Lecture 8: Pentium, ARM, RISC 24.11.2010

w‘\ Computer Organization Il

X86 architecture
(e.g., Pentium)

Computer Organization I, Autumn 2010, Teemu Kerola 24.11.2010 2

Comp. Org 11, Autumn 2010 1

Lecture 8: Pentium, ARM, RISC

‘* X86 Processor Registers

(Stal0 Table 12.2)

(a) Integer Unit in 32-bit Mode

EAX, EBX, ECX, EDX,
ESP, EBP, ESI, EDI

Type Number Length (bits) Purpose

General 32 General-purpose user registers
A CS, SS, DS,
Segment 6 16 Contain segment selectors ——
EFLAGS 1 3 Status and control bits e
Instruction Pointer 1 32 Instruction pointer EFLAGS
EIP
(b) Integer Unit in 64-bit Mode

Type Number Length (bits) Purpose
General 16 32 General-purpose user registers
Segment 6 16 Contain segment selectors
RFLAGS 1 64 Status and control bits
Instruction Pointer 1 64 Instruction pointer

Computer Organization Il, Autumn 2010, Teemu Kerola

24.11.2010 3

(c) Floating-Point Unit

‘i‘ X86 Processor Registers

(Stal0 Table 12.2)

Functions as a FP stack,
or store MMX values

Type Number Length (bits) Purpose
Numeric 8 80 Hold floating-point numbers
Control 1 16 Control bits ~found, precis, int disable
Status 1 16 Status bits FP sp, cc, exceptions
Tag Word 1 16 Specifies contents of numeric
registers fp’ mmx, emmx
Instruction Pointer 1 48 Points to instruction interrupted Eai
by exception .
exception
Data Pointer 1 48 Points to operand interrupted by | handler
exception support
Computer Organization Il, Autumn 2010, Teemu Kerola 24.11.2010 4

Comp. Org 11, Autumn 2010

24.11.2010

Lecture 8: Pentium, ARM, RISC 24.11.2010

- Pentium: FP / MMX Registers (Stal0Figi224)
" Floating-Point
L Tag Floating-Point Registers
|
Aliasing /7 —.

B FP regs used as stack 00]
m Intel 8087 coprocessor (1980) ﬂ £ 2
http://en.wik_ipedia.o_rqlwiki/InteI 8087 00 "‘ ‘/

B MMX multimedia — . =
. : 00 -
instructions use the same m 63
registers, but use them ad Bl
directly 0] MMé6
- , | 00] MM5
MMX-l:fag:}Le._) t:\|lts l\(154-79 00/ MMa
are set to a e
B FP Tag (word) indicate MM2
which usage is current MM1
m First MMX instr. set MMO g
= EMMS (Empty MMX State) MMX Registers
instructionreset \|Programmerresponsibility |
Computer Organization Il, Autumn 2010, Teemu Kerola 24.11.2010 5

‘._ Pentium: EFLAGS Register

(Stal0 Fig 12.22)

31 21 16 /15 0
I}"I'AVR N| IO |[OD|I|T|S|Z| |A P C
Dip|s|CIMF T|PL |F|F|F |F|F|F F F F

ID = Identification flag DF = Direction flag

VIP = Virtual mterrupt pending IF = Interrupt enable flag
VIF = Virtual interrupt flag TF = Trap flag

AC = Alionment check SF = Sign flag

[VM = Virtual 8086 mode | ZF = Zero flag

RF = Resume flag AF = Auxiliary carry flag
NT = Nested task flag PF = Panty flag

IOPL = V/O privilege level CF = Carry flag

| OF = Overflow flag

B Condition of the processor: carry, parity, auxiliary, zero,
sign, and overflow

m Used in conditional branches

Computer Organization Il, Autumn 2010, Teemu Kerola 24.11.2010 6

Comp. Org 11, Autumn 2010 3

Lecture 8: Pentium, ARM, RISC 24.11.2010

L}
‘ Pentium: Control Registers
L}
51 s /7 /6 /5 /A 3 /2 1 Jo
ABEBHEREE
CR4 Ele|EIE]E|E)DIT |E
Page Directory B CP: {)\
CR3 age Directory Base |y
CR? Page Fault Linear Address / Last page accessed
- Not used! \ / before page fault
PICIN Al W] NIE|TE|M]| P
CRO [G]|p|w M| |P E|T|SIM|P|E
31030\29 13 3 Ji SNANZ\2N1 N0
= able PG = Paging
PGE = Page Global Enable CD = Cache Disable
MCE = Machine Check Enable NW = Not Write Through
PAE = Physical Address Extension AM = Alignment Mask
PSE = Page Size Extensions WP = Write Protect SYStem control
DE = Debug Extensions NE = Numeric Error fl ags
TSD = Time Stamp Disable ET = Extension Type
PVI = Protected Mode Virtual Interrupt TS = Task Switched
VME = Virtual 8086 Mode Extensions EM = Emulation
PCD = Page-level Cache Disable MP = Momitor Coprocessor
PWT = Page-level Writes Transparent PE = Protection Enable .
(Stalo Fig 12.23)
Computer Organization Il, Autumn 2010, Teemu Kerola 24.11.2010 7
: Pentium: Interrupts [See Sta10 Table 12.3

‘*_‘ B Calling interrupt handler; atomic hardware functionality!
If not in privileged mode (etuoikeutettu tila)

PUSH(SS) stack segment selector to stack
PUSH(ESP) stack pointer to stack
PUSH(EFLAGS) status register to stack
EFLAGS.IOPL « 00 set privileged mode L2 Subroutine call
EFLAGS.IF « 0 disableinterrupts (keskeytys)
EFLAGS.TF + 0 disable exceptions (poikkeus)
PUSH(CS) code segment selector to stack
PUSH(EIP) instruction pointer to stack (kaskyosoitin)
PUSH(error code) if needed

number + interrupt controller / INT-instruction / status register

CS « interrupt vector [number].CS Address translation:
EIP « interruptvector [number].EIP Segment number and
ffset from interrupt vector =>
] o
Return Address of the interrupt handler

m Privileged IRET-instruction
m POP everything from stack to their places

Computer Organization Il, Autumn 2010, Teemu Kerola 24.11.2010 8

Comp. Org II, Autumn 2010 4

Lecture 8: Pentium, ARM, RISC

Exceptoin and Interrupt Vector Table . ‘

Vector Number

Description

ow e e

wn

19-31
32-255

Davide error;, division overflow or division by zero

Debug exception; mncludes various faults and traps related to debugging

NMI pin interrupt; signal on NMI pin Nonmaskable interrupt \
Breakpoint; caused by INT 3 instruction, which is a 1-byte instruction useful for debugging
INTO-detected overflow; occurs when the processor executes INTO with the OF flag set

BOUND range exceeded: the BOUND instruction compares a register with boundaries stored in
memory and generates an interrupt if the contents of the register is out of bounds.

Undefined opcode
Device not available; attempt to use ESC or WAIT instruction fails due to lack of external device

Double fault; two interrupts occur during the same mnstruction and cannot be handled serally
Reserved

Invahd task state segment; segment describing a requested task is not imitialized or not vahd
Segment not present; required segment not present

Stack fault; limit of stack sepment exceeded or stack segment not present

General protection; protection violation that does not canse another exception (e.g., writing to a
read-only segment)

Page fault
Reserved
Floating-point error; generated by a floating-point arithmetic instruction

Alignment check; access to a word stored at an odd byte address or a doubleword stored at an
address not a multiple of 4

Machine check; model specific
Reserved

User interrupt vectors; provided when INTR signal is activated Maskable interrupt

Unshaded: exceptions

Shaded: interrupts
Computer Organization Il, Autumn 2010, Teemu Kerola 24.11.2010 9

(Stal0 Table 12.3)

i Computer Organization Il
ARM (ch 12.6 Sta10)

Comp. Org 11, Autumn 2010

24.11.2010

Lecture 8: Pentium, ARM, RISC

ARM features

Array of uniform registers (moderate number)

Fixed length (32 bit) instruction (Thumb 16 bit)
Load/Store architecture

Small number of addressing modes (reg + instr. field)
Autoincrement addressing mode (for program loops)

Data processing instructions allow shift or rotate to

preprocess one of source regs

m Separate ALU and shifter for this purpose
(avoid structural dependency or hazard)

B Conditional execution of instructions
m Fewer conditional branches, improves pipeline efficiency

Computer Organization Il, Autumn 2010, Teemu Kerola

24.11.2010

11

; ARM Processor
- Organization

Varies substantially -
different versions of ARM
architecture

Simplified, generic
organization

Register file: set of 32-bit
registers, total 37 regs

31 general-purpose regs

6 status regs

Partially overlapping banks

External memory (cache, main memory)

—b‘l Memory ad m‘d— I Memory buffer register I—
3 4
A A
T Sign
RI5(PC) HHE = =il
A
Rd
P User Register File (R0 - R15)
Rn R Ace
Instruction register
i
Barrel
shifter
Instruction
decoder
\ B l
Multiply/
2Ly accumulate
Control
unit
4
(Sta10 Fig 12.25))

Computer Organization Il, Autumn 2010, Teemu Kerola

24.11.2010

12

Comp. Org 11, Autumn 2010

24.11.2010

Lecture 8: Pentium, ARM, RISC

. Processor execution modes
- B User mode
m No access to protected system resources, can cause
exception

B Supervisor mode
m For OS, starts with software interrupt instruction

B Abort mode — due to memory faults

. B Undefined mode — instruction not supported
Exception .
modes —— W Fastinterrupt mode

m Interrupt from designated fast interrupt source
m Not interruptable, can interrupt normal interrupt

B [nterrupt mode
m Any other interrupt signal, can be interrupted by fast interrupt

B System mode
m Only for certain priviledged OS tasks

Computer Organization Il, Autumn 2010, Teemu Kerola 24.11.2010 13
Modes
c ARM Privileged modes
Reg Ister Exception modes
L] (0] rg an | zat | on User System Supervisor Abort Undefined | Interrupt . Fast
. nterrupt
SP — stack pOInter RO RO RO RO RO RO RO
LR — link reqgister R1 RI RI RI RI RI RI
(return address&mode) R2 R2 R2 R2 R2 R2 R2
PC — program counter = . i — = = i
R4 R4 R4 R4 R4 R4 R4
CPSR - current RS B " RS R B RS
program status register R6 R6 R6 R6 R6 R6 R6
SPSR — saved R7 R7 R7 R7 R7 R7 R7
program status register RS RS RS R8 . RS REShy
R9 R9 R9 R9 R9 RO R9_fiq
R10 R10 R10 R10 R10 R10 R10_fiq
Shaded regs rep|aced RI11 RIL RIL RI11 Ril RIL R11_fiq
in exception modes! R12 RI12 RI12 R12 RI12 RI2 R12 fiq

R13 (SP) R13 (5P) R13_sve R13_abt R13_und R13_iq R13_fiq

R14(LR) R14 (LR) R14_sve R14_abt R14_und R14_irq R14_fiq

RI5S(PC) | RIS(PC) | RI5(®C) | RIS(PC) | RIS(PC) | RIS@C) | RI15(PC)

| CPSR CPSR CPSR CPSR CPSR CPSR CPSR

SPSR_sve | SPSR_abt | SPSR und | SPSR_irq | SPSR_fiq

Stal0 Fig 12.26 = =
(9) Discussion?

Computer Organization Il, Autumn 2010, Teemu Kerola 24.11.2010 14

Comp. Org 11, Autumn 2010

24.11.2010

Lecture 8: Pentium, ARM, RISC 24.11.2010

\.‘ Program status regs (CPSR & SPSR)

3130292827 26252423222120191817161514131211109 8 7 6 5 4 3 2 1 0
|N|Z|C|V|Q|Res |J|Rescrvcd| GE[3:0] | Reserved |E|A|I|F|T| M[4:0] |

= e = e
User flags System control flags
m N,Z,C,V - condition code B E — endianness in load/store
B Q - overflow or saturation in B A |,F - interrupt disable bits (A -
SIMD-orient. instr. imprecise data aborts, | — normal
W J - Jazelle instruction in use IRQ, F —fast FIQ)

m "Java byte code mode”

B GE[3:0] - for SIMD as greater B M[4:0] — processor mode
than or equal flags for
individual bytes or halfwords of

the result

Computer Organization Il, Autumn 2010, Teemu Kerola

B T — normal / Thumb instr.

24.11.2010 15

N

ARM Interrupt
vector

Table lists the
exception types
and the address in
interrupt vector for
that type.

The vector
contains the start
addresses of the
interrupt handlers.

q i Normal ipti
Exception type . — Description
Mode address
Reset Supervisor | 0x00000000 | Occurs when the system is initialized.
Data abort Abort 0x00000010 | Occurs when an invalid memory address

has been accessed, such as if there is no
physical memory for an address or the
correct access permission is lacking.

FIQ (fast interrupt)

FIQ 0x0000001C | Occurs when an external device asserts the
FIQ pin on the processor. An interrupt
cannot be intermipted except by an FIQ.
FIQ is designed to support a data transfer
or channel process, and has sufficient
private registers to remove the need for
register saving in such applications,
therefore minimizing the overhead of
context switching. A fast interrupt cannot
be interrupted.

IRQ (interrupt)

RQ 0x00000018 | Occurs when an external device asserts the
IRQ pin on the processor. An interrupt
cannot be intermpted except by an FIQ.

Prefetch abort

Abort 0x0000000C | Occurs when an attempt to fetch an
instruction results in a memory fault. The
exception is raised when the instruction
enters the execute stage of the pipeline.

Undefined
instructions

Undefined | 0x00000004 | Occurs when an instruction not in the
instruction set reaches the execute stage of
the pipeline.

Software interrupt

Supervisor | 0x00000008 | Generally used to allow user mode
programs to call the OS. The user program
executes a SWI instruction with an
argument that identifies the function the

‘ (Stal0 Table 12.4) ‘ user wishes to perform.

Computer Organization Il, Autumn 2010, Teemu Kerola

24.11.2010 16

Comp. Org 11, Autumn 2010

Lecture 8: Pentium, ARM, RISC

‘ Computer Organization Il

RISC- 25
architecture =%~

Ch 13 [Stal0]
Instructions
RISCvs. CISC
Register allocation

24.11.2010 17

Computer Organization Il, Autumn 2010, Teemu Kerola

Hardware milestones

‘ [Atias|® Virtual memory, 1962
. m Simpler memory management
[Atlssm Pipeline, 1962

B Architecture family concept, 1964

m Set of computers using the same instruction set

[1BMS7360|/® Microprogrammed control, 1964

m Easier control design and impl.

| 1BM S/360, DEC PDP-8

[Univac @ Multiple processors, 1964 [3.P. Eckert, John Mauchly |
m test_and_set instruction needed
[iEms/aes™ Cache, 1965

m Huge improvementin performance

Bw]® RISC-architecture, 1980 |John Cocke, 1974, 1BM 80L |
. . . J.L. Hennessy & D.A. Patterson |
m Simpleinstruction set
B Superscalar CPU, 1989 JohnCocke. 2965

Intel
m Multiple instruction per cycle e
B Hyperthreading CPU, 2001

m Several register sets and virtual processors on chip

Intel, Sony-Toshiba-1BM |l Multicore CPU, 2005
|

m Several full processors on chip

I1BM, Intel

Intel

Computer Organization Il, Autumn 2010, Teemu Kerola 24.11.2010 18

Comp. Org 11, Autumn 2010

24.11.2010

Lecture 8: Pentium, ARM, RISC

‘Q- CISC - Complex Instruction Set Computer

B Goal: Shrink the semantic gap (semanttinen kuilu) between
high-level language and machine instruction set
m Expressiveness of high-level languages had increased
m Wanted "simple” compilations
- Language structures match nicely with instructions
m Lots of different instructions for different purposes
m Lots of different data types (int, float, char, boolean, ...)
m Lots of different addressing modes

m Complextasks performed in hardware by control unit (single
instruction), not in the machine code level (multiple instructions)
- Less instructions in one program (shorter code)
- Efficient (just a few instructions) execution of complex tasks

Computer Organization Il, Autumn 2010, Teemu Kerola 24.11.2010 19

- Which Operations and Operands Are Used?

= W Year 1982, computers VAX, PDP-11, Motorola 68000

B Observe dynamic execution time behaviour

Machine-Instruction Memeory-Reference
Dynamic Occurrence Weighted Weighted
Pascal © Pascal C Pascal ©

ASSIGN 38% 13% 13% 14% 15%

LOOP 5% 3% (aa\ | | fe\ | (6%

IF 29% 11% 21% 7% 13%
GOTO — 3% = — . _
OTHER 6% 1% 3% 1% 2% 1%

‘Weighted Relative Dynamic Frequency of HLL Operations [PATTS82a]
(HLL=High Level Language)

Pascal C Average

80% of references
Integer Constant 16% 23% 20% . i
Dynamic Percentage to local variables
Scalar Variable 58% 53% 55% of Operands
Array/Structure 26% 24% 25% (Stal0 Table 13.2, 13.3)
Computer Organization Il, Autumn 2010, Teemu Kerola 24.11.2010 20

Comp. Org 11, Autumn 2010

24.11.2010

10

Lecture 8: Pentium, ARM, RISC

v*_ Subroutine (procedure, function) calls?

B Lots of subroutine calls
B Calls rarely have many parameters

B Nested (sisakkainen) calls are rare

(StalO Table 13.4)
Percentage of Executed Compiler, Interpreter, and Small Nonnumeric
Procedure Calls With Typesetter Programs
>3 arguments 0-7% 0-5%
>5 arguments 0-3% 0%
>8 words of arguments and 1-20% 0-6%
local scalars
>12 words of arguments and 1-6% 0-3%

local scalars

Procedure Arguments and Local Scalar Variables

98% less than 6 parameters

92% less than 6 local variables

B How to use the information?

Computer Organization Il, Autumn 2010, Teemu Kerola 24.11.2010 21

‘ Observations from Real Programs

B Most operands are simple

B Many jumps and branches

B Compilers do not always use the complex instructions
m They use only a subset of the instruction set
m Easier to do? Faster?

B Conclusion?

Occam’s razor (Occamin partaveitsi)

"Entia non sunt multiplicanda praeter necessitatem"

("Entities should not be multiplied more than necessary'?
William Of Occam (1300-1349)
English monk, philosopher

"I't is vain to do with more that which can be done with less"

Computer Organization Il, Autumn 2010, Teemu Kerola 24.11.2010 22

Comp. Org 11, Autumn 2010

24.11.2010

11

Lecture 8: Pentium, ARM, RISC 24.11.2010

vi_ Optimize for Execution Speed

B Optimize the parts that consume most of the time
m Procedure calls, loops, memory references, addressing, ...

B Avoid optimizing rare events
m Rarely used (10%) floating point instructions improved to run 2x:

| No speedup | | Speedup: 1/2 ‘
v

ExTime,, = ExTimey * (0.9* 1.0+ 0.1* 0.5)
= 0.95x EXTimeo|d

Speedup = ExTimey / EXTime, o, = 1/0.95 = 1.053 << 2

Amdahl’s law [TokF

Speedup due to an enhancement is proportional
to the fraction of the time (in the original system)
that the enhancement can be used.

Gene Amdanhl

Computer Organization Il, Autumn 2010, Teemu Kerola 24.11.2010 23

vi_ RISC Approach

B Optimize design for execution speed,

instead of ease of compilation
m Compilers are good, machines are efficient
- Compiler can and has time to do the optimization
m Do most important, common things in hardware and fast
- E.g. 1-dim array reference
- One machine instruction
m And the rest in software (and slow)
- E.g. multidimensional arrays, string processing, ...

- Library routines for these
- Many machine instructions

= RISC architecture (Reduced Instruction Set Computer)

Computer Organization Il, Autumn 2010, Teemu Kerola 24.11.2010 24

Comp. Org II, Autumn 2010 12

Lecture 8: Pentium, ARM, RISC

‘.\ RISC architecture

B Plenty of registers (minimum 32)
m Compilers optimize register usage

B | OAD/ STORE architecture
m Only LOAD and STORE do memory referencing

B Small set of simple instructions

B Simple, fixed-length instruction format (32b)
m [nstruction fetch and decoding simple and efficient

B Small selection of simple address references
m No indirect memory reference
m Fast address translation

B Limited set of different operands
m 32b integers, floating-point

B One or more instructions are completed on each cycle

Computer Organization Il, Autumn 2010, Teemu Kerola 24.11.2010 25

‘.\ RISC architecture

B CPU easier to implement
m Pipeline control and optimization
simpler
m Hardwired (langoitettu) control

http://www.gadget-paradise.com/0127 a cor 64gb-flash: ory/
B Smaller chip (lastu) size

m More chips per die (kiekko) Large chip VS.
m Smaller waste%

B Cheaper manufacturing @&\2

B Faster marketing
m Design-to-market time

small chip?

\\\W &

25% yield (good chips) 55% yield (good chips)
75% wasted 45% wasted

Computer Organization Il, Autumn 2010, Teemu Kerola 24.11.2010 26

Comp. Org 11, Autumn 2010

24.11.2010

13

Lecture 8: Pentium, ARM, RISC 24.11.2010

Complex Instruction Set Reduced Instruction Superscalar

(CISC)Computer Set (RISC) Computer

Characteristic IBM VAX Intel SPARC MIPS PowerPC Ultra MIPS
370/168 11/780 80486 R4000 SPARC R10000
Year developed 1973 1978 1989 1987 1991 1993 1996 1996
Number of 208 303 235 69 a4 225
instructions
Instruction size (bytes) 2-6 2-57 1-11 4 4 4 4 4
Addressing modes 4 22 11 1 1 2 1 1
Number of general- 16 16 8 40 - 520 32 32 40- 520 32
purpose registers
Control memory size 420 480 246 — — — — —
(Khits) —
Cache size (KBytes) 64 64 8 32 [18 | 163 32 64
Characteristics of Some CISCs, RISCs, and Superscalar Processors
(StalO Table 13.1)
Computer Organization Il, Autumn 2010, Teemu Kerola 24.11.2010 27

Number Number of
of Max Load/store Max bits for Number of
instrue- instrue- | Number of combined number of | Unaligned Max integer bits for FP
tion tion size | addressing Indirect with memory addressing | Number of register register
Processor sizes inbytes modes addressing arithmetic operands allowed MMU uses specifier specifier
AMD29000 1 4 1 no no 1 no 1 8 £l
MIPS R2000 1 4 1 no no 1 no 1 5 4
SPARC 1 4 Z no no 1 no 1 5 4
MC88000 1 4 3 no no 1 no 1 5 4
HPPA 1 4 10° no no 1 no 1 5 4
IBM RT/PC 03 4 1 no no 1 no 1 4 3°
IBM RS/6000 1 4 4 no no 1 yes 1 5 3
Intel 1860 1 4 4 no 1o 1 no 1 5 4
IBM 3090 4 8 2¢ no ve 2 ye 4 4 2
Intel 80486 12 12 15 no” 2 4 3 3
NSC 32016 21 21 23 yes 2 4 3 3
MCe8040 11 22 44 yes 2 8 4 3
VAX 56 56 2 yes ves 6 ves 24 4 0
Clipper 4 8 B no no 1 0 4 42 e i
Intel 80960 23 87 i no no 1 yes® = 5 3
a RISC that does not conform to this characteristic.
b CISC that does not conform to this characteristic
(StalO Table 13.7)
Computer Organization Il, Autumn 2010, Teemu Kerola 24.11.2010 28

Comp. Org Il, Autumn 2010 14

Lecture 8: Pentium, ARM, RISC

24.11.2010

‘ Computer Organization Il

Register Files

Computer Organization Il, Autumn 2010, Teemu Kerola

24.11.2010 29

‘ Register Window to Register File

B More physical registers than addressable in the instruction

m E.g., SPARC has just 5 bits for register number = 0.. 31,
but the processor has 40 to 540 registers

B Small subset of registers available for each instruction in
register window

m In the window references to register r0-r31
m CPU maps them to actual (true) registers r0-r539

Instruction

I [R |

Registers

Current I > e
WllndOW Wip=———p{ Decoder
Pointer

(StalO Fig 13.3a)

Computer Organization Il, Autumn 2010, Teemu Kerola

24.11.2010 30

Comp. Org 11, Autumn 2010

15

Lecture 8: Pentium, ARM, RISC 24.11.2010

v*_ Overlapped Register Windows

B Procedure parameters passed in registers (not in stack)

m Fixed number of registers for parameters, local variables, and
return value passed via overlapped register window

m Overlapping area to allow parameter passing to the next
procedure and back to caller

Parameter Local Temporary
. . . Level J
Registers Registers Registers
Call/Return
—~— A —
Parameter Local Temporary
; . POFIIYT LevelJ+1
. Registers Registers Registers
(Stalo Fig 13.1)
Computer Organization Il, Autumn 2010, Teemu Kerola 24.11.2010 31

‘ Circural Buffer for Overlapped Register Window

(Stalo Fig 13.2)

B Too many nested calls? N
m Most recent calls in registers
m Older activations
saved to memory T~
m Restore when nesting pointer
depth decreases

m Overlap only when needed

B Global variables?
m In memory or own register window

B SPARC Comt
m 107 globalvar. Real register names .
m 8-r15 parameters (in caller) Virtual 4_:_6
m r16-r23 local variables register fenm
m r24-r31 parameters (to called) J Names —
Computer Organization Il, Autumn 2010, Teemu Kerola 24.11.2010 32

Comp. Org II, Autumn 2010 16

Lecture 8: Pentium, ARM

, RISC

N

Compu

Register File vs. Cache
(StalO Table 13.5)

Large Register File Cache
All local scalars Recently-used local scalars
Individual variables Blocks of memory
Compiler-assigned global variables Recently-used global variables
Save/Restore based on procedure Save/Restore based on cache
nesting depth replacement algorithm

Register addressing Number of bits Memory addressing

B The register file acts like a small, fast buffer (as cache?)
m Register is faster, needs less bits in addressing, but

B [tis difficult for compiler to determine in advance,
which of the global variables to place in registers

B Cache decides this issue dynamically
m Most used and referenced data stay in cache

ter Organization I, Autumn 2010, Teemu Kerola 24.11.2010 33

a2

Compu

Compiler-based register optimization
(allocation of registers)

B Problem: Graph coloring
m Minimize the number of different
colors, while adjacent nodes

have different color
See course on

= Dhifetip ey Models of Computation

(NP-complete)

B Form a network of symbolic registers based on the program code
m Symbolic register~ any program quantity that could be in register
m The edges of the graph join together program quantities that are used in the
same code fragment
B Allocate real registers based on the graph

m Two symbolic registers that are not used at the same time (no edge between
them) can be allocated to the same real register (use the same color)

m |If there are no more free registers, use memory addresses

ter Organization I, Autumn 2010, Teemu Kerola 24.11.2010 34

Comp. Org II, Autumn 20

10

24.11.2010

17

Lecture 8: Pentium, ARM, RISC 24.11.2010

. Allocation of registers
‘*‘ (compiler-based register optimization)
m Node (solmu) = symbolic register

m Edge (sarma) = symbolic registers used at the same time
m n colors = n registers

A B C D E F B (Stalo Fig 13.4)
X _ k
1 4 -\
:D 1
v 77 R
v

Y

R1 R2 R3
(a) Time sequence of active use of registers (b) Register interference graph

So, use the same physical register for A and D, and for C and E.

Computer Organization Il, Autumn 2010, Teemu Kerola 24.11.2010 35

. I: instruction fetch
‘ RISC-p|peI|ne E:execute E1:reg read, E2: Alu + reg write
: D: memory op
10
Load rA—M I(E|D Load rA=—M I(E\D
Load 1B—M I|ED Load 1B=—M 1] [E\D
Add 1Ce 1A +1B 1|E Add CerAsB| M| |T
Store M e—1C I E|D Store M —1C I|E|D
Branch X I1(E Branch X 1
I|E
(a) Sequential execution — -
(b) Two-stage pipelined timing
i ?
Compiler solved RAW dependency Single port MEM, 1 vs. D?
8 D)
Load A<M I ED Load A<M I(E:1 EYD
load 1B=M I|E|Dy Load B=—M I |E1[E;|D
I|(E NOOP 1 |E; [Ed|
Add 1C — 1A +1B 1 OOB I [EE2
Store M=—1C I|E|D Add C=—rA+1B I |Ei1[Ez
Branch X I1|E Store M 1C I |[E;|Ez(D
NOOP 1|E Bragch X I |E1[E2
NOOP I [E\[E»
(c) Three-stage pipelined iming NOOP, I |E[Es
Two port MEM, or faster mem (d) Four-stage pipelined timing
(split cache enough?) Clock cycle?
(StalO Fig 13.6)
Computer Organization Il, Autumn 2010, Teemu Kerola 24.11.2010 36

Comp. Org II, Autumn 2010 18

Lecture 8: Pentium, ARM, RISC 24.11.2010

L}
‘ RISC-pipeline, Delayed Branch
L}
~ 1120131 4 < 6 | 7 Forget dependency
100 LOAD X, rA 1 E D | problem here, .
101 ADD 1, 4% I | £ [Bubde? 4 concentrate on jump!
102 JUMP 105 1 E
103 ADD rA.rB 1 E Traditior_1a| pipeline
105 STORE rA, Z I T D clear pipeline
RO L S RISC with inserted NOOP
101 ADD L. I E | Bubbe?
102 JUMP 106 1 E Two port MEM
| 103 No@ 1 E No need to clear pipeline (NOOP)
106 STORE rA, Z I E D
100 LOAD X, Ar I E D RISC with reversed instructions
A Use of delay slot
101 JUMP 105 I E _ i
102ADD L, rA I IVE ‘ What if conditional branch?
105 STORE rA, Z I E D JZERO 105, rA
(need ADD 1,rA result before
comparison, cannot use delay slot)
(StalOFigi13.7) Extra gain: Dependency problem also solved!
Computer Organization Il, Autumn 2010, Teemu Kerola 24.11.2010 37

»i_ RISC & CISC United?

‘compilation’ at
B Pentium, CISC every execution
m Each 1-11 byte-length CISC-instruction is 'translated’ by hardware to

1-4 118-bit micro—oierations istored in L1 instruction cachei

m Lower levels (including control unit) as RISC

m Lots of work registers, visible only to hardware

B Crusoe (Transmeta) [Just in time (JIT) compilation |
m Emulate Intel architecture with simpler HW architecture

m Outside looks like Intel CISC-architecture

m Group of instructions 'translated’ by software, just before execution, to
fixed-length micro-operations; these can be optimized before

execution
- VLIW (very long instruction word, 128 bits) "compilation’just
- 4 pops/VLIW-instruction once per group

m Lower levels as RISC

Computer Organization Il, Autumn 2010, Teemu Kerola 24.11.2010 38

Comp. Org II, Autumn 2010 19

Lecture 8: Pentium, ARM, RISC 24.11.2010

‘ Summary

B X86 and ARM processor implementation examples
m Registers, addressing modes, instruction sets

B Whatis CISC? Whatis “wrong” with CISC

B Whatis RISC? What is “good” with RISC?
m Lots of registers, load-store arch
m Small set of simple instructions with just a few operand types
m Simpleinstruction formats and addressing formats

B How to get more from HW registers?
m Register windows to register file
m Overlapping register windows
m Register file vs. cache?
m Register allocation problem and its solution

B Combine RISC with CISC?

Computer Organization Il, Autumn 2010, Teemu Kerola 24.11.2010 39

‘ Review Questions

Main features and characteristics of RISC-architecture?
What makes RISC RISC?

Which addressing format is not RISC?

Which operation type is not RISC?

Which instruction format is not RISC?

Which operand type is not RISC?

Why would large L1 cache be better than large register file?

How are register windows used?
m Whenwould n overlapped registers be enough?
m What happens if n overlapped registers is not enough?

Computer Organization Il, Autumn 2010, Teemu Kerola 24.11.2010 40

Comp. Org II, Autumn 2010 20

