

Pipelined Processor

]
L Instruction Decode Execute \ ~ - Ari
Instruction Fetch Register Fetch Address Calc. Memaory ACcess Write Baclk
|F ID EX MEM WB
Mext PC
T -
Mext SEQ PC Mext SEQ PC
RSl
h
Branc
RS2 !
*—™ Register E%
File
i
=
— = m m
-I-I, E .:f L - =
] m = it
LpC - = =

\xow/ \xnw/

’ A

WE Data

Computer Organization Il, Autumn 2010, Teemu Kerola 29.11.2010 222

. Su perscalar processors Ancient

: /

GOal Reference Speedup
Concurrent execution of scalar instructions 122 %
[KUCK72] 8
. . . [WEISS84] 1.58
Several independent pipelines Acosss 23
Not just more stages in one pipeline [SOHI%] 18
) L :) [SMITS9] 23
Own functional units in each pipeline s
[LEE91] 7
T StalO Thl 14.1
Integer Register File Floating Point Register File
77777774 NN\ | stretion-
/ % k level
parallelism
Pipelined (L NI/ s
functional N - s
units A v
StalO Fig 14.1 Memory

Computer Organization Il, Autumn 2010, Teemu Kerola 29.11.2010

‘ Superscalar

Successive instructions

Computer Organization Il, Autumn 2010, Teemu Kerola

1 1 1 1 1

| | | | 1

1 1 1 1

. Simple 4-stage ;

. ' pipeline !

1 1 1 1

] 1] 1

1 1 1 1

| 1 1

1 1 1 1
1 1 1 1

]]] 1 1

1 1 1 1 1

1 1 1 1 1

1 1 1] 1

1 1 1 1

1 Superpipelined 1

]] 1 1

1 1 1 1 1

1 1 1 1

1 | | 1

1 1 1 |

1 1 1 1 1

1 1 1 1 1

] 1 1 1 1

1 1 1 1 1

1 1 1 1 1

1]]] 1

1 1] 1

! Superscalar |

1 1 1 1

1 1 1 1

1 | 1

1 1 1 1

1 1 1 |

Y 1 | | 1

1 2 3 4 5 6 7 8)}';

Key: Execute

Ifetch |Decode Write

Only one instruction
execute at one time

Each execute stage split
into 2 “half-stages™

Two instructions
executed at the
same time.

(StalO Fig 14.2)

29.11.2010

4

- b

Superscalar processor

Efficient memory usage
Fetch several instructions at once, prefetching (ennaltanouto)
Data fetch and store (read and write)
Concurrency

Several instructions of the same process executed
concurrently on different pipelines
Select executable instruction (ready for execute stage) from the

prefetched instruction following a policy
(in-order issue/out-of-order issue)

Finish more than one instruction during each cycle
Instructions may complete in different order than started (out-
of-order completion)

When is it ok for an instruction finish before the preceeding
ones?

Computer Organization I, Autumn 2010, Teemu Kerola 29.11.2010

Effect of Dependencies

True Data/Flow Dependency (datariippuvuus)

add rl,r2
\

move r3,rl1

Read after Write (RAW) Typo on p. 545, line 2 [Stal10]
The latter instruction needs data from former instruction

Procedural/Control Dependency (kontrolliriippuvuus)

Instruction after the jump executed only,

when jump does not happen
Superscalar pipeline has more instructions to waste

jnz r2,100
add r1, =1

Variable-length instructions: some additional parts known only

during execution

Resource Conflict (Resurssiriippuvuus)

One or more pipeline stage needs the same resource

Memory buffer, ALU, access to register file, ...

Computer Organization I, Autumn 2010, Teemu Kerola

fadd f1, f2, f4
fadd f4, f5, f6

29.11.2010

(StalO Fig 14.3)

Effect of dependencies

. Key: Execule
; Ifetch | Decode WYWorite
1 1 1 1
1 1 1 1
. 1 1 1 1 1 1
(L1} 1 1 ' 1 1
) 1 1 No Dependency 1
il 1 1 1 1 1
: 1 1 1 1 1
1 | 1 1 1 1 1
1 | 1 1 1 1 1
1 | 1 1 1 1 1
1 1 1 1 1
il 1 1 1 1 1
: Data Dependency !
il m . —_— — & by i
m' Uil nses data compute@ by i)
] 1 =1] 1 1 1 1 1
1 1 1 | 1 1 1 1 1
1 1 1 | 1 1 1 1 1
1 1 1 1 1 1 1 1 1
. 1 1 1 1 1
({1] 1 1 . - 1
I 1 Procedural Dependency
il bhramch 1 1 1 1 1
1 1
i2 1 1 1
1 1 1
i3 1 1 1
1 1
i 1 I
1 1
is 1 1
1 i 1
1 | 1 1 1 1 1
1 | 1 1 1 1 1
1 | 1 1 1 1 1
1 1 1 1 1
i 1 1 1 1 1
1 - . 1
Resource Conflict
. . 1 1
il m W (il and i1 use the same
= 1 1
1

fumctiomnal anit) :

) 1
L 1 2z 3 -4 5 i) 7 85 b

Time in base cycles

Computer Organization I, Autumn 2010, Teemu Kerola 29.11.2010

: WAR and WAW Dependencies

I. "write” R1 true data dependency (RAW)

--------- data dependent instruction j cannot
j: "read” R1 be executed before instruction |

I. "read” R1 antidependency (WAR)

Typo on p. 550, line 2 from bottom [Stal10]

j: "write” R1 Anti- and output dependency allow
change in execution order for instructions

: : | and j, but afterwards must be checked
- "write” R1 that the right value and result remains
j: "write” R1 output dependency (WAW)

Computer Organization Il, Autumn 2010, Teemu Kerola 29.11.2010 8

Dependencies Specific to
Out-of-order Completion

Output Dependency (Kirjoitusriippuvuus)
write-after-write (WAW)
Two instructions alter the same register or memory
location, the latter in the original code must stay
Antidependency (Antiriippuvuus)
Write-after-read (WAR)

The former read instruction must be able to fetch

the register content, before the latter write stores
new value there

Alias?

Two registers use indirect references to the same
memory location?

Different virtual address, same physical address?
What s visible on instruction level (before MMU)?

Computer Organization Il, Autumn 2010, Teemu Kerola

load r1,X
add r2,r,r3
add r1,r4,r5

move r%/,rl
add r1,r4.r5

store R5, 40(R1)
/=7

load R6, 0(R2)

29.11.2010

), How to Handle Dependencies?

Starting point
All dependences must be handled one way or other

Simple solution (like before)
Special hardware detects dependency and
force the pipeline to wait (bubble)

Alternative solution (like before, bit more important now)

Compiler generates instructions in such a way that there will be
NO dependencies

No special hardware
simpler CPU that need not detect dependencies

Compiler must have very detailed and specific information about
the target processor’s functionality

which dependencies must/can be solved by compiler?

Computer Organization I, Autumn 2010, Teemu Kerola 29.11.2010 10

w@. ILPvs. Machine Parallelism

Instruction-level parallelism, ILP (kaskytason rinnakkaisuus)

load r1+ r2 Independent instructions that could be executed in parallel by
d4d r3 341 overlapping

addt ' Theoretical upper limit for parallel execution of instructions

add r4 < r4, r2 Depends on the code

Machine parallelism (konetason rinnakkaisuus)

Ability of the processor to actually execute instructions parallel

How many instructions can be fetched and executed at the
same time?

~ How many pipelines can be used
Always smaller than instruction-level parallelism

Cannot exceed what instructions allow, but can limit the
true parallelism

Dependences solved inefficiently, bad optimization?

Computer Organization I, Autumn 2010, Teemu Kerola 29.11.2010 11

‘ Superscalar execution in-order complete vs.

out-of-order complete

|
"departure” .
; instruction instruction :
compiler . . dispatch ' '
instruction fetch 1 155ue (. !
= no wait) wait?)
genera_ted and branch : I instruction gnstru-:t?m:l
static prediction execution reorder and
program »check m,,l commit ;
—_— (wait?) / %
—— 1
I
I
I
1
I
I !

(StalO Fig 14.6) -------=="lin-order issue vs.
window of .
execution out-of-order issue

waiting to
execute

dispatch (vuorottaminen, lahettaa suorittamaan)

iIssue (laukaisu, likkkeellelaskeminen)

Computer Organization Il, Autumn 2010, Teemu Kerola 29.11.2010

12

Superscalar Execution

Instruction fetch (kdskyjen nouto)
Branch prediction (hyppyjen ennustus)
= prefetch (ennaltanouto) from memory to CPU
Dispatch to instruction window (valintaikkuna)

Instruction issue (kdskyn paastaminen hihnalle)
Check (and remove) data, control and resource dependencies
Reorder; issue suitable instructions to pipelines
Pipelines proceed without waits

Instruction complete, retire (suoritus valmistuu)
Commit or abort (hyvaksy tai hylkaa)
Usually all state changes occur here
Check and remove write and antidependencies
— wait / reorder (jarjesta uudelleen)

Computer Organization Il, Autumn 2010, Teemu Kerola 29.11.2010 13

In-order Issue, In-order Complete

Traditional sequential execution order
No need for instruction window

Instructions dispatched to pipelines in original order
(determined by the compiler)

Compiler handles most of the dependencies

Still need to check dependencies, if needed add bubbles
Can allow overlapping on multiple pipelines

Instructions complete and commit in original order
Cannot pass, overtake (ohittaa) on other pipeline

Several instructions can complete at same time
Commit/Abort

Computer Organization I, Autumn 2010, Teemu Kerola 29.11.2010

14

wah. In-order Issue, In-order Complete Pipeline

Fetch 2 instructions at the same time
|1 needs 2 cycles for execution

|13 and 14: resource dependency

|14 —15: data dependency

|5 and 16: resource dependency

Decode Execute Write Cycle
1 | 12 . 1
3 | 14 [n| | 12 2
3 | 14 Iy 3
14 - /13) 11 | 12 4

15 | 16 |\ 5
16 S 13 | 14 6

16/ 7

- BREARG 8

Decode clean before fetching next two instructions
Instructions queue for execution in decode unit (Stal0 Fig 14.4a)

Writes delayed to maintain in-order completion
Computer Organization Il, Autumn 2010, Teemu Kerola 29.11.2010 15

In-order Issue, Out-of-order Complete

Like previous, but

- Allow commit in different

order than issued order
(allow passing) 13 and 14: resource dependency

Fetch 2 instructions at the same time

|1 needs 2 cycles for execution

- Clear write and antidep. |14—15: data dep.
before writing the results

|5 and 16: resource dependency

Decode Execute Write Cycle
I1 12 . 1
I3 I4 [ll\ I2 . . 2

14 \I1) [13\ | —{/12) 3

IS I6 — . \14/ \I'l / 13 4
I6 / I:f\(- I4 S

\ Iﬁ} IS 6

— I6 7

(Stal0 Fig 14.4b)
Computer Organization Il, Autumn 2010, Teemu Kerola 29.11.2010 16

Out-of-order Issue, Out-of-order Complete

Dispatch instructions for execution in any
suitable order
Need instruction window
Processor looks ahead (at the future instructions)
Must concider the dependencies during dispatch

Allow instructions to complete and commit
In any suitable order

Check and clear
write dependencies and antidependencies

Computer Organization I, Autumn 2010, Teemu Kerola 29.11.2010 17

i Out-of-order issue, Out-of-order Completion

Fetch 2 instructions at the same time

|1 needs 2 cycles for execution

|13 and 14: resource dependency

|14 —= 15: data dependency

|5 and 16: resource dependency

Decode
I1 12
I3 14
I5 16

Window

1,12
A(‘ %} 4
I506)

I5

A
|
|

Execute
I1 12
I1 I3
Ie | 14
I5

(just a buffer, not a pipeline stage)

Instruction window,

Computer Organization Il, Autumn 2010, Teemu Kerola

|/

Write

o\

12)

(11| 13
14 [(16)
15

Cyvcle

i

b WD

L I

=

(StalO Fig 14.4c)

Discussion?

29.11.2010

18

wi). Solve Dependencies by Register Renaming

Some dependencies are caused by register names, not data
The same name could be used for several independent elements

— Thus, instructions have — R3+R5
dener unneeded write and antidependencies
pendency . - ~R3+1
s d Causing unnecessary waits .4_ RE 4+ 1
%
dependency? R7 < R3 + R4

Solution: Register renaming

Hardware must have more registers (than visible to the
programmer and compiler)

Hardware allocates new real registers during execution
in order to avoid name-based dependencies (nimiriippuvuus)

Need
More internal registers (register files, register set),
e.g. Pentium Il has 40 working registers

Hardware can allocate and manage registers, and perform the
mapping dynamically at execution time

Computer Organization I, Autumn 2010, Teemu Kerola 29.11.2010 19

R 3

Output dependency (WAW):
13 must not write R3
before i1 writes R3

Anti dependency (WAR):
13 must not write R3 before 12
has read the value from R3

Typo on p. 552, line 15 [Stal10]

Solution

Rename R3

use work registers R3a, R3b, R3c
Other registers similarly:

R4b, R5a, R7b

No more dependencies
based on names!

Computer Organization Il, Autumn 2010, Teemu Kerola

Register Renaming

R3.+ R3 +R5 (i1)
£R4 < R3+1 (i2)
R3+— R5+1 (i3)
R7 < R3+R4 (i4)
R3b_+- R3a + R5a (1)
R4b < R3b +1 (i2)
(R30.+ R5a + 1 (i3)
R7b < R3c + R4b (i4)

Discussion?

29.11.2010 20

‘ Impact of Additional Hardware

base: out-of-order issue (StalO Fig 14.5)

+|d/st: base and duplicate load/store unit for data cache

. 1 A
+alu; base and duplicate ALU Window size ﬁ 1-‘:" |3':'|
{construction)
Speedup Without renaming Speedup
4 : 4
(Smit89 - pretty old stuff!)
3 3
2 2
1. —]. [——
0 0
hase +ld/st +alu +hoth base +ld/st +alu +both

Computer Organization I, Autumn 2010, Teemu Kerola 29.11.2010

21

Superscalar
Conclusion

Several functionally independent units |
Efficient use of memory hierarchy o

Allows parallel memory fetch and store StalOFig 14.6

Instruction prefetch
Branch prediction important
Hardware-level logic for dependency detections

Circuits to pass information for other functional unit at the
same time as storing to register or memory

Hardware-level logic to issue several independent
Instructions

Dependencies = issue order

Hardware-level logic to maintain correct completion order
Dependencies = commit-order

Computer Organization I, Autumn 2010, Teemu Kerola 29.11.2010

22

Superscalar Pentium 4

]
__L—P L2 Cache and Control 4—1
31
=
et Store
= BTB ™ . [Place
£ :'_, Load
e —> 5 [$P|ALU
2 < Z
1 —
x = . S o ., > 2 [¥aLy T
=| |z c £ = 1ENE =
c o 2 o =
- ; —»{ O = <7 z =+ = ALU =
= = =7 = - T o
. o = =3 = =
e = = = = o =)
i = o = @ = o =
- x| _—) = =" -
z ~ 2
:I N -: FP move -, :
¥ FP store
i g | zpstore |
3 2| [Fvu
AGU = address generation unit if'
BTB = branch target buffer ucode —»| = &> Fadd
D-TLB= data translation lookaside buffer ROM r MAMX
I-TLE = instruction translation lookaside buffer

(Stalo Fig 14.7)
Computer Organization Il, Autumn 2010, Teemu Kerola 29.11.2010 23

R 3

Pentium 4 Pipeline

Outside CISC (IA-32)

Inside execution in micro-operations (pops) as RISC

Fetch CISC instruction and translate it to one or more pops to
L1-level cache (trace cache)

Rest of the superscalar pipeline operates with these fixed-
length micro-operations (118b)

Long pipeline
Extra stages (5 and 20) for propagation delays
1|z 3|4557|3910 n|w|n|wu|lis|we|17|18]19]2
TCNxtIP | TC Fetch @Allﬂc Rename | Que | Sch | Sch | Sch |Disp|Disp| RF | RF | Ex | Flgs [Br Ck @i
| | |

TC Next IP = trace cache next instruction pointer

TC Fetch = trace cache fetch
Alloe = allocate

Computer Organization Il, Autumn 2010, Teemu Kerola

Rename = register renaming
Que = micro-op quening

Sch = muero-op scheduling
Dasp = Dispatch

EF =register file

Ex = execute

Flogs = flags

Br Ck = branch check

(StalO Fig 14.8)

29.11.2010 24

(Stal0 Fig 14.9 a-d) [}—L —

==

Generation of Pentium 8| Ll s |
Pipeline pops UL KR
a Rowt nEgEIEN

a) Fetch IA-32 instruction from L2 cache and generate pops to L1
Uses Instruction Lookaside Buffer (I-TLB)
and Branch Target Buffer (BTB)
four-way set-associative cache, 512 lines
1-4 yops (=118 bit RISC) per instruction (most cases),
if more then stored to microcode ROM
b) Trace Cache Next Instruction Pointer - instruction selection
Dynamic branch prediction based on history (4-bit)
If no history available, Static branch prediction
backward, predict "taken”
forward, predict "not taken”
c) Fetch instruction from L1-level trace cache

d) Drive — wait (instruction from trace cache to rename/allocator)

Computer Organization I, Autumn 2010, Teemu Kerola 29.11.2010 25

(StalO Fig 14.9¢e)

=]
pe|
]

=
o
0
8
2

Pentium Pipeline
Resource allocation

e) Allocate resources
3 micro-operations per cycle

Allocate an entry from Reorder Buffer (ROB) for the pops
(126 entries available)

Allocate one of the 128 internal work registers for the result
And, possibly, one load (of 48) OR store (of 24) buffer
Register renaming
Clear name dependencies by renaming
(16 architectural regs to 128 physical registers)
If no free resource, wait (= out-of-order)

3.2 GB/s System Interface
'R

teh/Decode
p Q
Schedulers

BIB & IFTLB

Fe

h 2
I CD Rename/Alloe
¥

|
|

| FP Register File | | Integer Register File I

!

v

ROB-entry contains bookkeeping of the instruction progress
Micro-operation and the address of the original IA-32 instr.
State: scheduled, dispatched, completed, ready
Register Alias Table (RAT):

which 1A-32 register = which physical register

Computer Organization I, Autumn 2010, Teemu Kerola 29.11.2010

L1 D-Cache and D-TLB

26

=]
pe|
I

=
o
0
8
[
&
®

Pentium Pipeline
Window of Execution

°
2
<
E
=
s
2
=
&
-

‘etch/Decode

Rename/Alloe

BIB & IFTLB

T

L1 D-Cache and D-TLB

f) Micro-Op Queueing
2 FIFO queues for pops (Stal0 Fig 14.9 f-h)
One for memory operations (load, store)
One for everything else
No dependencies, proceed when room in scheduling
g) Micro-Op Scheduling
Retrieve pops from queue and dispatch (issue) for execution
Only when operands ready (check from ROB-entry)
h) Dispatching
Check the first instructions of FIFO-queues (their ROB-entries)
If execution unit needed is free, dispatch to that unit
Two gueues = out-of-order issue
max 6 micro-ops dispatched in one cycle
ALU and FPU can handle 2 per cycle
Load and store each can handle 1 per cycle

Computer Organization I, Autumn 2010, Teemu Kerola 29.11.2010 27

“&. Pentium Pipeline
' Integer and FP Units

oLl

3
]
=
E
=
E
=
ES
b |
~

[28K 2K 2K 2K 7
Integer Reg! Fils

Feteh/Decode
Schedulers

=P Register File

1) Get data from register or L1 cache ||
) Execute instruction, set flags (lipuke) StalO Fig 14.9i-l

Several pipelined execution units
4* Alu, 2* FPU, 2 * load/store
E.g. fast ALU for simple ops, own ALU for multiplications
Result storing: in-order complete
Update ROB, allow next instruction to the unit
K) Branch check
What happend in the jump /branch instruction
Was the prediction correct?
Abort incorrect instruction from the pipeline (no result storing)
) Drive — update BTB with the branch result

Computer Organization I, Autumn 2010, Teemu Kerola 29.11.2010 28

- b

Pentium 4 Hyperthreading &

One physical IA-32 CPU, but 2 logical CPUs

Instructions from 2 processes in the same pipeline

OS sees as 2 CPU SMP (symmetric multiprocessing)
Logical processors execute different processes or threads
No code-level issues
OS must be capable to handle more processors
(like scheduling, locks)

Uses CPU wait cycles
Cache miss, dependences, wrong branch prediction

If one logical CPU uses FP unit, then the other one can
use INT unit

Benefits depend on the applications

Computer Organization Il, Autumn 2010, Teemu Kerola 29.11.2010 29

Pentium 4 Hyperthreading

Duplicated (kahdennettu)
IP, EFLAGS and other control registers
Instruction TLB
Register renaming logic

Split (puolitettu)
No monopoly, non-even split allowed
Reordering buffers (ROB)
Micro-op queues
Load/store buffers

Intel Nehalem arch.:
8 cores on one chip,
1-16 threads (820
million transistors)
First iauched processor
Shared (jaettu) Core i7 (Nov 2008)

Register files (128 GPRs, 128 FPRS)

Caches: trace cache, L1, L2, L3

Registers needed during pyops execution

Functional units: 2 ALU, 2 FPU, 2 |d/st-units

Computer Organization I, Autumn 2010, Teemu Kerola 29.11.2010 30

- b

Superscalar ARM CORTEX-AS8

In family of ARM application processors

Embedded processor running complex operating system

Wireless, consumer and imaging applications
Mobile phones, set-top boxes, gaming consoles, automotive

navigation/entertainment systems

Three (four?) functional units
Fetch pipeline, decode pipeline, execute pipeline
SIMD pipeline NEON (10-stages)

Dual, in-order-issue, 13-stage pipeline
Keep power required to a minimum
Out-of-order issue would need extra logic consuming extra power

Computer Organization I, Autumn 2010, Teemu Kerola 29.11.2010 31

13-stage integer pipeline

I,
[- N
2 stages 5 stages 6 stages
‘ — A —A— ~ A ~
- |
Branch mispredict
Instruction execute and Load/Store
lREP|3¥ Instruction register writeback
A R M Instruction fetch Instruction decode ALU pipe
L1 T MUL plpe 0 L1
I-side Prefetch | — — |5 = D-side
Cortex- || ache fl ana [Decodes ||Dependency |7 £ merace | L1
RAM branch |_, | sequencer c I:SUZ" N % ALU pipe 1 RAM
A8 prediction g2 Coad store
TLB plpe Oor 1 TLB
F 3
Block | ; I
D' L2 NEON unit NEON register writeback
I ag ral I l cache| Instruction,data, NEON and preload]
engine buffers ¥ | Integer ALU pipe |
o N
L2 cache T Integer MUL pl
Arbitration pipeline control NEON [g | c9 pipe |
Instruction o | Ingeger shift pipe |
| decode [= >
Fill and eviction E | non-IEEEFP ADDpipe |
gqueue L2 cache L2 cache . | non-lEEE FP MUL plpe |
BUs |[rice | | 222 RAM || t29 RAM | IEEE floating-point engine |
Interface buffer Load and store
unit (BIU) data queue — | Load/store permute pipe |
3 stages 1 stage 6 stages
~ Y ~

(StaloO Fig 14.10)
10-stage SIMD pipeline

Computer Organization Il, Autumn 2010, Teemu Kerola 29.11.2010 32

Instruction fetch

ARM Cortex-A8 I N
. . -slde cache B
Instruction Fetch Unit 1 | vertace]| 9
RAM ranch |_
prediction
TLB

(Stal0 Fig 14.10)

Predicts instruction stream

Fetches instructions from the (included) L1 instruction cache
Into buffer for decode pipeline
Up to four instructions per cycle

Speculative instruction fetches
Branch or exceptional instruction cause pipeline flush

Two-level global history branch predictor
Branch Target Buffer (BTB) and Global History Buffer (GHB)

Return stack to predict subroutine return addresses

Can fetch and queue up to 12 instructions

Computer Organization Il, Autumn 2010, Teemu Kerola 29.11.2010 33

ARM Cortex-A8 Instruction Fetch Unit
Processing Stages

FO address generation unit (AGU)
Next address sequentially

Or branch target address (from branch F F2
. : branch
prediction of previous address) mispredict
F1 fetch instructions from L1 J
In parallel, check the branch prediction | L | RAM | F12- |
: AGU + entry
for the next address !] TLB | fetch >
F2 Place instruction to instruction queue queue
If branch prediction, new target address sent BTB
to AGU » GHB
: : : RS
Issues instructions to decode two at a time

(StalO Fig 14.11)

Computer Organization Il, Autumn 2010, Teemu Kerola 29.11.2010 34

Instruction decode

ARM Cortex-A8
Instruction Decode Unit | Decode & ||Pependency [

sequencer || checkand
' issue

Dual pipeline structure, pipe0O and pipel

(StalO Fig 14.10)

Two instructions at a time
Pipe0 contains older instruction in program order
If instruction in pipe0 cannot issue, pipel will not issue

In-order instruction issue and retire
Results written back to register file at end of execution pipeline
no WAR hazards
tracks WAW hazards and straightforward recovery from flush
Decode pipeline to prevent RAW hazards

Computer Organization I, Autumn 2010, Teemu Kerola 29.11.2010 35

DO Decompress Thumbs and do preliminary decode
D1 Instruction decode completed
D2 Write/read instructions to/from pending/replay queue

ARM Cortex-A8 Instruction Decode Unit
Processing Stages

D3 instruction DO D1 D2 D3 D4
scheduling logic
9109 replay
Scoreboard predicts l
register availabilit I—»
9 _ y | _,| Early _,D"f;:de Dec |, écorfi BN -
using static scheduling decode | —» 7 queue CEL Final
D q hecki read/ ™ decode
ependency cneckin Earl : issue
.p y g _,deigze_,Decode write |y logic 5 5
D4 Final decode - ;
control signals for
Pending and

Integer execute
load/store units

replay queue

(StalO Fig 14.11)

Computer Organization Il, Autumn 2010, Teemu Kerola

29.11.2010 36

. ARM Cortex-A8 Integer Execution Unit

Two symmetric (ALU) pipelines, an address generator for
load and store instructions, and multiply pipeline

Multiply unit instructions routed to pipe0
Performed in stages E1 through E3
Multiply accumulate operation in E4

EO Access register file
Up to six registers for two instructions

E1 Barrel shifter if needed.

E2 ALU function

E3 If needed, completes saturation arithmetic

E4 Change in control flow prioritized and processed

ES5 Results written back to register file

Computer Organization I, Autumn 2010, Teemu Kerola 29.11.2010

g

ARM Cortex-A8 Integer Execution Unit

branch

mispredict replay

EO
<
=

INSTO | &
o
©

INST1 | 5

— £
2
2
o
<C

ET E2 E3 T E4 T E5
Shift ALU SAT BP WB ALU/
multiply
ipe O
MUL MUL MUL ACC WE PP
1 g 3
, ALU

Shift ALU SAT BP WB pipe 1
RAM Format L2 Load/store

AGU + WB .
TLB forward update pipe 0 or 1

T

Computer Organization Il, Autumn 2010, Teemu Kerola

~

Stal0 Fig 14.11)

29.11.2010

38

‘ ARM Cortex-A8 Load/Store Pipeline

Parallel to integer pipeline

E1 Memory address generated from base and index register
E2 address applied to cache arrays

E3 load, data returned and formatted

E3 store, data are formatted and ready to be written to cache
E4 Updates L2 cache, if required

E5 Results are written to register file

RAM Format L2 Load/store

> > forward update pipe 0 or 1

|
TLB

Computer Organization I, Autumn 2010, Teemu Kerola 29.11.2010

39

T LI
a3

ARM Cortex-A8
SIMD and Floating-Point Pipeline

SIMD and floating-point instructions pass through
Integer pipeline

Processed in separate 10-stage pipeline
NEON unit
Handles packed SIMD instructions
Provides two types of floating-point support

If implemented, vector floating-point (VFP) coprocessor
performs IEEE 754 floating-point operations

If not, separate multiply and add pipelines implement
(non-IEEE) floating-point operations

Computer Organization Il, Autumn 2010, Teemu Kerola 29.11.2010 40

e

ARM Cortex-A8 NEON & Floating
Point Pipeline

MEON register writeback

Instruction decode

¥
16-entry| | pec | |Score-| | RE9
Inst ™ queue [*] board ["ead
queue + + +
+ RAd/Wr | | Issue M_3
Inst bl check logic | fwding
Dec muxes
Load and store
with alignment
Mux L1/ 3;;? > Load :ﬂrﬁ

MUL MUL ACC ACC

DUP : B - Bl - B - -+ WB Integer
ALU,
Shift 1 (»(Shift 2 [+ Shift 3> - - WE MAC,
SHIFT
pipes

FMT = ALU P ABS B — - WB
FMUL | | FMUL| |FMUL | .| FMUL Non-lEEE
FDUP [1 > 5 - 2 —» A -+ WEB FMUL pipe
FADD | |FADD | |FADD | [FADD Non-IEEE

> > > =
FEMT 1 2 3 4 WE FADD pipe
IEEE
VFP » WB single/double
precision VFP
Load/store
8-entry

PERM +PE2 M > i}?re » store | - WB and
1 ign | | queue permute

Computer Organization Il, Autumn 2010, Teemu Kerola

(StalO Fig 14.12)

29.11.2010

41

N Summary

What does superscalar mean?

ILP vs. machine level parallellism?
Dispatch, issue, window of execution
Out-of-order completion

New dependencies and solutions for them?
Renaming, solution for name dependencies

Superscalar Pentium and ARM

Computer Organization I, Autumn 2010, Teemu Kerola 29.11.2010

42

Wi Review Questions

Differences / similarities of superscalar
and traditional pipeline?

What new problems must be solved?
How to solve those?

What Is register renaming and why it is
used?

Computer Organization I, Autumn 2010, Teemu Kerola 29.11.2010 43

