Lecture 9: Superscalar Processing

% Pipelined Processor

et et Tt e NSIruction Jecode —wecute A~
InsTruction =etch Hegister Fefch Address Calc VMemory ACCesES
IF 1D EX MEM

Mest §=0 FC Mas SEQ PO

R51

Write Back

WE

http://en.wikipedia.org/wiki/File:MIPS_Architecture %28Pipelined%29.svg

Computer Organization II, Autumn 2010, Teemu Kerola

W Data

29.11.2010

222

Comp. Org Il, Autumn 2010

29.11.2010

Lecture 9: Superscalar Processing 29.11.2010

%@ Superscalar processors /Ancienu
B Goal _ Reference_Speedup_
m Concurrent execution of scalar instructions /22 18
[KUCK72] 8

[WEIS84] 158

B Several independent pipelines acoss 27
m Not just more stages in one pipeline [SOHIS0] 18

= Own functional units in each pipeline Eﬁ:zi’] ji
_[LEE91] 7
StalO Thl 14.1
Integer Register File Floating Point Register File
7 Q -
77771 N\ | et
lleli
Pipelined PR
functional
units
StalO Fig 14.1 Memory
Computer Organization I, Autumn 2010, Teemu Kerola 20.11.2010 3
i Superscalar
) Key: Execute
: E E E [Tfeteh [Decode B2 Write |

Simple 4-stage
! pipeline
1

Only one instruction
execute at one time

ah

Each execute stage split|

. 1 1
£] 1
= 1 1
'E ' . H 3 ”
z Superpipeiined E into 2 half-stages
2 : : : http:/Awww.coe.uncc.edu/~jbyunl/papers/MIPS_3.pdf
N
7]] 1
1 1 1
: i i
1 1 1
1 1 1 H =
oo Two instructions
Superscalar |
oo executed at the
1 1 1 -
! ! H same time.
" 1 1 1
. . N
0 7 s o (StalO Fig 14.2)
Computer Organization I, Autumn 2010, Teemu Kerola 29.11.2010 4

Comp. Org Il, Autumn 2010 2

Lecture 9: Superscalar Processing 29.11.2010

e Superscalar processor

B Efficient memory usage
m Fetch several instructions at once, prefetching (ennaltanouto)
m Data fetch and store (read and write)
m Concurrency

B Several instructions of the same process executed
concurrently on different pipelines
m Select executable instruction (ready for execute stage) from the

prefetched instruction following a policy
(in-order issue/out-of-order issue)

B Finish more than one instruction during each cycle

m Instructions may complete in different order than started (out-
of-order completion)

B Whenis it ok for an instruction finish before the preceeding
ones?

Computer Organization I, Autumn 2010, Teemu Kerola 29.11.2010 5

‘ Effect of Dependencies
. add rl,r2
~

move r3,rl

B True Data/Flow Dependency (datariippuvuus)
m Read after Write (RAW) Typo on p. 545, line 2 [Stal10]
m The latter instruction needs data from former instruction

B Procedural/Control Dependency (kontrolliriippuvuus)
m Instruction after the jump executed only, jnz r2, 100
when jump does not happen add r1, =1

m Superscalar pipeline has more instructions to waste
m Variable-length instructions: some additional parts known only
during execution
B Resource Conflict (Resurssiriippuvuus)
m One or more pipeline stage needs the same resource

= Memory buffer, ALU, access to register file, ... fadd f1, 2, f4
fadd f4, f5, f6

Computer Organization I, Autumn 2010, Teemu Kerola 29.11.2010 6

Comp. Org 11, Autumn 2010 3

Lecture 9: Superscalar Processing 29.11.2010

(StalO Fig 14.3)

Effect of dependencies

[]
Key: Execute
= Ifetch | Decode Worite
L] [} L] L]
] L} L} 1
)]]]]]
i 1 1 . 1 1
1 1 No Dependency |
i1]] 1 1 1
1 1 1 1 1
1]] 1 1 1
] 1] 1 1 1
1]] 1 1 1
1 1 1 1 1
i 1 1 1 1 1
) : Data Dependency !
i1 (il uses data compute by i0)
1 1 1 1]
1 1 1 1 1 1
1 1 1 1 1 1
1 1 1 1 1
i i i ! ! i
N 1 Procedural Dependency
il/branch) ' | |
. 1 1
iz 1 1 | 1
1 1 1 1
i3 1 1] 1
1 1]
i 1 1 1]
1 1 1]
is] 1 1 1
L} L} L} 1
1 1 1 ' 1 1 1 1 1
1 1 1 ' 1 1 1 1 1
1 1 1 ' 1 1 1 1 1
[l 1 1 1 1 1
0 : , ! ! .
. y Resource Conflict H
it I @ 100 and il use the same |
. H 'functional unit) ! !
v '] 1 1 ' ' ')]
(1] 1 2z 3 4 5 [7 8 <@
Time in base cycles
Computer Organization II, Autumn 2010, Teemu Kerola 29.11.2010 7

. WAR and WAW Dependencies

B "write" R1 true data dependency (RAW)
--------- data dependent instruction j cannot
j: "read” R1 be executed before instruction i

B . "read’R1 antidependency (WAR)

Typo on p. 550, line 2 from bottom [Stal10]

j: "write” R1 Anti- and output dependency allow
change in execution order for instructions
i and j, but afterwards must be checked

W i "write”R1 that the right value and result remains
j: "write” R1 output dependency (WAW)
Computer Organization I, Autumn 2010, Teemu Kerola 29.11.2010 8

Comp. Org Il, Autumn 2010 4

Lecture 9: Superscalar Processing 29.11.2010

. Dependencies Specific to
‘_“ Out-of-order Completion

B Output Dependency (Kirjoitusriippuvuus)

m write-after-write (WAW) load r1,X
= Two instructions alter the same register or memory ~ |2dd r2,§1,r3
location, the latter in the original code must stay add r1,r4,r5

B Antidependency (Antiriippuvuus)

m Write-after-read (WAR) mover2,rl

m The former read instruction must be able to fetch add r1,r4,r5
the register content, before the latter write stores
new value there

B Alias?
m Two registers use indirect references to the same
memory location? store R5, 40(_8)1)
m Different virtual address, same physical address? load R6, o(sz

m Whatis visible on instruction level (before MMU)?

Computer Organization I, Autumn 2010, Teemu Kerola 29.11.2010 9

‘ How to Handle Dependencies?

B Starting point
m All dependences must be handled one way or other

B Simple solution (like before)
m Special hardware detects dependency and
force the pipeline to wait (bubble)

B Alternative solution (like before, bit more important now)

m Compiler generates instructions in such a way that there will be
NO dependencies

m No special hardware
- simpler CPU that need not detect dependencies

m Compiler must have very detailed and specific information about
the target processor’s functionality

- which dependencies must/can be solved by compiler?

Computer Organization I, Autumn 2010, Teemu Kerola 29.11.2010 10

Comp. Org 11, Autumn 2010 5

Lecture 9: Superscalar Processing 29.11.2010

‘ ILP vs. Machine Parallelism
B [nstruction-level parallelism, ILP (kaskytason rinnakkaisuus)
load rl« r2 m Independent instructions that could be executed in parallel by

d4dr3 341 overlapping

« 3+
addr r m Theoretical upper limitfor parallel execution of instructions
addrd < r4,r2

- Depends on the code

B Machine parallelism (konetason rinnakkaisuus)

m Ability of the processor to actually execute instructions parallel

m How many instructions can be fetched and executed at the
sametime?

m ~ How many pipelines can be used
m Always smaller than instruction-level parallelism

- Cannot exceed what instructions allow, but can limitthe
true parallelism

- Dependences solved inefficiently, bad optimization?

Computer Organization I, Autumn 2010, Teemu Kerola 29.11.2010 11
" -
‘ Superscalar execution in-order complete vs.
= out-of-order complete
"departure” i
i instruction instruction :
compiler — dispatch i i
instruction fetch Lispateh 1ssue ; . !
— - -— (nowait wait?)
genera.ted and 13_'1"?1_1“11 : 1 iglstruction) gnstruc on
static prediction 1 ! execution reorder anfl
program »check in™* commit ;
—_— (wait?) /“_’ v
R — 1
— —3
— :
=SS 1
‘
'
1 !
(StalOFig146) ~ TTToomo-- " lin-order issue vs.

window of -

execution out-of-order issue
waiting to

execute

dispatch (vuorottaminen, [ahettéda suorittamaan)

issue (laukaisu, likkeellelaskeminen)

Computer Organization I, Autumn 2010, Teemu Kerola 29.11.2010 12

Comp. Org 11, Autumn 2010 6

Lecture 9: Superscalar Processing 29.11.2010

‘ Superscalar Execution

B |[nstruction fetch (kaskyjen nouto)
m Branch prediction (hyppyjen ennustus)
- prefetch (ennaltanouto) from memory to CPU
m Dispatch to instruction window (valintaikkuna)

B [nstruction issue (kaskyn paastaminen hihnalle)
m Check (and remove) data, control and resource dependencies
m Reorder; issue suitable instructions to pipelines
m Pipelines proceed without waits

B Instruction complete, retire (suoritus valmistuu)
m Commitor abort (hyvéksy tai hylkaa)
- Usually all state changes occur here
m Check and remove write and antidependencies
- wait / reorder (jarjesta uudelleen)

Computer Organization I, Autumn 2010, Teemu Kerola 29.11.2010 13

‘ In-order Issue, In-order Complete

B Traditional sequential execution order
B No need for instruction window

B Instructions dispatched to pipelines in original order
(determined by the compiler)
m Compiler handles most of the dependencies
m Still need to check dependencies, if needed add bubbles
m Can allow overlapping on multiple pipelines

B Instructions complete and commit in original order
m Cannot pass, overtake (ohittaa) on other pipeline
m Several instructions can complete at same time
m Commit/Abort

Computer Organization I, Autumn 2010, Teemu Kerola 29.11.2010 14

Comp. Org 11, Autumn 2010 7

Lecture 9: Superscalar Processing

% In-order Issue, In-order Complete Pipeline

Fetch 2 instructions at the same time
11 needs 2 cycles for execution

I3 and 14: resource dependency

14 —>15: data dependency

15 and 16: resource dependency

Computer Organization I, Autumn 2010, Teemu Kerola

Decode Execute Write Cycle
n| o ~ 1
I3 | 4 (1) | 12 2
3 | 4 \11/ 3
14 (13, Inji 4
15 [1Ie \14 5
16 fsY” 3|14 6

6 7

w T[T 8

Decode clean before fetching next two instructions
Instructions queue for execution in decode unit
Writes delayed to maintain in-order completion

(StalO Fig 14.4a)

29.11.2010

15

N

B Like previous, but

- Allow commitin different
order than issued order
(allow passing)

- Clear write and antidep.
before writing the results

In-order Issue, Out-of-order Complete

Fetch 2 instructions at the same time
11 needs 2 cycles for execution

I3 and 14: resource dependency
14—15: data dep.

15 and 16: resource dependency

Decode Execute Write Cycle
I1 12 1
13 14 { Il\ 12 2

14 \11) (13) | |[12) 3

I5 16 \I4/ \11)] 13 4
16 (15 o 5

\ 16/ 15 6

I6 7

Computer Organization I, Autumn 2010, Teemu Kerola

(Stalo Fig 14.4b)
29.11.2010

16

Comp. Org 11, Autumn 2010

29.11.2010

Lecture 9: Superscalar Processing 29.11.2010

‘i\ Out-of-order Issue, Out-of-order Complete

B Dispatch instructions for execution in any
suitable order
m Need instruction window
m Processor looks ahead (at the future instructions)
m Must concider the dependencies during dispatch

B Allow instructions to complete and commit
in any suitable order

m Check and clear
write dependencies and antidependencies

Computer Organization I, Autumn 2010, Teemu Kerola 29.11.2010 17

‘i\ Out-of-order issue, Out-of-order Completion

Fetch 2 instructions at the same time
11 needs 2 cycles for execution

13 and 14: resource dependency
14— 15: data dependency

15 and 16: resource dependency

Decode Window Execute Write Cycle
I1 12 1
I3 14 %1 BE)) 11 12 2
IS 16)L 11 13 [—[12) 3

@I516) 16 4 | (]| 13 4
I5 15 14 | (16) B
15 6

A
1

1
Instruction window,

. L (Stal0 Fig 14.4c)
(just a buffer, not a pipeline stage)

Discussion?

Computer Organization I, Autumn 2010, Teemu Kerola 29.11.2010 18

Comp. Org 11, Autumn 2010 9

Lecture 9: Superscalar Processing

name m Thus, instructions have

i Solve Dependencies by Register Renaming

B Some dependencies are caused by register names, not data
m The same name could be used for several independent elements

B Need

Computer Organization I, Autumn 2010, Teemu Kerola

B Solution: Register renaming

m Hardware must have more registers (than visible to the
programmer and compiler)

m Hardware allocates new real registers during execution
in order to avoid name-based dependencies (nimiriippuvuus)

dependency unneeded write and antidependencies “~ R3+R5

vs. data m Causing unnecessary waits R4:: R3+1
= < R5+1

dependency? K7 « R3 + R4

m More internal registers (register files, register set),
e.g. Pentium Il has 40 working registers

m Hardware can allocate and manage registers, and perform the
mapping dynamically at execution time

29.11.2010 19

Output dependency (WAW):
i3 must not write R3
before il writes R3

Anti dependency (WAR):
i3 must not write R3 before i2
has read the value from R3

Typo on p. 552, line 15 [Stal10]

Solution

Rename R3

use work registers R3a, R3b, R3c
Other registers similarly:

R4b, R5a, R7b

No more dependencies
based on names!

Computer Organization I, Autumn 2010, Teemu Kerola

‘ Register Renaming

R3+= R3+R5 (i)
‘R4 S R3+1 (i2)
R3+ R5+1 (i3)
N
R7 + R3 + R4 (i4)
R3b_+- R3a + R5a (i1)
R4b < R3b +1 (i2)
@30~ R5a + 1 (i3)
R7b < R3c + R4b (i4)

29.11.2010 20

Comp. Org 11, Autumn 2010

29.11.2010

10

Lecture 9: Superscalar Processing 29.11.2010

-
e Impact of Additional Hardware
- .
B base: out-of-order issue (Stal0 Fig 14.5)
B +|d/st: base and duplicate load/store unit for data cache
B +alu: base and duplicate ALU Window size mm 16 2
(construction) - - :l
Speedup ‘Without renaming Speedup ‘With renamin:
4 4 1
(Smit89 - pretty old stuff!)
3 3 e
2 i 2 -
1 — 1 S
0 0
hase +ld/st +alu +hoth base +ld/st +ala +both
Computer Organization I, Autumn 2010, Teemu Kerola 29.11.2010 21

\i_ Superscalar
. Conclusion

B Several functionally independent units
B Efficient use of memory hierarchy

m Allows parallel memory fetch and store
B [nstruction prefetch

m Branch prediction important
B Hardware-level logic for dependency detections

m Circuitsto pass information for other functional unit at the
same time as storing to register or memory

B Hardware-level logic to issue several independent
instructions

m Dependencies — issue order
B Hardware-level logic to maintain correct completion order
m Dependencies = commit-order

Computer Organization I, Autumn 2010, Teemu Kerola 29.11.2010 22

Comp. Org Il, Autumn 2010 11

Lecture 9: Superscalar Processing

29.11.2010

i

[y

Superscalar Pentium 4

h 4

3.2 GB/s System Interface

L2 Cache and Control

BIB & I-TLB

AGU = address generation unit
BTB =branch target buffer

D-TLB= data translation lookaside buffer
I-TLB = instruction translation lookaside buffer

Fetch/Decode

BTIB

L1 instruction cache
Trace Cache

A A

A 4

]

ucode
ROM

Computer Organization I, Autumn 2010, Teemu Kerola

(StalO Fig 14.7)

Rename/Alloe

uop Queues

Schedulers

vV vy

| FP Register File | |

v

h 4

Store
AGU
Load
AGU
e|aLu

EI[E!

Integer Register File

|

L1 D-Cache and D-TLB

FP move
FP store [~

$

FMul
lep| Fadd
MMX

29.11.2010 23

Pentium 4 Pipeline

B Outside CISC (IA-32)

B [nside execution in micro-operations (pops) as RISC
m Fetch CISC instruction and translate it to one or more pops to

m Rest of the superscalar pipeline operates with these fixed-

L1-level cache (trace cache)

length micro-operations (118b)

B |ong pipeline

m Extra stages (5 and 20) for propagation delays

z
1 | 2
TC Nxt IP
1

ya

3 | 4

TC Fetch
1

Drriv

6
Alloc

z
7|s

Rename
1

9
Que

10
Sch

1
Sch

12
Sch

13
Disp

14
Disp

15
RF

16 | 17 | 18 | 19 | 20
RF | Ex | Flgs [Br Ck|Drive]

Computer Organization I, Autumn 2010, Teemu Kerola

TC Next IP = trace cache next instruction pointer
TC Fetch = trace cache fetch
Alloe = allocate

Rename = register renaming

Que = micro-op queuning
Sch = micro-op scheduling
Disp = Dispatch

RF =register file

Ex = execute

Flgs = flags

Br Ck = branch check

(Stalo Fig 14.8)

29.11.2010 24

Comp. Org 11, Autumn 2010

12

Lecture 9: Superscalar Processing 29.11.2010

(Stal0 Fig 14.9 a-d) [,

‘. - Generation of Pentium
Pipeline pops

e/
Schdukrs
L1D-Cacheand D-TLE

555555

a) Fetch IA-32 instruction from L2 cache and generate pops to L1
m Uses Instruction Lookaside Buffer (I-TLB)
m and Branch Target Buffer (BTB)
- four-way set-associative cache, 512 lines
= 1-4 pyops (=118 bit RISC) per instruction (most cases),
if more then stored to microcode ROM
b) Trace Cache Next Instruction Pointer - instruction selection
m Dynamic branch prediction based on history (4-bit)
m If no history available, Static branch prediction
- backward, predict "taken”
- forward, predict "not taken”
c¢) Fetch instruction from L1-level trace cache

d) Drive — wait (instruction from trace cache to rename/allocator)

Computer Organization I, Autumn 2010, Teemu Kerola 29.11.2010 25

(StalO Fig 14.9¢e)

»i_ Pentium Pipeline
. Resource allocation

e) Allocate resources
m 3 micro-operations per cycle

m Allocate an entry from Reorder Buffer (ROB) for the pops
(126 entries available)

m Allocate one of the 128 internal work registers for the result
m And, possibly, one load (of 48) OR store (of 24) buffer
Register renaming
m Clear name dependencies by renaming
(16 architectural regs to 128 physical registers)
m If no free resource, wait (= out-of-order)

B ROB-entry contains bookkeeping of the instruction progress
m Micro-operation and the address of the original IA-32 instr.
m State: scheduled, dispatched, completed, ready
m Register Alias Table (RAT):
which IA-32 register = which physical register

Computer Organization I, Autumn 2010, Teemu Kerola 29.11.2010 26

Comp. Org Il, Autumn 2010 13

Lecture 9: Superscalar Processing

‘i_ Pentium Pipeline

Window of Execution

B
F:

f) Micro-Op Queueing

m 2 FIFO queues for pops

- One for memory operations (load, store)
- One for everything else
m No dependencies, proceed when room in scheduling
g) Micro-Op Scheduling
m Retrieve pops from queue and dispatch (issue) for execution
m Only when operands ready (check from ROB-entry)
h) Dispatching
m Check the firstinstructions of FIFO-queues (their ROB-entries)
m If execution unit needed is free, dispatch to that unit
m Two queues - out-of-order issue
m max 6 micro-ops dispatched in one cycle
- ALU and FPU can handle 2 per cycle
- Load and store each can handle 1 per cycle

Computer Organization I, Autumn 2010, Teemu Kerola 29.11.2010 27

& Pentium Pipeline

Integer and FP Units

Fomove

B i) Get data from register or L1 cache

B) Execute instruction, set flags (lipuke)
m Several pipelined execution units
- 4*Alu, 2 * FPU, 2 * load/store
- E.g. fast ALU for simple ops, own ALU for multiplications
m Result storing: in-order complete
m Update ROB, allow next instruction to the unit
B k) Branch check
m What happend in the jump /branch instruction
m Wasthe prediction correct?
m Abort incorrect instruction from the pipeline (no result storing)
B |) Drive — update BTB with the branch result

Computer Organization I, Autumn 2010, Teemu Kerola 29.11.2010

28

Comp. Org 11, Autumn 2010

29.11.2010

14

Lecture 9: Superscalar Processing 29.11.2010

‘ Pentium 4 Hyperthreading

B One physical IA-32 CPU, but 2 logical CPUs
m Instructions from 2 processes in the same pipeline

B OS sees as 2 CPU SMP (symmetric multiprocessing)

m Logical processors execute different processes or threads
m No code-level issues

m OS must be capable to handle more processors
(like scheduling, locks)

B Uses CPU wait cycles
m Cache miss, dependences, wrong branch prediction

B If one logical CPU uses FP unit, then the other one can
use INT unit

m Benefits depend on the applications

Computer Organization I, Autumn 2010, Teemu Kerola 29.11.2010 29

‘ Pentium 4 Hyperthreading

B Duplicated (kahdennettu)
m |P, EFLAGS and other control registers
m Instruction TLB
m Register renaming logic

B Split (puolitettu)
m No monopoly, non-even split allowed Intel Nehalem arhc.h..
m Reordering buffers (ROB) BEaEs A e e,
) 1-16 threads (820
= Micro-op queues

million transistors)
m | oad/store buffers Firstt
B Shared (jaettu) Core i7 (Nov 2008)
m Register files (128 GPRs, 128 FPRs)
m Caches: trace cache, L1, L2, L3
m Registers needed during pops execution

m Functional units: 2 ALU, 2 FPU, 2 |d/st-units

Computer Organization I, Autumn 2010, Teemu Kerola 29.11.2010 30

Comp. Org Il, Autumn 2010 15

Lecture 9: Superscalar Processing 29.11.2010

i Superscalar ARM CORTEX-AS8

B |In family of ARM application processors

B Embedded processor running complex operating system
m Wireless, consumer and imaging applications
m Mobile phones, set-top boxes, gaming consoles, automotive
navigation/entertainment systems
B Three (four?) functional units
m Fetch pipeline, decode pipeline, execute pipeline
m SIMD pipeline NEON (10-stages)

B Dual, in-order-issue, 13-stage pipeline
m Keep power required to a minimum
m Out-of-order issue would need extra logic consuming extra power

Computer Organization I, Autumn 2010, Teemu Kerola 29.11.2010 31

13-stage Integer plpeline

! 2 stages 5 stages 6stages

Branch mispredict 1
Instruction execute and Load/Store

lR:play Instruction register writeback
A R M Instruction fetch Instruction decode ALU pipe
L1 T o MUL plpe 0 u
Prefetch 5 plpe
Cortex- U |t 2nd || e foopeiney 12 el Ry
nterface check an &g nterface
n RAM brdalnCh | Sequencer Issue —> |5 = ALl plpe 1 RAM
8 p tion)| <= Load/store
TLB plpedor1 TLB

Block I I l 1 t

D 1 L2 NEON unit INEON register writsback
| ag r al n cache| Instruction, data, NEON and preload ‘ 1
engine buffers Integer ALU pipe
[
N
Instruction Ingeger shift pipe
“+* | decode H
Fill and eviction | non-IEEE FP ADD pipe
queue L2 cache L2 cache ™ non-lEEE FP MUL pipe
dataRAM | | tag RAM
Bus IEEE floating-point englne
Interface m; Load and store na-p s
unit (BIU) data queue | Load/store permute pipe

lzT\J

3 stages 1stage 6 stages

‘ Arbitration

L2 cache ‘

plpeline control NEON

NEON register file

:

(Stalo Fig 14.10)
10-stage SIMD pipeline
Computer Organization I, Autumn 2010, Teemu Kerola 29.11.2010 32

Comp. Org Il, Autumn 2010 16

Lecture 9: Superscalar Processing

Instruction fetch

‘i_ ARM Cortex-A8 N EH
- . -side cache B
. Instruction Fetch Unit L1 lintertacef| 2,
RAM ranc |
prediction
TLB

L . (StalO Fig 14.10)
B Predicts instruction stream

B Fetches instructions from the (included) L1 instruction cache
m Into buffer for decode pipeline
m Up to four instructions per cycle

B Speculative instruction fetches
B Branch or exceptional instruction cause pipeline flush

B Two-level global history branch predictor
m Branch Target Buffer (BTB) and Global History Buffer (GHB)

B Return stack to predict subroutine return addresses

B Can fetch and queue up to 12 instructions

Computer Organization I, Autumn 2010, Teemu Kerola 29.11.2010 33

‘_ ARM Cortex-A8 Instruction Fetch Unit
. Processing Stages

B FO address generation unit (AGU)

m Next address sequentially

m Or branch target address (from branch F1 F2
o . branch
prediction of previous address) mispredict

B F1 fetch instructions from L1 J,

m [n parallel, check the branch prediction ! RAM | | 12
for the next add T entry
or the next address b 1B | fetch >
B F2 Place instruction to instruction queue queue
m If branch prediction, new target address sent BTB
to AGU GHB
. . . RS
B |ssues instructions to decode two at a time

(Stal0 Fig 14.11)

Computer Organization I, Autumn 2010, Teemu Kerola 29.11.2010 34

Comp. Org 11, Autumn 2010

29.11.2010

17

Lecture 9: Superscalar Processing 29.11.2010

Instruction decode

»i_ ARM Cortex-A8
. Instruction Decode Unit | Decode . [|Pependency f*

sequencer Ch?Ckand
| Issue

- . . .
Dual p_|peI|n§ structure, pipe0 and pipel TR
m Two instructions at a time
m Pipe0 contains older instruction in program order

m If instruction in pipe0 cannot issue, pipel will not issue

B In-order instruction issue and retire
m Results written back to register file at end of execution pipeline
m no WAR hazards
m tracks WAW hazards and straightforward recovery from flush
m Decode pipeline to prevent RAW hazards

Computer Organization I, Autumn 2010, Teemu Kerola 29.11.2010 35

i_ ARM Cortex-A8 Instruction Decode Unit
. Processing Stages

B DO Decompress Thumbs and do preliminary decode

B D1 Instruction decode completed

B D2 Write/read instructions to/from pending/replay queue

B D3 instruction DO D1 D2 D3 D4
scheduling logic

replay
m Scoreboard predicts l
register availability | Early _.II D?codE pec || score |, .,
using static scheduling decode| | /*¢d queue | | board Final
D d hecki read/ + decode
m Dependency checkin Earl L - issue
; § / ’ qdecoée [—"|Decode R logic [| —
B D4 Final decode -
control signals for !
. Pending and
Integer execute replay queue
) (StalO Fig 14.11)
load/store units
Computer Organization I, Autumn 2010, Teemu Kerola 29.11.2010 36

Comp. Org Il, Autumn 2010 18

Lecture 9: Superscalar Processing

»

Computer Organization I, Autumn 2010, Teemu Kerola

ARM Cortex-A8 Integer Execution Unit

Two symmetric (ALU) pipelines, an address generator for
load and store instructions, and multiply pipeline

Multiply unit instructions routed to pipe0O
m Performed in stages E1 through E3
m Multiply accumulate operation in E4

EO Access register file
m Up to six registers for two instructions

E1 Barrel shifter if needed.

E2 ALU function

E3 If needed, completes saturation arithmetic

E4 Change in control flow prioritized and processed

E5 Results written back to register file

29.11.2010

37

i ARM Cortex-A8 Integer Execution Unit
branch
mispredict replay
EO E1 E2 E3 TE4T E5
> | Shift —» AW —» SAT |— BP | ws ALU/
@ multiply
= MUL MUL MUL pipe 0
NsTo | 2] 1 [2 [3 [A [we
— 2
(o))
g
I
INST 1 5
* g ALU
£ [oof| shift [AU | SAT [BP [WB pipe 1
S
<<
RAM
RN YT R _’fForma:j_’ I;i2 L we Lgad{jstor;e
TLB orwar update pipe 0 or
T | (Stal0 Fig 14.11)
Computer Organization I, Autumn 2010, Teemu Kerola 29.11.2010

38

Comp. Org 11, Autumn 2010

29.11.2010

19

Lecture 9: Superscalar Processing 29.11.2010

‘ ARM Cortex-A8 Load/Store Pipeline

B Parallel to integer pipeline

B E1 Memory address generated from base and index register

B E2 address applied to cache arrays

B E3load, data returned and formatted

B E3 store, data are formatted and ready to be written to cache

B E4 Updates L2 cache, if required

B E5 Results are written to register file
RAM

o acu s+ Lo Format -, L2 L, we LQady'store
TLB forward update pipe 0 or 1

Computer Organization I, Autumn 2010, Teemu Kerola 29.11.2010 39

. ARM Cortex-A8
‘*‘ SIMD and Floating-Point Pipeline

B SIMD and floating-point instructions pass through
integer pipeline

B Processed in separate 10-stage pipeline
m NEON unit

m Handles packed SIMD instructions
m Provides two types of floating-point support

B If implemented, vector floating-point (VFP) coprocessor
performs IEEE 754 floating-point operations

m If not, separate multiply and add pipelines implement
(non-1EEE) floating-point operations

Computer Organization I, Autumn 2010, Teemu Kerola 29.11.2010 40

Comp. Org Il, Autumn 2010 20

Lecture 9: Superscalar Processing

] ARM Cortex-A8 NEON & Floating
. Point Pipeline
NEON register writeback
|
DUP |+ M:*"- Ly M'2~"- R ‘“‘1:‘: Ly Agc Ly wB [
Instruction decode AL
L 4 Shift 1 »{Shift 2|+ Shift 31> -+ > WB MAC,
16-entry as Steare- REg SITIIFT
Inst ™ queue [board [™ €24 T e [of A [+ ABS |» Ly N pEs
queue + o +
I+t Rd/Wr | | Issue Mr:3
pec | [' [|manes] ["] Foup tot ™ ot PP o P bt PO ot B e
FADD | |FADD | |FADD | |FADD Non-IEEE
" R (I I R A D i
IEEE
Load and store VFP 1 WB single/double
with alignment precision VFP
Mux L1/ 200V sy Load (3 MUK (—IPERM || |PERM | [Store | [S27tTY] | L wa Loadm::g
MCR | queue [* Align [+ npe ¥ 1 2 Align | *| queue permute
(StalO Fig 14.12)
Computer Organization I, Autumn 2010, Teemu Kerola 29.11.2010 41
‘ Summary
B What does superscalar mean?
B ILP vs. machine level parallelism?
B Dispatch, issue, window of execution
B Out-of-order completion
B New dependencies and solutions for them?
B Renaming, solution for name dependencies
B Superscalar Pentium and ARM
Computer Organization I, Autumn 2010, Teemu Kerola 29.11.2010 42

Comp. Org 11, Autumn 2010

29.11.2010

21

Lecture 9: Superscalar Processing 29.11.2010

‘i\ Review Questions

B Differences / similarities of superscalar
and traditional pipeline?

B What new problems must be solved?
B How to solve those?

B \What is register renaming and why it is
used?

Computer Organization I, Autumn 2010, Teemu Kerola 29.11.2010 43

Comp. Org Il, Autumn 2010 22

