One for memory operations (load, store)
- One for everything else

No dependencies, proceed when room in scheduling
g) Micro-Op Scheduling

Retrieve ops from queue and dispatch (issue) for execution
Only when operands ready (check from ROB-entry)

h) Dispatching
Check the first instructions of FIFO-queues (their ROB-entries)
If execution unit needed is free, dispatch to that unit
Two queues out-of-order issue
max 6 micro-ops dispatched in one cycle

- ALU and FPU can handle 2 per cycle
- Load and store each can handle 1 per cycle

29.11.2010Computer Organization II, Autumn 2010, Teemu Kerola 27

(Sta10 Fig 14.9 f-h)

f
g

h

Pentium Pipeline
Integer and FP Units

i) Get data from register or L1 cache
j) Execute instruction, set flags (lipuke)

Several pipelined execution units

- 4 * Alu, 2 * FPU, 2 * load/store

- E.g. fast ALU for simple ops, own ALU for multiplications

Result storing: in-order complete

Update ROB, allow next instruction to the unit

k) Branch check
What happend in the jump /branch instruction

Was the prediction correct?

Abort incorrect instruction from the pipeline (no result storing)

l) Drive – update BTB with the branch result
29.11.2010Computer Organization II, Autumn 2010, Teemu Kerola 28

Sta10 Fig 14.9i-l

j
i

l

k

Pentium 4 Hyperthreading

One physical IA-32 CPU, but 2 logical CPUs
Instructions from 2 processes in the same pipeline

OS sees as 2 CPU SMP (symmetric multiprocessing)
Logical processors execute different processes or threads
No code-level issues
OS must be capable to handle more processors
(like scheduling, locks)

Uses CPU wait cycles
Cache miss, dependences, wrong branch prediction

If one logical CPU uses FP unit, then the other one can
use INT unit

Benefits depend on the applications

29.11.2010Computer Organization II, Autumn 2010, Teemu Kerola 29

Pentium 4 Hyperthreading

Duplicated (kahdennettu)
IP, EFLAGS and other control registers
Instruction TLB
Register renaming logic

Split (puolitettu)
No monopoly, non-even split allowed
Reordering buffers (ROB)
Micro-op queues
Load/store buffers

Shared (jaettu)
Register files (128 GPRs, 128 FPRs)
Caches: trace cache, L1, L2, L3
Registers needed during ops execution
Functional units: 2 ALU, 2 FPU, 2 ld/st-units

29.11.2010Computer Organization II, Autumn 2010, Teemu Kerola 30

Intel Nehalem arch.:
8 cores on one chip,
1-16 threads (820
million transistors)
First lauched processor
Core i7 (Nov 2008)

Superscalar ARM CORTEX-A8

In family of ARM application processors

Embedded processor running complex operating system
Wireless, consumer and imaging applications
Mobile phones, set-top boxes, gaming consoles, automotive
navigation/entertainment systems

Three (four?) functional units
Fetch pipeline, decode pipeline, execute pipeline
SIMD pipeline NEON (10-stages)

Dual, in-order-issue, 13-stage pipeline
Keep power required to a minimum
Out-of-order issue would need extra logic consuming extra power

29.11.2010Computer Organization II, Autumn 2010, Teemu Kerola 31

29.11.2010Computer Organization II, Autumn 2010, Teemu Kerola 32

(Sta10 Fig 14.10)

ARM
Cortex-
A8
Block
Diagram

ARM Cortex-A8
Instruction Fetch Unit

Predicts instruction stream

Fetches instructions from the (included) L1 instruction cache
Into buffer for decode pipeline
Up to four instructions per cycle

Speculative instruction fetches

Branch or exceptional instruction cause pipeline flush

Two-level global history branch predictor
Branch Target Buffer (BTB) and Global History Buffer (GHB)

Return stack to predict subroutine return addresses

Can fetch and queue up to 12 instructions

29.11.2010Computer Organization II, Autumn 2010, Teemu Kerola 33

(Sta10 Fig 14.10)

ARM Cortex-A8 Instruction Fetch Unit
Processing Stages

29.11.2010Computer Organization II, Autumn 2010, Teemu Kerola 34

(Sta10 Fig 14.11)

F0 address generation unit (AGU)
Next address sequentially

Or branch target address (from branch

prediction of previous address)

F1 fetch instructions from L1
In parallel, check the branch prediction

for the next address

F2 Place instruction to instruction queue
If branch prediction, new target address sent

to AGU

Issues instructions to decode two at a time

ARM Cortex-A8
Instruction Decode Unit

Dual pipeline structure, pipe0 and pipe1
Two instructions at a time
Pipe0 contains older instruction in program order
If instruction in pipe0 cannot issue, pipe1 will not issue

In-order instruction issue and retire
Results written back to register file at end of execution pipeline
no WAR hazards
tracks WAW hazards and straightforward recovery from flush
Decode pipeline to prevent RAW hazards

29.11.2010Computer Organization II, Autumn 2010, Teemu Kerola 35

(Sta10 Fig 14.10)

ARM Cortex-A8 Instruction Decode Unit
Processing Stages

D3 instruction
scheduling logic

Scoreboard predicts

register availability

using static scheduling

Dependency checking

D4 Final decode -
control signals for
integer execute
load/store units

D0 Decompress Thumbs and do preliminary decode
D1 Instruction decode completed
D2 Write/read instructions to/from pending/replay queue

29.11.2010Computer Organization II, Autumn 2010, Teemu Kerola 36

(Sta10 Fig 14.11)

ARM Cortex-A8 Integer Execution Unit

Two symmetric (ALU) pipelines, an address generator for
load and store instructions, and multiply pipeline

Multiply unit instructions routed to pipe0
Performed in stages E1 through E3
Multiply accumulate operation in E4

E0 Access register file
Up to six registers for two instructions

E1 Barrel shifter if needed.

E2 ALU function

E3 If needed, completes saturation arithmetic

E4 Change in control flow prioritized and processed

E5 Results written back to register file

29.11.2010Computer Organization II, Autumn 2010, Teemu Kerola 37

ARM Cortex-A8 Integer Execution Unit

29.11.2010Computer Organization II, Autumn 2010, Teemu Kerola 38

(Sta10 Fig 14.11)

ARM Cortex-A8 Load/Store Pipeline

Parallel to integer pipeline

E1 Memory address generated from base and index register

E2 address applied to cache arrays

E3 load, data returned and formatted

E3 store, data are formatted and ready to be written to cache

E4 Updates L2 cache, if required

E5 Results are written to register file

29.11.2010Computer Organization II, Autumn 2010, Teemu Kerola 39

ARM Cortex-A8
SIMD and Floating-Point Pipeline

SIMD and floating-point instructions pass through
integer pipeline

Processed in separate 10-stage pipeline
NEON unit
Handles packed SIMD instructions
Provides two types of floating-point support

If implemented, vector floating-point (VFP) coprocessor
performs IEEE 754 floating-point operations

If not, separate multiply and add pipelines implement
(non-IEEE) floating-point operations

29.11.2010Computer Organization II, Autumn 2010, Teemu Kerola 40

ARM Cortex-A8 NEON & Floating
Point Pipeline

29.11.2010Computer Organization II, Autumn 2010, Teemu Kerola 41

(Sta10 Fig 14.12)

Summary

What does superscalar mean?

ILP vs. machine level parallellism?

Dispatch, issue, window of execution

Out-of-order completion

New dependencies and solutions for them?

Renaming, solution for name dependencies

Superscalar Pentium and ARM

29.11.2010Computer Organization II, Autumn 2010, Teemu Kerola 42

Review Questions

Differences / similarities of superscalar
and traditional pipeline?
What new problems must be solved?
How to solve those?
What is register renaming and why it is
used?

29.11.2010Computer Organization II, Autumn 2010, Teemu Kerola 43

