Lecture 7: CPU structure and function 22.11.2010

i General structure of CPU

[ ] ALU Arithmetic and Logic Unit

FYW
A A 4

m Calculations, comparisons
B Registers
m Fast work area
B Processor bus
= Moving bits
B Control Unit (Ohjausyksikko)
m What? Where? When? ]
m Clock pulse
m Generate control signals
- What happens at the next pul’es T T T
m MMU?
B Cache?

. Registers

v VvV VY
.

Internal CPU Bus
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(Stalo Fig 12.1-2)
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Lecture 7: CPU structure and function

Registers

B Top of memory hierarchy

B User visible registers (LRID L A8

m Programmer/ Compiler decides how to use these
m How many? Names?

B Control and status registers BNEQ  Loop

m Some of these used indirectly by the program

- PC, PSW, flags, ...
m Some used only by CPU internally
- MAR, MBR, ...

B Internal latches (apurekisteri) for temporal storage during
instruction execution

m Example: Instruction register (IR) instruction interpretation;
operand first to latch and only then to ALU

m ALU output before result moved to some register

Computer Organization I, Autumn 2010, Teemu Kerola 22.11.2010

N

User visible registers

B Different processor families =
m different number of registers
m different naming conventions (nimeamistavat)
m different purposes

B General-purpose registers (yleisrekisterit)
B Data registers (datarekisterit ) — not for addresses!

B Address registers (osoiterekisterit )
m Segment registers (segmenttirekisterit)
m Index registers (indeksirekisterit )
m Stack pointer (pino-osoitin)
m Frame pointer (ympéristdosoitin )

B Condition code registers (tilarekisterit ) [No condition code regs.
1A-64, MIPS

Computer Organization I, Autumn 2010, Teemu Kerola 22.11.2010

4

Comp. Org 11, Autumn 2010

22.11.2010



Lecture 7: CPU structure and function

Example

Data Registers

Address Registers

Program Status

Program Counter |

Status Register

(a) MC68000

Computer Organization I, Autumn 2010, Teemu Kerola

General Registers

AX |Accumulator
BX Base

CX | Count
DX Data

Pointer & Index
SP |Stack Pointer|

(Stalo Fig 12.3)

Number of registers:
8,16, or 32 ok in 1980
RISC: several hundreds

General Registers

BP |Base Pointer EAX s
SI |Source Index EBX L
DI | Dest Index ECX S

EDX DX

Segment

Ccs Code ESP SP
DS Data EBE LAY
S8 Stack ESI SI
ES Extra EDI DI

Program Status

Program Status

FLAGS Register

e |

Instruction Pointer

(b) 8086

(c) 80386 - Pentium 4

22.11.2010

PSW - Program Status Word

Name varies in different architectures

State of the CPU

m Privileged mode vs user mode

Result of comparison (vertailu)
m Greater, Equal, Less, Zero, ...

Exceptions (poikkeus) during execution?

m Divide-by-zero, overflow
m Page fault, “memory violation”

Interrupt enable/ disable
m Each ‘class’ has its own bit

Bit for interrupt request?
m |/O device requesting guidance

Computer Organization I, Autumn 2010, Teemu Kerola

Design issues:
- OS support

- memory and registers in

- control data storing
- paging

- subroutines and stacks

- etc

22.11.2010
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Lecture 7: CPU structure and function

N

Instruction complete,
fetcth next instruction

Indirection

o

Retum for string
or vector data

Instruction cycle (ka&skysykli)

Indirection

)

Instruction Operand Operand
fetch fetch store
Multiple Multiple
operands results
Instruction Instruction, Operand Data Operand
address operation — address Operation —p  address pereroi — Interrupt
calculation decoding calculation P calculation check

No
nterrupt
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(Stal0 Fig 12.5)
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N

MAR « PC

MAR < MMU(MAR)
Control Bus + Reserve
Control Bus + Read
PC « ALU(PC+1)
MBR < MEM[MAR]
Control Bus + Release
IR « MBR

Cache (valimuisti)!
Prefetch (ennaltanouto)!

Cru

Instruction fetch (kdskyn nouto)

© ——>{MAR

L

Memory

LY

PC
ﬁ Control

v 1[4

Unit
ﬂ MR
MARR = Memony ialTe episien

MAR = Memowy addeess iegist=
IE — Instructon repister
PC — Proaram ocomnker

Computer Organization I, Autumn 2010, Teemu Kerola

Address Data Control
Bus  Bus Bus

(StalO Fig 12.6)
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Lecture 7: CPU structure and function

. Operand fetch, Indirect addressing
‘*‘ (Operandin nouto, epasuora 0soitus)
B MAR + Address cpU
B MAR « MMU(MAR) : |
B Control Bus « Reserve >‘MAR' >
B Control Bus + Read | 5 :D“emr"'
B MBR « MEM[MAR] € ontrel —
B MAR <« MBR -_\1151{)<j ]
B MAR « MMU(MAR) |
B Control Bus « Read Address Data Cotrol
B MBR « MEM[MAR]
B Control Bus « Release

Cache!

B ALU? Regs? « MBR (Stal0 Fig 12.7)

Computer Organization I, Autumn 2010, Teemu Kerola 22.11.2010 9
‘ Data flow, interrupt cycle
B MAR+SP
B MAR + MMU(MAR) cpU
B Control Bus + Reserve
H MBR «PC | rC MAR =

. — Memaory
B Control Bus + Write ﬂ ﬁ | ] 3
B MAR « SP « ALU(SP+1) Contro = W=
nit
B MAR « MMU(MAR) -
B MBR « PSW
MBI
B Control Bus + Write E | ]
B SPe ALU(SP+1) Address Data Control
B PSW « privileged & disable Fins  Bns - Bus
B MAR ¢ Interrupt number < No address translation!
B Control Bus + Read
PC < MBR « MEM[MAR] SP = Stack Pointer [(sta10 Fig 12.8)

B Control Bus + Release

Computer Organization I, Autumn 2010, Teemu Kerola 22.11.2010 10
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Lecture 7: CPU structure and function

v*_ Computer Organization Il

Instruction pipelining
(liukuhihna)

Computer Organization I, Autumn 2010, Teemu Kerola
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‘ Laundry example (by David A. Patterson)

B Ann, Brian, Cathy, Dave:
each have one load of clothes
to wash, dry and fold

;
B Washer takes 30 min
[
B Dryer takes 40 min (-
H “Fold kes 20 )
“Folder” takes 20 min QI-F

Computer Organization I, Autumn 2010, Teemu Kerola
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Lecture 7: CPU structure and function 22.11.2010

Sequential Laundry

B Takes 6 hours for 4 loads:

Time
6 PM 7 8 9 1 11 A
—_— f—f—
30 40 20 30 40 20 30 40 20 30 40 20
=" s Average latency
(@] ;t (latenssi, kesto, viive)

? =7 » < 1.5 h per load
7 [ o

(@)
| 0.67 loads per h |
“= Throughput
Oy 7 (Lapimenoaste)
= »
O = 7’

B [f they learned pipelining, how long would laundry take?

Computer Organization I, Autumn 2010, Teemu Kerola 22.11.2010 13
Pipelined Laundry
B Takes 3.5 hours for 4 loads
6PM 7 8 9 10
————

30 40 40 40 40 20

— 7 1.5 h per load

Ve [
f@ ;l' |gloads per h |

15 « Average speed
o _f
/. Max speed

Oo\_F 1.5 loads per h

At best case, one load is completed every 40 minutes! (0.67 h / finished load)

Computer Organization I, Autumn 2010, Teemu Kerola 22.11.2010 14
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Lecture 7: CPU structure and function

‘ Lessons

B Pipelining does not help latency of single task, but it helps
throughput of the entire workload

B Pipelining can delay single task compared with situation where it is
alone in the system

m  Next stage occupied, must wait

B Multiple tasks operating simultaneously, but different phases

B Pipeline rate limited by slowest pipeline stage
m  Can proceed when all stages done

m  Not very efficient, if different stages have different durations,
unbalanced lengths

B Potential speedup

= maximum possible speedup

= number of pipe stages

Computer Organization I, Autumn 2010, Teemu Kerola 22.11.2010 15

v‘\ Lessons

B Complex implementation,

B May need more resources

m Enough electrical current and
sockets to use both washer and
dryer simultaneously [ ——
30

m Two (or three) people present all
the time in the laundry
B Timeto “fill” pipeline and time to
“drain” it reduce speedup
m  Resources are not fully utilized
B “Hiccups” (hikka)
m Variationin task arrivals, works

best with constant flow of tasks : :
tfill itdrain
— —

Computer Organization I, Autumn 2010, Teemu Kerola 22.11.2010 16
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Lecture 7: CPU structure and function

“&.  (2-vaiheinen liukuhihna)

" Wait New address Wait

Instruction Instruction

Discard

previous instruction

B Problems
m  Execution phase longer = fetch stage sometimes idle

B Not enough parallelism = more stages?

Computer Organization I, Autumn 2010, Teemu Kerola

m  Execution modifies PC (jump, branch) = fetched wrong instr.
- Prediction of the next instruction’s location was incorrect!

Result

2-stage instruction execution pipeline

(Stalo Fig 12.9)

B Principle of locality (paikallisuus): assume ‘sequential’ execution

B |[nstruction prefetch (ennaltanouto) at the same time as execution of

Discussion?

22.11.2010
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. 6-Stage (6-Phase) Pipeline

Time =
- 112|345 ]e6]|7]|8]|9]10)11]12]|13]|14
Instruction 1 | g1 | pr | co| Fo | Ex | wo
Instruction 2 FI | DI |co| Fo| EI |WO
Instruction 3 FI | DI |CO| FO | EI | WO
Instruction 4 FI | DI | CO| FO | EI [WO
Instruction 5 FI | D1 | co| Fo | EI | WO
Instruction 6 FI | DI | CO| FO | EI WO
Instruction 7 FI | DI | CO| FO | EI | WO
Instruction 8 FI | DI | CO| FO | EI (WO
Instruction 9 FI | DI |co| Fo | EI [wo

FE - Fetch instruction FO - Fetch operands

DI - Decode instruction

WO - Write operand

El - Execute instruction

CO - Calculate operand addresses

Computer Organization I, Autumn 2010, Teemu Kerola

(StalO Fig 12.10)

22.11.2010
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Lecture 7: CPU structure and function 22.11.2010

‘ Pipeline speedup (nopeutus)?
B |ets calculate (based on Fig 12.10):
m 6- stage pipeline, 9 instr. = 14 time units total
m Same without pipeline = 9*6 = 54 time units
m Speedup = time,y / timepipejine = 54/14 = 3.86 < 6!
m Maximum speed at times 6-14
- one instruction per time unit finishes
- 8time units = 8 instruction completions
- Maximum speedup = timeg,g / timeg;geine = 48/8 = 6
B Not every instruction uses every stage
m Will not affect the pipeline speed — some stages unused
m Speedup may be small (some stages idle, waiting for slow)
m Unused stage = CPU idle (execution “bubble”)
m Serial execution could be faster (no wait for other stages)

Computer Organization I, Autumn 2010, Teemu Kerola
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‘ Pipeline performance: one cycle time

r =max[r,]+d =7 +d >>d

i=1.k \ \

Max time (duration) of

Cycletime  Stagei Latch delay, the slowest stage
(jakson kesto)  time move data from (Hltalmmal? vaiheen
one stage to next (max) kesto)

~ one clock pulse

B Cycle time is the same for all stages
m Time (in clock pulses) to execute the stage

B Each stage takes one cycle time to execute

B Slowest stage determines the pace (tahti, etenemisvauhti)
m The longest duration becomes bottleneck

Computer Organization I, Autumn 2010, Teemu Kerola
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Lecture 7: CPU structure and function

No pipeline:

Pipeline:

Speedup:

k stages before the first
task (instruction) s finished

»i_ Pipeline Speedup

n instructions, k stages, t =cycle time

T =nk Pessimistic: assumes the same
1 = NK7 duration for all stages

T =[k+ (=D}

next (n-1) tasks (instructions) will finish

S T. nkt

each during one cycle, one after another

nk

1 Tkro-0F k-]

See Stal0 Fig 12.10
and check yourself!

Computer Organization I, Autumn 2010, Teemu Kerola
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k=12 stages

Speedup factor

k =9 stages

k=6 stages

(Stal0 Fig 12.14)

| 1 1 1 |
4 8 16 32 . 64
Number of instructions (log scale) without jumps

128

‘ Speedup vs. nr stages vs. instructions w/no jumps?
12

more gains from
multiple stages when
more instructions
without jumps

n = 30 instructions

10 =

:_f s n = 20 instructions
=
S 6
s n = 10 instructions
2 4. (without jumps)
w

2

0

| | |
0 s 15 20

Number of stages

Computer Organization I, Autumn 2010, Teemu Kerola
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Lecture 7: CPU structure and function

vi_ Pipeline Features

B Extraissues
and move data from buffer to buffer

time than single execution

B But still

down execution of single instruction

Computer Organization I, Autumn 2010, Teemu Kerola

m  CPU must store ‘midresults’ somewhere between stages

m  From one instruction’s viewpoint the pipeline takes longer

m  Executing large set of instructions is faster
m  Better throughput (I&pimenoaste) (instructions/sec)

B The parallel (concurrent) execution of instructions in the
pipeline makes them proceed faster as whole, but slows

22.11.2010
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‘ Pipeline Problems and Design Issues

B Structural dependency (rakenteellinen riippuvuus)

m Several stages may need the same HW
m Memory: Fl, FO, WO
m ALU: CO, EI

STORE R1,VarX
ADD R2,R3,VarY
MUL R3,R4,R5

B Control dependency (kontrolliriippuvuus)
m No knowledge on next instruction
m E.g., (conditional) branch destination
may be known only after El-stage
m — Prefetched wrong instructions

B Data dependency (datariippuvuus)
m Instruction needs the result of the
previous non-finished instruction

Computer Organization I, Autumn 2010, Teemu Kerola

ADD R1,R7,R9
Jump  There

ADD R2,R3,R4
MUL R1,R4,R5

MUL R1,R2,R3
LOAD R6, Arr(R1)

22.11.2010
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Lecture 7: CPU structure and function 22.11.2010

i Pipeline Dependency Problem Solutions

B In advance: prevent (some) dependency problems completely

B At run time: Hardware must notice and wait until all dependencies are cleared

m Add extra waits, “bubbles”, to the pipeline; Commonly used
m Bubble (kupla) delayes everything behind it in all stages

B Structural dependency
m More hardware, e.g., separate ALUs for CO and El stages
m Lots of registers, less operands from memory

B Control dependency
m Clear pipeline, fetch new instructions
m Branch prediction, prefetch these or those?

B Data dependency
m Change execution order of instructions

m By-pass (oikopolku) in hardware between stages: earlier instruction’s result
can be accessed already before its WO-stage is done

Computer Organization I, Autumn 2010, Teemu Kerola 22.11.2010 25

i Data dependency

B Read after Write (RAW) (a.k.atrue or flow

dependency) Load rl A

m Occurs if succeeding read takes place before the Addr3 12 rl
preceding write operation is complete !

B Write after Read (WAR) (a.k.a antidependency) Addr3. 2. 11

m Occursif the succeeding write operation completes before | -4 ri4
the preceding read operation takes place !

B Write after Write (WAW) (a.k.a output dependency)

m Occurs when the two write operations take place in the Addrl,r5,r6
reversed order of the intended sequence Store;rl, A
Addrl, r2,r3
B The WAR and WAW are possible only in architectures
where the instructions can finish in different order
Computer Organization I, Autumn 2010, Teemu Kerola 22.11.2010 26
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Lecture 7: CPU structure and function

- Example: Data Dependency - RAW
Depen- 11231456789 ]|10]|11
dency:
wait | MUL R1, R2,R3 F1 | DI | CO|FO | EI |WQ
\ ADD R4\RS, R6 w1 | ot | co| Fo | e\'wo
SUB R7,R1,R8 1 | o1 | co | @] ro| e1 |wo
ADD R RL, R3 I ‘ro | &1 [wo
Depen FI | D1 | co |dge
dency:
it
o wal L|2]3|4]5]6]7]s8]|92]|w]|n
MUL R1,R2,R3 FI | pI | co | Fo | EI [wo
< . g too far, —
ADD R4, RS, R6 FL | b1 | co|ro| k| wo no effect
SUB R7/R7,R8 FI | I [co|Fo | EI [Wo
ADD RL,RL,R3 F1 | m1|co|Fol| mr |wo
Computer Organization I, Autumn 2010, Teemu Kerola 22.11.2010 27
. Example: Change instruction
. execution order
1]2]3]a]s]|e|7]8]9)|10]n
MUL R1,R2,R3 | o1 [cofro| e |wo
Need |ADD R4)\R5, R6 FI | DI | CO| FO | EI \WO
bubble —
SUB R7,RL R8 i | o1 | co |é#)| o | 1 |wo
2 -
ADD R9, RO, R8 - col@ ro | £1 [wo
112131456789 (10]11
No MUL R1, R2,R3 FI | DI | co| Fo | EI |WoO .
effect- | D switched
ive ADD R4, R5, R6 FI | 1 [co|Fo| Frjwo instructions
depen- \ :
dencies | ADD  R9, 'R0, R8 F | DI [co|Fo| ¥ |wo
SUB R7,R1,R8 ¥1 | o1 |co|rol E |wo

Computer Organization I, Autumn 2010, Teemu Kerola 22.11.2010 28
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Lecture 7: CPU structure and function

B New wires (and temp registers, latches) in pipeline
W E.g., instr. result available to FO phase directly from phase El

‘i_ Example: By-pass (oikopolut)

1)2]3]4|s5]e]7]s8]9|w]n]
MUL R1,R2,R3 FI | DI | CO| FO | EI |[WOQ no by-pass
ADD R}E“Rl 71 | o1 | co | de|de| Foler [wa
SUB R7R4RL ¥ | D1 |co @l@@@*w E1 [wo
1lz2)a3lals|el7]s8]9]w]n
MUL REI., R2, R3 FI | DI |CO| FO | EI { WO
ADD RE,‘R@, 1 r1 | ot | co | @ ro | E1,| wo With by-pass
SUB R7\,‘R4~,“R1 FI | DI | CO @@'m EL | WO

Computer Organization I, Autumn 2010, Teemu Kerola
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‘ Computer Organization Il

Multiple streams (Monta suorituspolkua)
Delayed branch (Viivastetty hyppy)

Prefetch branch target (Kohteen ennaltanouto)
Loop buffer (Silmukkapuskuri)
Branch prediction (Ennustuslogiikka)

Pipelining and Jump Optimization

22.11.2010 30
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Lecture 7: CPU structure and function

- Ef

N

fect of Conditional Branch on Pipeline

Decode

Time Branch Penalty DI| tnstruction

112314567 |8]9|10fj11|12]13]14
co Calculate
Instr 1 | g1 | 01| co|ro| e [wo Operands I
Instr 2 FI | DI | co | Fo | E1 [wo
7 Uncon-
Instr 3 1 | o1 | co| Fo @ WO Yo 7 ditional
Instr 4 FI [ oI | co F(\ o
Inste 5 F | b1 | co Q
Instr 6 ¥1 | DI O
Instr 7 FI x U Execute
EI Instruction
Instr 15 FI)| DI | CO | FO | EI | WO
Insir 16 | b1 | co|Fo| E [wo { Ul;*‘e e =

(Stal0 Fig 12.11)

Computer Organization I, Autumn 2010, Teemu Kerola

Empty
Pipe

(StalO Fig 12.12)
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Del ayed Branch (iivastetty haarautuminen)

B Compiler places some useful instructions (1 or more)
after branch instructions (to delay slots)

m Instructionin delay slotws are always executed!

sub r5,r3, r7
add r1,r2,r3
jump There

m No roll-back of instructions needed due incorrect prediction
- Rollback is difficult to do
m If no useful instruction available, compiler uses NOP

!

B Less actual work lost if branch occurs

sub r5, r3, r7

7\

m Next instruction almost done, when branch decision known

jump There o i . o i
add r1,r2, 13> W This is easier than emptying the pipeline during branch
ot S Tae o

delay slot

Computer Organi.

B Worst case: NOP-instructions waist some cycles

B Can be difficultto do (for the compiler)

zation Il, Autumn 2010, Teemu Kerola 22.11.2010 32
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Lecture 7: CPU structure and function

B Execute speculatively to both directions
m Prefetch instructions that follow the branch to the pipeline

B Problems
m Branch target address known only after some calculations

m Second split on one of the pipelines

- Continue any way? Only one speculation at a time?
= More hardware!

- More pipelines, speculative results (registers!), control
m Speculative instructions may delay real work

- Bus and register contention? More ALUs?

m  easier, if all changes done in WB phase

Computer Organization I, Autumn 2010, Teemu Kerola

m Prefetch instructions from branch target to (another) pipeline
m After branch decision: reject the incorrect pipeline (its results)

% Multiple instruction streams (monta suorituspolkua)

IBM 370/168,
IBM 3033

Intel |A-64

B Capability to cancel not-taken instruction stream from pipeline

22.11.2010 33

execute it yet
m Do only Fl-stage

B Must be able to clear the pipeline

Computer Organization I, Autumn 2010, Teemu Kerola

‘ Prefetch branch target (kohteen ennaltanouto)

B Prefetch just branch target instruction, but do not

m If branch taken, no need to wait for memory

B Prefetching branch target may cause page-fault
IBM 360/91 (1967)

22.11.2010 34
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Lecture 7: CPU structure and function 22.11.2010

‘ Loop buffer (silmukkapuskuri)

B Keep n most recently fetched instructions in high
speed buffer inside the CPU
m Use prefetch also
- With good luck the branch target is in the buffer
- F.ex. IF-THEN and IF-THEN-ELSE structures

B Works for small loops (at most n instructions)
m Fetch from memory just once

B Gives better spacial locality than just cache

CRAY-1
Motorola 68010

Intel Core-2

Computer Organization I, Autumn 2010, Teemu Kerola 22.11.2010 35

‘ Static Branch Prediction

B Make an (educated?) guess which direction is
more probable:

Motorola 68020
Branch or no? VAX 11/780
B Static prediction (staattinen ennustus) Intel Pentium 11

m Fixed: Always taken (aina hypataan)
m Fixed: Never taken (ei koskaan hypatd)
- ~50% correct
m Predict by opcode (operaatiokoodin perusteella)
- In advance decided which codes are more likely to branch

- For example, BLE instructionis commonly used at the end
of steppingloop, guess a branch

- ~75% correct [LILJ88]

Computer Organization I, Autumn 2010, Teemu Kerola 22.11.2010 36
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Lecture 7: CPU structure and function 22.11.2010

‘ Dynamic Branch Prediction

B Dynamic prediction
m Make a quess based on earlier history for (this) branch
m Logic: What has happened in the recent history with this instruction
- Improves the accuracy of the prediction

m |mplementation: extra internal memory = branch history table o«
- Instruction address (for this branch) o
- Branch target (instruction or address) — need this for quick action

- Decision: taken/ not taken

B Simple prediction based on just the previous execution

m 1 bitmemory is enough
m Loops will always have one or two incorrect predictions

22.11.2010 37

Computer Organization I, Autumn 2010, Teemu Kerola

‘_ 2-Bit Branch Prediction Logic for One Instruction
15t miss
] i Not Taken
Improved Slmple ; Predict Predict
model = Tuken < Taken
Takc
m Don't change the I
prediction with A
one - =
misprediction 9 2 2
m Based on two E€E ;E o
. o= —
previous ’Cé\l'— Nz
executions of \
this instruction .
. Not Taken =
m 2 bits enough Predict 21 Predict :
Not Taken << Not Taken %
PowerPC 620 Jaken 2
(Stal0 Fig 12.19) 15 miss
Computer Organization I, Autumn 2010, Teemu Kerola 22.11.2010 38

Comp. Org 11, Autumn 2010



Lecture 7: CPU structure and function 22.11.2010

- - - -
. Branch Prediction History Table
L}
Associative
Next sequential
address m_emory’
IPFAR Branch Like cache
Elir_ instruction ~ Target
address address  State <
Looku 2
" € Memory
Whichbranch | | —
. ; . . "taq”
instruction is this? | Tetid) &
Add new IPFAR = instruction
entry . . . prefix address register
Update . . . Prediction:
state taken/not taken
Whereto
Redirect ijp, if
branch taken
(Stalo Fig 12.20b)
Computer Organization I, Autumn 2010, Teemu Kerola 22.11.2010 39

‘ Summary

B Pipeline basics
m Stage length, pipeline fill-up and drain times
m Response time, throughput, speedup

B Hazards, dependencies
m Structural, control, data (RAW, WAR, WAW)
m How to avoid before time?
m How to handle at run time?

B How to minimize branch costs?

m Delayed branch, multiple pipeline streams, prefetch
branch target, loop buffer, branch prediction

Computer Organization I, Autumn 2010, Teemu Kerola 22.11.2010 40
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Lecture 7: CPU structure and function

* Review Questions

B Whatinformation PSW needs to contain?
B Why 2-stage pipeline is not very beneficial?
B What elements effect the pipeline?

B \What mechanisms can be used to handle
branching?

B How does CPU move to interrupt handling?

Computer Organization I, Autumn 2010, Teemu Kerola
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