
CPU Examples & RISC

Ch 12.5-6 [Sta10]

x86/ARM

Lecture 8

Ch 13 [Sta10]
Instruction analysis
RISC vs. CISC
Register use

Computer Organization II

24.11.2010Computer Organization II, Autumn 2010, Teemu Kerola 2

X86 architecture
(e.g., Pentium)

X86 Processor Registers

24.11.2010Computer Organization II, Autumn 2010, Teemu Kerola 3

CS, SS, DS,

ES, FS, GS

EFLAGS

EIP

(Sta10 Table 12.2)

EAX, EBX, ECX, EDX,

ESP, EBP, ESI, EDI

X86 Processor Registers

24.11.2010Computer Organization II, Autumn 2010, Teemu Kerola 4

(Sta10 Table 12.2)

Functions as a FP stack,
or store MMX values

For
exception
handler
support

FP sp, cc, exceptions

round, precis, int disable

fp, mmx, emmx

Pentium: FP / MMX Registers

Aliasing

FP regs used as stack
Intel 8087 coprocessor (1980)

MMX multimedia
instructions use the same
registers, but use them
directly

MMX-usage: bits 64-79
are set to 1 NaN

FP Tag (word) indicate
which usage is current

First MMX instr. set
EMMS (Empty MMX State)
instruction reset

24.11.2010Computer Organization II, Autumn 2010, Teemu Kerola 5

Programmer responsibility

(Sta10 Fig 12.24)

http://en.wikipedia.org/wiki/Intel_8087

Discussion?

Pentium: EFLAGS Register

Condition of the processor: carry, parity, auxiliary, zero,
sign, and overflow

Used in conditional branches

24.11.2010Computer Organization II, Autumn 2010, Teemu Kerola 6

(Sta10 Fig 12.22)

Pentium: Control Registers

24.11.2010Computer Organization II, Autumn 2010, Teemu Kerola 7

Not used!

System control
flags

Last page accessed
before page fault

(Sta10 Fig 12.23)

Pentium: Interrupts
Calling interrupt handler; atomic hardware functionality!
If not in privileged mode (etuoikeutettu tila)

PUSH(SS) stack segment selector to stack
PUSH(ESP) stack pointer to stack
PUSH(EFLAGS) status register to stack
EFLAGS.IOPL 00 set privileged mode
EFLAGS.IF 0 disable interrupts (keskeytys)
EFLAGS.TF 0 disable exceptions (poikkeus)
PUSH(CS) code segment selector to stack
PUSH(EIP) instruction pointer to stack (käskyosoitin)
PUSH(error code) if needed

number interrupt controller / INT-instruction / status register
CS interrupt vector [number].CS
EIP interrupt vector [number].EIP
Return

Privileged IRET-instruction
POP everything from stack to their places

24.11.2010Computer Organization II, Autumn 2010, Teemu Kerola 8

See Sta10 Table 12.3

as subroutine call

Address translation:
Segment number and
offset from interrupt vector =>
Address of the interrupt handler

24.11.2010Computer Organization II, Autumn 2010, Teemu Kerola 9

(Sta10 Table 12.3)

Ex
ce

pt
oi

n
an

d
In

te
rr

up
t V

ec
to

r T
ab

le

Maskable interrupt

Nonmaskable interrupt

Computer Organization II

24.11.2010Computer Organization II, Autumn 2010, Teemu Kerola 10

ARM (Ch 12.6 Sta10)

ARM features

Array of uniform registers (moderate number)

Fixed length (32 bit) instruction (Thumb 16 bit)

Load/Store architecture

Small number of addressing modes (reg + instr. field)

Autoincrement addressing mode (for program loops)

Data processing instructions allow shift or rotate to
preprocess one of source regs

Separate ALU and shifter for this purpose
(avoid structural dependency or hazard)

Conditional execution of instructions
Fewer conditional branches, improves pipeline efficiency

24.11.2010Computer Organization II, Autumn 2010, Teemu Kerola 11

ARM Processor
Organization

24.11.2010Computer Organization II, Autumn 2010, Teemu Kerola 12

(Sta10 Fig 12.25)

Varies substantially -

different versions of ARM

architecture

Simplified, generic

organization

Register file: set of 32-bit

registers, total 37 regs

31 general-purpose regs

6 status regs

Partially overlapping banks

Processor execution modes

User mode
No access to protected system resources, can cause
exception

Supervisor mode
For OS, starts with software interrupt instruction

Abort mode – due to memory faults

Undefined mode – instruction not supported

Fast interrupt mode
Interrupt from designated fast interrupt source
Not interruptable, can interrupt normal interrupt

Interrupt mode
Any other interrupt signal, can be interrupted by fast interrupt

System mode
Only for certain priviledged OS tasks

24.11.2010Computer Organization II, Autumn 2010, Teemu Kerola 13

Exception
modes

ARM
Register
organization

24.11.2010Computer Organization II, Autumn 2010, Teemu Kerola 14

SP – stack pointer
LR – link register
(return address&mode)
PC – program counter
CPSR – current
program status register
SPSR – saved
program status register

Shaded regs replaced
in exception modes!

(Sta10 Fig 12.26) Discussion?

Program status regs (CPSR & SPSR)

N,Z,C,V – condition code
Q – overflow or saturation in
SIMD-orient. instr.
J – Jazelle instruction in use

”Java byte code mode”

GE[3:0] – for SIMD as greater
than or equal flags for
individual bytes or halfwords of
the result

E – endianness in load/store
A,I,F – interrupt disable bits (A -

imprecise data aborts, I – normal

IRQ, F – fast FIQ)

T – normal / Thumb instr.
M[4:0] – processor mode

24.11.2010Computer Organization II, Autumn 2010, Teemu Kerola 15

(Sta10 Fig 12.27)

ARM Interrupt
vector

Table lists the
exception types
and the address in
interrupt vector for
that type.

The vector
contains the start
addresses of the
interrupt handlers.

24.11.2010Computer Organization II, Autumn 2010, Teemu Kerola 16

(Sta10 Table 12.4)

Processor
Mode

Computer Organization II

24.11.2010Computer Organization II, Autumn 2010, Teemu Kerola 17

RISC-
architecture

Ch 13 [Sta10]
Instructions
RISC vs. CISC
Register allocation

Hardware milestones
Virtual memory, 1962

Simpler memory management
Pipeline, 1962
Architecture family concept, 1964

Set of computers using the same instruction set
Microprogrammed control, 1964

Easier control design and impl.
Multiple processors, 1964

test_and_set instruction needed
Cache, 1965

Huge improvement in performance
RISC-architecture, 1980

Simple instruction set
Superscalar CPU, 1989

Multiple instruction per cycle
Hyperthreading CPU, 2001

Several register sets and virtual processors on chip
Multicore CPU, 2005

Several full processors on chip
24.11.2010Computer Organization II, Autumn 2010, Teemu Kerola 18

IBM S/360, DEC PDP-8

IBM S/360

IBM S/360

Atlas

Univac

IBM

IBM, Intel

Intel

Atlas

Intel, Sony-Toshiba-IBM

Maurice Wilkes

Tom Kilburn

Tom Kilburn

Gene Amdahl

J.P. Eckert, John Mauchly

Maurice Wilkes

John Cocke, 1974, IBM 801
J.L. Hennessy & D.A. Patterson

John Cocke, 1965

Intel IBM

CDC, 1964 Intel

IntelIBM

CISC - Complex Instruction Set Computer

Goal: Shrink the semantic gap (semanttinen kuilu) between
high-level language and machine instruction set

Expressiveness of high-level languages had increased
Wanted ”simple” compilations

- Language structures match nicely with instructions

Lots of different instructions for different purposes
Lots of different data types (int, float, char, boolean, …)
Lots of different addressing modes
Complex tasks performed in hardware by control unit (single
instruction), not in the machine code level (multiple instructions)

- Less instructions in one program (shorter code)
- Efficient (just a few instructions) execution of complex tasks

24.11.2010Computer Organization II, Autumn 2010, Teemu Kerola 19

Which Operations and Operands Are Used?

Year 1982, computers VAX, PDP-11, Motorola 68000

Observe dynamic execution time behaviour

24.11.2010Computer Organization II, Autumn 2010, Teemu Kerola 20

(Sta10 Table 13.2, 13.3)

80% of references

to local variables

(HLL=High Level Language)

Subroutine (procedure, function) calls?
Lots of subroutine calls

Calls rarely have many parameters

Nested (sisäkkäinen) calls are rare

24.11.2010Computer Organization II, Autumn 2010, Teemu Kerola 21

(Sta10 Table 13.4)

98% less than 6 parameters

92% less than 6 local variables

How to use the information?

Observations from Real Programs

Most operands are simple
Many jumps and branches
Compilers do not always use the complex instructions

They use only a subset of the instruction set
Easier to do? Faster?

Conclusion?

24.11.2010Computer Organization II, Autumn 2010, Teemu Kerola 22

"Entia non sunt multiplicanda praeter necessitatem"
("Entities should not be multiplied more than necessary")

William Of Occam (1300-1349)
English monk, philosopher

"It is vain to do with more that which can be done with less"

Occam’s razor (Occamin partaveitsi)

Optimize for Execution Speed
Optimize the parts that consume most of the time

Procedure calls, loops, memory references, addressing, …

Avoid optimizing rare events
Rarely used (10%) floating point instructions improved to run 2x:

24.11.2010Computer Organization II, Autumn 2010, Teemu Kerola 23

Speedup due to an enhancement is proportional
to the fraction of the time (in the original system)
that the enhancement can be used.

Speedup = ExTimeold / ExTimenew = 1 / 0.95 = 1.053 << 2

ExTimenew = ExTimeold * (0.9 * 1.0 + 0.1 * 0.5)
= 0.95 x ExTimeold

Amdahl’s law

No speedup Speedup: 1/2

Gene Amdahl

RISC Approach

Optimize design for execution speed,
instead of ease of compilation

Compilers are good, machines are efficient
- Compiler can and has time to do the optimization

Do most important, common things in hardware and fast
- E.g. 1-dim array reference
- One machine instruction

And the rest in software (and slow)
- E.g. multidimensional arrays, string processing, ...
- Library routines for these
- Many machine instructions

RISC architecture (Reduced Instruction Set Computer)

24.11.2010Computer Organization II, Autumn 2010, Teemu Kerola 24

RISC architecture
Plenty of registers (minimum 32)

Compilers optimize register usage

LOAD / STORE architecture
Only LOAD and STORE do memory referencing

Small set of simple instructions

Simple, fixed-length instruction format (32b)
Instruction fetch and decoding simple and efficient

Small selection of simple address references
No indirect memory reference
Fast address translation

Limited set of different operands
32b integers, floating-point

One or more instructions are completed on each cycle

24.11.2010Computer Organization II, Autumn 2010, Teemu Kerola 25

RISC architecture

CPU easier to implement
Pipeline control and optimization
simpler
Hardwired (langoitettu) control

Smaller chip (lastu) size
More chips per die (kiekko)
Smaller waste%

Cheaper manufacturing

Faster marketing
Design-to-market time

24.11.2010Computer Organization II, Autumn 2010, Teemu Kerola 26

25% yield (good chips)
75% wasted

55% yield (good chips)
45% wasted

Large chip vs. small chip?

http://www.gadget-paradise.com/0127/samsung/computer/64gb-flash-memory/

RISC vs. CISC

24.11.2010Computer Organization II, Autumn 2010, Teemu Kerola 27

(Sta10 Table 13.1)

RISC (dark) vs. CISC (white background)

24.11.2010Computer Organization II, Autumn 2010, Teemu Kerola 28

(Sta10 Table 13.7)

Computer Organization II

24.11.2010Computer Organization II, Autumn 2010, Teemu Kerola 29

Register Files

Register Window to Register File
More physical registers than addressable in the instruction

E.g., SPARC has just 5 bits for register number 0.. 31,
but the processor has 40 to 540 registers

Small subset of registers available for each instruction in
register window

In the window references to register r0-r31
CPU maps them to actual (true) registers r0-r539

24.11.2010Computer Organization II, Autumn 2010, Teemu Kerola 30

Current
Window
Pointer (Sta10 Fig 13.3a)

Overlapped Register Windows

Procedure parameters passed in registers (not in stack)
Fixed number of registers for parameters, local variables, and
return value passed via overlapped register window
Overlapping area to allow parameter passing to the next
procedure and back to caller

24.11.2010Computer Organization II, Autumn 2010, Teemu Kerola 31

(Sta10 Fig 13.1)

Circural Buffer for Overlapped Register Window

Too many nested calls?
Most recent calls in registers
Older activations
saved to memory
Restore when nesting
depth decreases
Overlap only when needed

Global variables?
In memory or own register window

SPARC
r0-r7 global var.
r8-r15 parameters (in caller)
r16-r23 local variables
r24-r31 parameters (to called)

24.11.2010Computer Organization II, Autumn 2010, Teemu Kerola 32

(Sta10 Fig 13.2)

Virtual
register
names

Real register names

Discussion?

Register File vs. Cache

The register file acts like a small, fast buffer (as cache?)
Register is faster, needs less bits in addressing, but

It is difficult for compiler to determine in advance,

which of the global variables to place in registers

Cache decides this issue dynamically
Most used and referenced data stay in cache

24.11.2010Computer Organization II, Autumn 2010, Teemu Kerola 33

(Sta10 Table 13.5)

time space

Number of bits

Compiler-based register optimization
(allocation of registers)

Problem: Graph coloring
Minimize the number of different
colors, while adjacent nodes
have different color

= Difficult problem
(NP-complete)

Form a network of symbolic registers based on the program code
Symbolic register~ any program quantity that could be in register
The edges of the graph join together program quantities that are used in the
same code fragment

Allocate real registers based on the graph
Two symbolic registers that are not used at the same time (no edge between
them) can be allocated to the same real register (use the same color)
If there are no more free registers, use memory addresses

24.11.2010Computer Organization II, Autumn 2010, Teemu Kerola 34

See course on
Models of Computation

Allocation of registers
(compiler-based register optimization)

Node (solmu) = symbolic register
Edge (särmä) = symbolic registers used at the same time
n colors = n registers

24.11.2010Computer Organization II, Autumn 2010, Teemu Kerola 35

(Sta10 Fig 13.4)

So, use the same physical register for A and D, and for C and E.

RISC-pipeline

24.11.2010Computer Organization II, Autumn 2010, Teemu Kerola 36

(Sta10 Fig 13.6)

Single port MEM, I vs. D?

Two port MEM, or faster mem
(split cache enough?)

13 10

8 11

Clock cycle?

I: instruction fetch
E: execute E1: reg read, E2: Alu + reg write
D: memory op

Compiler solved RAW dependency

RISC-pipeline, Delayed Branch

24.11.2010Computer Organization II, Autumn 2010, Teemu Kerola 37

(Sta10 Fig 13.7)

Traditional pipeline
clear pipeline

RISC with inserted NOOP

Two port MEM

No need to clear pipeline (NOOP)

RISC with reversed instructions
Use of delay slot

What if conditional branch?
JZERO 105, rA
(need ADD 1,rA result before
comparison, cannot use delay slot)

Bubble?

Bubble?

Forget dependency
problem here,
concentrate on jump!

Extra gain: Dependency problem also solved!

RISC & CISC United?

Pentium, CISC
Each 1–11 byte-length CISC-instruction is ’translated’ by hardware to
1-4 118-bit micro-operations (stored in L1 instruction cache)

Lower levels (including control unit) as RISC
Lots of work registers, visible only to hardware

Crusoe (Transmeta)
Emulate Intel architecture with simpler HW architecture
Outside looks like Intel CISC-architecture
Group of instructions ’translated’ by software, just before execution, to
fixed-length micro-operations; these can be optimized before
execution

- VLIW (very long instruction word, 128 bits)
- 4 ops/VLIW-instruction

Lower levels as RISC

24.11.2010Computer Organization II, Autumn 2010, Teemu Kerola 38

Just in time (JIT) compilation

’compilation’ at
every execution

’compilation’ just
once per group

http://www.cs.clemson.edu/~mark/330/colwell/pentium.gif

Summary

X86 and ARM processor implementation examples
Registers, addressing modes, instruction sets

What is CISC? What is “wrong” with CISC

What is RISC? What is “good” with RISC?
Lots of registers, load-store arch
Small set of simple instructions with just a few operand types
Simple instruction formats and addressing formats

How to get more from HW registers?
Register windows to register file
Overlapping register windows
Register file vs. cache?
Register allocation problem and its solution

Combine RISC with CISC?

24.11.2010Computer Organization II, Autumn 2010, Teemu Kerola 39

Review Questions

Main features and characteristics of RISC-architecture?

What makes RISC RISC?

Which addressing format is not RISC?

Which operation type is not RISC?

Which instruction format is not RISC?

Which operand type is not RISC?

Why would large L1 cache be better than large register file?

How are register windows used?
When would n overlapped registers be enough?
What happens if n overlapped registers is not enough?

24.11.2010Computer Organization II, Autumn 2010, Teemu Kerola 40

