Lecture 7: CPU structure and function 22.11.2010

i General structure of CPU

[] ALU Arithmetic and Logic Unit

FYW
A A 4

m Calculations, comparisons
B Registers
m Fast work area
B Processor bus
= Moving bits
B Control Unit (Ohjausyksikko)
m What? Where? When?]
m Clock pulse
m Generate control signals
- What happens at the next pul’es T T T
m MMU?
B Cache?

. Registers

v VvV VY
.

Internal CPU Bus
-~
A 4

)

sng

sng
walsdg
sng
SSAIPPY BJE([0[uo)

sng

(Stalo Fig 12.1-2)

Computer Organization I, Autumn 2010, Teemu Kerola 22.11.2010 2

Comp. Org II, Autumn 2010

Lecture 7: CPU structure and function

Registers

B Top of memory hierarchy

B User visible registers (LRID L A8

m Programmer/ Compiler decides how to use these
m How many? Names?

B Control and status registers BNEQ Loop

m Some of these used indirectly by the program

- PC, PSW, flags, ...
m Some used only by CPU internally
- MAR, MBR, ...

B Internal latches (apurekisteri) for temporal storage during
instruction execution

m Example: Instruction register (IR) instruction interpretation;
operand first to latch and only then to ALU

m ALU output before result moved to some register

Computer Organization I, Autumn 2010, Teemu Kerola 22.11.2010

N

User visible registers

B Different processor families =
m different number of registers
m different naming conventions (nimeamistavat)
m different purposes

B General-purpose registers (yleisrekisterit)
B Data registers (datarekisterit) — not for addresses!

B Address registers (osoiterekisterit)
m Segment registers (segmenttirekisterit)
m Index registers (indeksirekisterit)
m Stack pointer (pino-osoitin)
m Frame pointer (ympéristdosoitin)

B Condition code registers (tilarekisterit) [No condition code regs.
1A-64, MIPS

Computer Organization I, Autumn 2010, Teemu Kerola 22.11.2010

4

Comp. Org 11, Autumn 2010

22.11.2010

Lecture 7: CPU structure and function

Example

Data Registers

Address Registers

Program Status

Program Counter |

Status Register

(a) MC68000

Computer Organization I, Autumn 2010, Teemu Kerola

General Registers

AX |Accumulator
BX Base

CX | Count
DX Data

Pointer & Index
SP |Stack Pointer|

(Stalo Fig 12.3)

Number of registers:
8,16, or 32 ok in 1980
RISC: several hundreds

General Registers

BP |Base Pointer EAX s
SI |Source Index EBX L
DI | Dest Index ECX S

EDX DX

Segment

Ccs Code ESP SP
DS Data EBE LAY
S8 Stack ESI SI
ES Extra EDI DI

Program Status

Program Status

FLAGS Register

e |

Instruction Pointer

(b) 8086

(c) 80386 - Pentium 4

22.11.2010

PSW - Program Status Word

Name varies in different architectures

State of the CPU

m Privileged mode vs user mode

Result of comparison (vertailu)
m Greater, Equal, Less, Zero, ...

Exceptions (poikkeus) during execution?

m Divide-by-zero, overflow
m Page fault, “memory violation”

Interrupt enable/ disable
m Each ‘class’ has its own bit

Bit for interrupt request?
m |/O device requesting guidance

Computer Organization I, Autumn 2010, Teemu Kerola

Design issues:
- OS support

- memory and registers in

- control data storing
- paging

- subroutines and stacks

- etc

22.11.2010

Comp. Org 11, Autumn 2010

22.11.2010

Lecture 7: CPU structure and function

N

Instruction complete,
fetcth next instruction

Indirection

o

Retum for string
or vector data

Instruction cycle (ka&skysykli)

Indirection

)

Instruction Operand Operand
fetch fetch store
Multiple Multiple
operands results
Instruction Instruction, Operand Data Operand
address operation — address Operation —p address pereroi — Interrupt
calculation decoding calculation P calculation check

No
nterrupt

Computer Organization I, Autumn 2010, Teemu Kerola

(Stal0 Fig 12.5)

22.11.2010 7

N

MAR « PC

MAR < MMU(MAR)
Control Bus + Reserve
Control Bus + Read
PC « ALU(PC+1)
MBR < MEM[MAR]
Control Bus + Release
IR « MBR

Cache (valimuisti)!
Prefetch (ennaltanouto)!

Cru

Instruction fetch (kdskyn nouto)

© ——>{MAR

L

Memory

LY

PC
ﬁ Control

v 1[4

Unit
ﬂ MR
MARR = Memony ialTe episien

MAR = Memowy addeess iegist=
IE — Instructon repister
PC — Proaram ocomnker

Computer Organization I, Autumn 2010, Teemu Kerola

Address Data Control
Bus Bus Bus

(StalO Fig 12.6)

22.11.2010 8

Comp. Org 11, Autumn 2010

22.11.2010

Lecture 7: CPU structure and function

. Operand fetch, Indirect addressing
‘*‘ (Operandin nouto, epasuora 0soitus)
B MAR + Address cpU
B MAR « MMU(MAR) : |
B Control Bus « Reserve >‘MAR' >
B Control Bus + Read | 5 :D“emr"'
B MBR « MEM[MAR] € ontrel —
B MAR <« MBR -_\1151{)<j]
B MAR « MMU(MAR) |
B Control Bus « Read Address Data Cotrol
B MBR « MEM[MAR]
B Control Bus « Release

Cache!

B ALU? Regs? « MBR (Stal0 Fig 12.7)

Computer Organization I, Autumn 2010, Teemu Kerola 22.11.2010 9
‘ Data flow, interrupt cycle
B MAR+SP
B MAR + MMU(MAR) cpU
B Control Bus + Reserve
H MBR «PC | rC MAR =

. — Memaory
B Control Bus + Write ﬂ ﬁ |] 3
B MAR « SP « ALU(SP+1) Contro = W=
nit
B MAR « MMU(MAR) -
B MBR « PSW
MBI
B Control Bus + Write E |]
B SPe ALU(SP+1) Address Data Control
B PSW « privileged & disable Fins Bns - Bus
B MAR ¢ Interrupt number < No address translation!
B Control Bus + Read
PC < MBR « MEM[MAR] SP = Stack Pointer [(sta10 Fig 12.8)

B Control Bus + Release

Computer Organization I, Autumn 2010, Teemu Kerola 22.11.2010 10

Comp. Org 11, Autumn 2010

22.11.2010

Lecture 7: CPU structure and function

v*_ Computer Organization Il

Instruction pipelining
(liukuhihna)

Computer Organization I, Autumn 2010, Teemu Kerola

22.11.2010

11

‘ Laundry example (by David A. Patterson)

B Ann, Brian, Cathy, Dave:
each have one load of clothes
to wash, dry and fold

;
B Washer takes 30 min
[
B Dryer takes 40 min (-
H “Fold kes 20)
“Folder” takes 20 min QI-F

Computer Organization I, Autumn 2010, Teemu Kerola

22.11.2010

12

Comp. Org 11, Autumn 2010

22.11.2010

Lecture 7: CPU structure and function 22.11.2010

Sequential Laundry

B Takes 6 hours for 4 loads:

Time
6 PM 7 8 9 1 11 A
—_— f—f—
30 40 20 30 40 20 30 40 20 30 40 20
=" s Average latency
(@] ;t (latenssi, kesto, viive)

? =7 » < 1.5 h per load
7 [o

(@)
| 0.67 loads per h |
“= Throughput
Oy 7 (Lapimenoaste)
= »
O = 7’

B [f they learned pipelining, how long would laundry take?

Computer Organization I, Autumn 2010, Teemu Kerola 22.11.2010 13
Pipelined Laundry
B Takes 3.5 hours for 4 loads
6PM 7 8 9 10
————

30 40 40 40 40 20

— 7 1.5 h per load

Ve [
f@ ;l' |gloads per h |

15 « Average speed
o _f
/. Max speed

Oo_F 1.5 loads per h

At best case, one load is completed every 40 minutes! (0.67 h / finished load)

Computer Organization I, Autumn 2010, Teemu Kerola 22.11.2010 14

Comp. Org Il, Autumn 2010 7

Lecture 7: CPU structure and function

‘ Lessons

B Pipelining does not help latency of single task, but it helps
throughput of the entire workload

B Pipelining can delay single task compared with situation where it is
alone in the system

m Next stage occupied, must wait

B Multiple tasks operating simultaneously, but different phases

B Pipeline rate limited by slowest pipeline stage
m Can proceed when all stages done

m Not very efficient, if different stages have different durations,
unbalanced lengths

B Potential speedup

= maximum possible speedup

= number of pipe stages

Computer Organization I, Autumn 2010, Teemu Kerola 22.11.2010 15

v‘\ Lessons

B Complex implementation,

B May need more resources

m Enough electrical current and
sockets to use both washer and
dryer simultaneously [——
30

m Two (or three) people present all
the time in the laundry
B Timeto “fill” pipeline and time to
“drain” it reduce speedup
m Resources are not fully utilized
B “Hiccups” (hikka)
m Variationin task arrivals, works

best with constant flow of tasks : :
tfill itdrain
— —

Computer Organization I, Autumn 2010, Teemu Kerola 22.11.2010 16

Comp. Org 11, Autumn 2010

22.11.2010

Lecture 7: CPU structure and function

“&. (2-vaiheinen liukuhihna)

" Wait New address Wait

Instruction Instruction

Discard

previous instruction

B Problems
m Execution phase longer = fetch stage sometimes idle

B Not enough parallelism = more stages?

Computer Organization I, Autumn 2010, Teemu Kerola

m Execution modifies PC (jump, branch) = fetched wrong instr.
- Prediction of the next instruction’s location was incorrect!

Result

2-stage instruction execution pipeline

(Stalo Fig 12.9)

B Principle of locality (paikallisuus): assume ‘sequential’ execution

B |[nstruction prefetch (ennaltanouto) at the same time as execution of

Discussion?

22.11.2010

17

. 6-Stage (6-Phase) Pipeline

Time =
- 112|345]e6]|7]|8]|9]10)11]12]|13]|14
Instruction 1 | g1 | pr | co| Fo | Ex | wo
Instruction 2 FI | DI |co| Fo| EI |WO
Instruction 3 FI | DI |CO| FO | EI | WO
Instruction 4 FI | DI | CO| FO | EI [WO
Instruction 5 FI | D1 | co| Fo | EI | WO
Instruction 6 FI | DI | CO| FO | EI WO
Instruction 7 FI | DI | CO| FO | EI | WO
Instruction 8 FI | DI | CO| FO | EI (WO
Instruction 9 FI | DI |co| Fo | EI [wo

FE - Fetch instruction FO - Fetch operands

DI - Decode instruction

WO - Write operand

El - Execute instruction

CO - Calculate operand addresses

Computer Organization I, Autumn 2010, Teemu Kerola

(StalO Fig 12.10)

22.11.2010

18

Comp. Org 11, Autumn 2010

22.11.2010

Lecture 7: CPU structure and function 22.11.2010

‘ Pipeline speedup (nopeutus)?
B |ets calculate (based on Fig 12.10):
m 6- stage pipeline, 9 instr. = 14 time units total
m Same without pipeline = 9*6 = 54 time units
m Speedup = time,y / timepipejine = 54/14 = 3.86 < 6!
m Maximum speed at times 6-14
- one instruction per time unit finishes
- 8time units = 8 instruction completions
- Maximum speedup = timeg,g / timeg;geine = 48/8 = 6
B Not every instruction uses every stage
m Will not affect the pipeline speed — some stages unused
m Speedup may be small (some stages idle, waiting for slow)
m Unused stage = CPU idle (execution “bubble”)
m Serial execution could be faster (no wait for other stages)

Computer Organization I, Autumn 2010, Teemu Kerola

22.11.2010 19

‘ Pipeline performance: one cycle time

r =max[r,]+d =7 +d >>d

i=1.k \ \

Max time (duration) of

Cycletime Stagei Latch delay, the slowest stage
(jakson kesto) time move data from (Hltalmmal? vaiheen
one stage to next (max) kesto)

~ one clock pulse

B Cycle time is the same for all stages
m Time (in clock pulses) to execute the stage

B Each stage takes one cycle time to execute

B Slowest stage determines the pace (tahti, etenemisvauhti)
m The longest duration becomes bottleneck

Computer Organization I, Autumn 2010, Teemu Kerola

22.11.2010 20

Comp. Org II, Autumn 2010 10

Lecture 7: CPU structure and function

No pipeline:

Pipeline:

Speedup:

k stages before the first
task (instruction) s finished

»i_ Pipeline Speedup

n instructions, k stages, t =cycle time

T =nk Pessimistic: assumes the same
1 = NK7 duration for all stages

T =[k+ (=D}

next (n-1) tasks (instructions) will finish

S T. nkt

each during one cycle, one after another

nk

1 Tkro-0F k-]

See Stal0 Fig 12.10
and check yourself!

Computer Organization I, Autumn 2010, Teemu Kerola

22.11.2010 21

k=12 stages

Speedup factor

k =9 stages

k=6 stages

(Stal0 Fig 12.14)

| 1 1 1 |
4 8 16 32 . 64
Number of instructions (log scale) without jumps

128

‘ Speedup vs. nr stages vs. instructions w/no jumps?
12

more gains from
multiple stages when
more instructions
without jumps

n = 30 instructions

10 =

:_f s n = 20 instructions
=
S 6
s n = 10 instructions
2 4. (without jumps)
w

2

0

| | |
0 s 15 20

Number of stages

Computer Organization I, Autumn 2010, Teemu Kerola

22.11.2010 22

Comp. Org 11, Autumn 2010

22.11.2010

11

Lecture 7: CPU structure and function

vi_ Pipeline Features

B Extraissues
and move data from buffer to buffer

time than single execution

B But still

down execution of single instruction

Computer Organization I, Autumn 2010, Teemu Kerola

m CPU must store ‘midresults’ somewhere between stages

m From one instruction’s viewpoint the pipeline takes longer

m Executing large set of instructions is faster
m Better throughput (I&pimenoaste) (instructions/sec)

B The parallel (concurrent) execution of instructions in the
pipeline makes them proceed faster as whole, but slows

22.11.2010

23

‘ Pipeline Problems and Design Issues

B Structural dependency (rakenteellinen riippuvuus)

m Several stages may need the same HW
m Memory: Fl, FO, WO
m ALU: CO, EI

STORE R1,VarX
ADD R2,R3,VarY
MUL R3,R4,R5

B Control dependency (kontrolliriippuvuus)
m No knowledge on next instruction
m E.g., (conditional) branch destination
may be known only after El-stage
m — Prefetched wrong instructions

B Data dependency (datariippuvuus)
m Instruction needs the result of the
previous non-finished instruction

Computer Organization I, Autumn 2010, Teemu Kerola

ADD R1,R7,R9
Jump There

ADD R2,R3,R4
MUL R1,R4,R5

MUL R1,R2,R3
LOAD R6, Arr(R1)

22.11.2010

24

Comp. Org 11, Autumn 2010

22.11.2010

12

Lecture 7: CPU structure and function 22.11.2010

i Pipeline Dependency Problem Solutions

B In advance: prevent (some) dependency problems completely

B At run time: Hardware must notice and wait until all dependencies are cleared

m Add extra waits, “bubbles”, to the pipeline; Commonly used
m Bubble (kupla) delayes everything behind it in all stages

B Structural dependency
m More hardware, e.g., separate ALUs for CO and El stages
m Lots of registers, less operands from memory

B Control dependency
m Clear pipeline, fetch new instructions
m Branch prediction, prefetch these or those?

B Data dependency
m Change execution order of instructions

m By-pass (oikopolku) in hardware between stages: earlier instruction’s result
can be accessed already before its WO-stage is done

Computer Organization I, Autumn 2010, Teemu Kerola 22.11.2010 25

i Data dependency

B Read after Write (RAW) (a.k.atrue or flow

dependency) Load rl A

m Occurs if succeeding read takes place before the Addr3 12 rl
preceding write operation is complete !

B Write after Read (WAR) (a.k.a antidependency) Addr3. 2. 11

m Occursif the succeeding write operation completes before | -4 ri4
the preceding read operation takes place !

B Write after Write (WAW) (a.k.a output dependency)

m Occurs when the two write operations take place in the Addrl,r5,r6
reversed order of the intended sequence Store;rl, A
Addrl, r2,r3
B The WAR and WAW are possible only in architectures
where the instructions can finish in different order
Computer Organization I, Autumn 2010, Teemu Kerola 22.11.2010 26

Comp. Org II, Autumn 2010 13

Lecture 7: CPU structure and function

- Example: Data Dependency - RAW
Depen- 11231456789]|10]|11
dency:
wait | MUL R1, R2,R3 F1 | DI | CO|FO | EI |WQ
\ ADD R4\RS, R6 w1 | ot | co| Fo | e\'wo
SUB R7,R1,R8 1 | o1 | co | @] ro| e1 |wo
ADD R RL, R3 I ‘ro | &1 [wo
Depen FI | D1 | co |dge
dency:
it
o wal L|2]3|4]5]6]7]s8]|92]|w]|n
MUL R1,R2,R3 FI | pI | co | Fo | EI [wo
< . g too far, —
ADD R4, RS, R6 FL | b1 | co|ro| k| wo no effect
SUB R7/R7,R8 FI | I [co|Fo | EI [Wo
ADD RL,RL,R3 F1 | m1|co|Fol| mr |wo
Computer Organization I, Autumn 2010, Teemu Kerola 22.11.2010 27
. Example: Change instruction
. execution order
1]2]3]a]s]|e|7]8]9)|10]n
MUL R1,R2,R3 | o1 [cofro| e |wo
Need |ADD R4)\R5, R6 FI | DI | CO| FO | EI \WO
bubble —
SUB R7,RL R8 i | o1 | co |é#)| o | 1 |wo
2 -
ADD R9, RO, R8 - col@ ro | £1 [wo
112131456789 (10]11
No MUL R1, R2,R3 FI | DI | co| Fo | EI |WoO .
effect- | D switched
ive ADD R4, R5, R6 FI | 1 [co|Fo| Frjwo instructions
depen- \ :
dencies | ADD R9, 'R0, R8 F | DI [co|Fo| ¥ |wo
SUB R7,R1,R8 ¥1 | o1 |co|rol E |wo

Computer Organization I, Autumn 2010, Teemu Kerola 22.11.2010 28

Comp. Org 11, Autumn 2010

22.11.2010

14

Lecture 7: CPU structure and function

B New wires (and temp registers, latches) in pipeline
W E.g., instr. result available to FO phase directly from phase El

‘i_ Example: By-pass (oikopolut)

1)2]3]4|s5]e]7]s8]9|w]n]
MUL R1,R2,R3 FI | DI | CO| FO | EI |[WOQ no by-pass
ADD R}E“Rl 71 | o1 | co | de|de| Foler [wa
SUB R7R4RL ¥ | D1 |co @l@@@*w E1 [wo
1lz2)a3lals|el7]s8]9]w]n
MUL REI., R2, R3 FI | DI |CO| FO | EI { WO
ADD RE,‘R@, 1 r1 | ot | co | @ ro | E1,| wo With by-pass
SUB R7\,‘R4~,“R1 FI | DI | CO @@'m EL | WO

Computer Organization I, Autumn 2010, Teemu Kerola

22.11.2010 29

Computer Organization I, Autumn 2010, Teemu Kerola

‘ Computer Organization Il

Multiple streams (Monta suorituspolkua)
Delayed branch (Viivastetty hyppy)

Prefetch branch target (Kohteen ennaltanouto)
Loop buffer (Silmukkapuskuri)
Branch prediction (Ennustuslogiikka)

Pipelining and Jump Optimization

22.11.2010 30

Comp. Org 11, Autumn 2010

22.11.2010

15

Lecture 7: CPU structure and function

- Ef

N

fect of Conditional Branch on Pipeline

Decode

Time Branch Penalty DI| tnstruction

112314567 |8]9|10fj11|12]13]14
co Calculate
Instr 1 | g1 | 01| co|ro| e [wo Operands I
Instr 2 FI | DI | co | Fo | E1 [wo
7 Uncon-
Instr 3 1 | o1 | co| Fo @ WO Yo 7 ditional
Instr 4 FI [oI | co F(\ o
Inste 5 F | b1 | co Q
Instr 6 ¥1 | DI O
Instr 7 FI x U Execute
EI Instruction
Instr 15 FI)| DI | CO | FO | EI | WO
Insir 16 | b1 | co|Fo| E [wo { Ul;*‘e e =

(Stal0 Fig 12.11)

Computer Organization I, Autumn 2010, Teemu Kerola

Empty
Pipe

(StalO Fig 12.12)

22.11.2010 31

N

Del ayed Branch (iivastetty haarautuminen)

B Compiler places some useful instructions (1 or more)
after branch instructions (to delay slots)

m Instructionin delay slotws are always executed!

sub r5,r3, r7
add r1,r2,r3
jump There

m No roll-back of instructions needed due incorrect prediction
- Rollback is difficult to do
m If no useful instruction available, compiler uses NOP

!

B Less actual work lost if branch occurs

sub r5, r3, r7

7\

m Next instruction almost done, when branch decision known

jump There o i . o i
add r1,r2, 13> W This is easier than emptying the pipeline during branch
ot S Tae o

delay slot

Computer Organi.

B Worst case: NOP-instructions waist some cycles

B Can be difficultto do (for the compiler)

zation Il, Autumn 2010, Teemu Kerola 22.11.2010 32

Comp. Org 11, Autumn 2010

22.11.2010

16

Lecture 7: CPU structure and function

B Execute speculatively to both directions
m Prefetch instructions that follow the branch to the pipeline

B Problems
m Branch target address known only after some calculations

m Second split on one of the pipelines

- Continue any way? Only one speculation at a time?
= More hardware!

- More pipelines, speculative results (registers!), control
m Speculative instructions may delay real work

- Bus and register contention? More ALUs?

m easier, if all changes done in WB phase

Computer Organization I, Autumn 2010, Teemu Kerola

m Prefetch instructions from branch target to (another) pipeline
m After branch decision: reject the incorrect pipeline (its results)

% Multiple instruction streams (monta suorituspolkua)

IBM 370/168,
IBM 3033

Intel |A-64

B Capability to cancel not-taken instruction stream from pipeline

22.11.2010 33

execute it yet
m Do only Fl-stage

B Must be able to clear the pipeline

Computer Organization I, Autumn 2010, Teemu Kerola

‘ Prefetch branch target (kohteen ennaltanouto)

B Prefetch just branch target instruction, but do not

m If branch taken, no need to wait for memory

B Prefetching branch target may cause page-fault
IBM 360/91 (1967)

22.11.2010 34

Comp. Org 11, Autumn 2010

22.11.2010

17

Lecture 7: CPU structure and function 22.11.2010

‘ Loop buffer (silmukkapuskuri)

B Keep n most recently fetched instructions in high
speed buffer inside the CPU
m Use prefetch also
- With good luck the branch target is in the buffer
- F.ex. IF-THEN and IF-THEN-ELSE structures

B Works for small loops (at most n instructions)
m Fetch from memory just once

B Gives better spacial locality than just cache

CRAY-1
Motorola 68010

Intel Core-2

Computer Organization I, Autumn 2010, Teemu Kerola 22.11.2010 35

‘ Static Branch Prediction

B Make an (educated?) guess which direction is
more probable:

Motorola 68020
Branch or no? VAX 11/780
B Static prediction (staattinen ennustus) Intel Pentium 11

m Fixed: Always taken (aina hypataan)
m Fixed: Never taken (ei koskaan hypatd)
- ~50% correct
m Predict by opcode (operaatiokoodin perusteella)
- In advance decided which codes are more likely to branch

- For example, BLE instructionis commonly used at the end
of steppingloop, guess a branch

- ~75% correct [LILJ88]

Computer Organization I, Autumn 2010, Teemu Kerola 22.11.2010 36

Comp. Org II, Autumn 2010 18

Lecture 7: CPU structure and function 22.11.2010

‘ Dynamic Branch Prediction

B Dynamic prediction
m Make a quess based on earlier history for (this) branch
m Logic: What has happened in the recent history with this instruction
- Improves the accuracy of the prediction

m |mplementation: extra internal memory = branch history table o«
- Instruction address (for this branch) o
- Branch target (instruction or address) — need this for quick action

- Decision: taken/ not taken

B Simple prediction based on just the previous execution

m 1 bitmemory is enough
m Loops will always have one or two incorrect predictions

22.11.2010 37

Computer Organization I, Autumn 2010, Teemu Kerola

‘_ 2-Bit Branch Prediction Logic for One Instruction
15t miss
] i Not Taken
Improved Slmple ; Predict Predict
model = Tuken < Taken
Takc
m Don't change the I
prediction with A
one - =
misprediction 9 2 2
m Based on two E€E ;E o
. o= —
previous ’Cé\l'— Nz
executions of \
this instruction .
. Not Taken =
m 2 bits enough Predict 21 Predict :
Not Taken << Not Taken %
PowerPC 620 Jaken 2
(Stal0 Fig 12.19) 15 miss
Computer Organization I, Autumn 2010, Teemu Kerola 22.11.2010 38

Comp. Org 11, Autumn 2010

Lecture 7: CPU structure and function 22.11.2010

- - - -
. Branch Prediction History Table
L}
Associative
Next sequential
address m_emory’
IPFAR Branch Like cache
Elir_ instruction ~ Target
address address State <
Looku 2
" € Memory
Whichbranch | | —
. ; . . "taq”
instruction is this? | Tetid) &
Add new IPFAR = instruction
entry . . . prefix address register
Update . . . Prediction:
state taken/not taken
Whereto
Redirect ijp, if
branch taken
(Stalo Fig 12.20b)
Computer Organization I, Autumn 2010, Teemu Kerola 22.11.2010 39

‘ Summary

B Pipeline basics
m Stage length, pipeline fill-up and drain times
m Response time, throughput, speedup

B Hazards, dependencies
m Structural, control, data (RAW, WAR, WAW)
m How to avoid before time?
m How to handle at run time?

B How to minimize branch costs?

m Delayed branch, multiple pipeline streams, prefetch
branch target, loop buffer, branch prediction

Computer Organization I, Autumn 2010, Teemu Kerola 22.11.2010 40

Comp. Org II, Autumn 2010 20

Lecture 7: CPU structure and function

* Review Questions

B Whatinformation PSW needs to contain?
B Why 2-stage pipeline is not very beneficial?
B What elements effect the pipeline?

B \What mechanisms can be used to handle
branching?

B How does CPU move to interrupt handling?

Computer Organization I, Autumn 2010, Teemu Kerola

22.11.2010

41

Comp. Org 11, Autumn 2010

22.11.2010

21

