

Instruction cycle

R 3

CPU executes instructions “one after another”

Execution of one instruction has several phases (see state

diagram). The CPU repeats these phases

structi Operand erand
fetch fetch store
Multiple Multiple
operands results
structi tructio Operan Dat Operand
address operation address 3 f. address
culatio decodi culati . culati

Instruction complete,
fetch next instruction

Return for string
or vector data

Computer Organization I, Autumn 2010, Teemu Kerola

10.11.2010

2

‘ Computer Instructions (konekaskyt)

Instruction set (k&skykanta) =
Set of instructions CPU ‘knows’

Operation code (kadskykoodi)
What does the instruction do?

Data references (viitteet) — one, two, several?
Where does the data come for the instruction?

Registers, memory, disk, 1/0O
Where is the result stored?

Registers, memory, disk, 1/0O

What instruction is executed next?
Implicit? Explicit?

1/O?
Memory-mapped I/O = I/O with memory reference operations

Computer Organization I, Autumn 2010, Teemu Kerola 10.11.2010

3

(¢) Symbolic program

Computer Organization Il, Autumn 2010, Teemu Kerola

Symbolic
name

||
‘ Instructions and data (kaskyt ja data)
|
8 Address Contents Address Contents
e 101 0010 0010 0000 0001 101 2201
O 102 0001 0010 0000 0010 102 1202
P~ 103 0001 0010 0000 0011 103 1203
*é 104 0011 0010 0000 0100 104 3204
| [201 0000 0000 0000 (010 201 0002
S 202 0000 0000 0000 0011 202 0003
-‘g 203 0000 0000 0000 0100 203 0004
204 0000 0000 0000 0000 204 0000
(a) Binary program (b) Hexadecimal program
Address Instruction Label Operation Operand
101 LDA 201 | A FORMUL LDA |
102 ADD 202 . o ADD J
103 ADD 203 =) ADD K
104 STA 204 _% STA N
201 DAT 2)| o I 2
202 DAT 3 L2 J 3
203 DAT 4 ‘g K 4
204 DAT 0 -~ N 0

(d) Assembly program

10.11.2010

4

o Instruction types?

StalO Table 10.3

Transfer between memory and registers

LOAD, STORE, MOVE, PUSH, POP, ...
Controlling I/0

Memory-mapped I/O - like memory

I/O not memory-mapped — own instructions to control
Arithmetic and logical operations

ADD, MUL, CLR, SET, COMP, AND, SHR, NOP, ...
Conversions (esitystapamuunnokset)

TRANS, CONV, 16bTo32b, IntToFloat, ...

Transfer of control (k&skyjen suoritusjarjestyksen ohjaus),
conditional, unconditional

JUMP, BRANCH, JEQU, CALL, EXIT, HALT, ...
Service requests (palvelupyyntd)
SVC, INT, IRET, SYSENTER, SYSEXIT, ...

Privileged instructions (etuoikeutetut kaskyt)
DIS, IEN, flush cache, invalidate TLB, ...

Computer Organization I, Autumn 2010, Teemu Kerola 10.11.2010

P What happens during instruction
“Eh. execution?

Data Transfer

Transfer data from one location to another

If memory is involved:

Determine memory address
Perform virtual-to-actual-memory address transformation

Check cache
Initiate memory read/write

May involve data transfer, before and/or after

Arithmetic Perform function in ALU
Set condition codes and flags
Logical Same as arithmetic
Conversion Similar to arithmetic and logical. May involve special logic to

perform conversion

Transfer of Control

/O

Update program counter. For subroutine call/return. manage
parameter passing and linkage

Issue command to I/O module

If memory-mapped I/O, determine memory-mapped address

(StalO Table 10.4)

Computer Organization Il, Autumn 2010, Teemu Kerola 10.11.2010

What kind of data?

Integers, floating-points
Boolean (totuusarvoja)

Characters, strings
IRA (aka ASCII), EBCDIC

Vectors, tables
N elements in sequence

Memory references

Different sizes
8 /16/32/ 64D, ...
Each type and size has its
own operation code

Computer Organization I, Autumn 2010, Teemu Kerola

Operation Number of Bits
Mnemonic Name Transferred

L Load 32

LH Load Halfword 16

LR Load 32

LER Load (Short) 32

LE Load (Short) 32

LDE Load (Long) 64

LD Load (Long) 64

ST Store 32

STH Store Halfword 16

STC Store Character 8

STE Store (Short) 32

STD Store (Long) 64

IBM EAS/390

(StalO Table 10.5)

10.11.2010

7

Instruction representation
(kaskyformaatti)

How many bits for each field in the instruction?
How many different instructions?
Maximum number of operands per instruction?
Operands in registers or in memory?
How many registers?

Fixed or variable size (vakio vai vaihteleva koko)?

Number of Addresses Symbolic Representation Interpretation
b OPA.B,C A =BOPC
2 OPA.B A -—AOPB
1 OP A AC — ACOPA
0 OP T— (T-1)0OPT
AC accumulator T top of stack

second element of stack

(StalO Table 10.1)

A, B, C = memory or register locations (T-1)

Computer Organization I, Autumn 2010, Teemu Kerola 10.11.2010

k. How many registers?

Minimum 16 to 32
Work data in registers

Different register (sets) for different purpose?
Integers vs. floating points, indices vs. data, code vs. data
All sets can start register numbering from 0
Opcode determines which set is used

More registers than can be referenced?
CPU allocates them internally
Register window — virtual register names
Example: function parameters passed in registers
Programmer thinks that registers are always r8-r15,
CPU maps r8-rl5 somewhere to r8-r132
(We'll come back to this later)

Computer Organization I, Autumn 2010, Teemu Kerola 10.11.2010

R 3

Computer Organization I, Autumn 2010, Teemu Kerola 10.11.2010

Architectures

Accumulator-based architecture (akkukone)
Just one register, accumulator, implicit reference to it

Stack-based (pinokone) _

Operands in stack, implicit reference
PUSH, POP Example: JVM

Register-based (yleisrekisterikone)
All reqisters of the same size
Instructions have 2 or 3 operands

Load/Store architecture

Only LOAD/STORE have memory refs
ALU-operations have 3 regs

10

R 3

Byte ordering (tavujarjestys):

Big vs. Little Endian

How to store a multibyte scalar value?

0x1200:

(sanaosoite) Word

”lsoimmassa lopputavu”

Big-Endian:

-

Most significant byte
In lowest byte addr

Little-Endian:

-

Least signifant byte
In lowest byte addr

”Pienimmassa
lopputavu”

0x00000044 =

Computer Organization Il, Autumn 2010, Teemu Kerola

0x1200

0x1201

Byte (tavuosoitteet)

0x1202

0x1203

STORE 0x11223344 ,0x1200 7?7

Ox11 0x22 0x33 Ox44
0x1200 Ox1201 0x1202 0x1203

Ox44 0x33 0x22 Ox11
0x1200 0x1201 0x1202 0x1203

0x44 0x00 0x00 0x00
0x1200 0x1201 0x1202 0x1203

10.11.2010

11

Data bytes

AR M . in memory
. (ascending address values

from byte 0 to byte 3)

|] » Byte3 |«

. Bigyvs. Little Endian

Byte1 |

»| Byte0 |«

31y v y y O 31y v) y O
l Byte 3 | Byte 2 | Byte 1 | Byte 0 ‘ ‘ Byte 0 lByte'I |Byte2 |B)rte3 |

ALU uses only one of them
Little-endian: x86, Pentium, VAX (Stal0 Fig 10.5)
Big-endian: IBM 370/390, Motorola 680x0 (Mac),

most RISC-architectures
ARM, a bi-endian machine, accepts both
System control register has 1 bit (E-bit) to incidate the endian mode
Program controls which to use

Byte order must be known, when transfering data from one machine
to another

Internet uses big-endian format
Socket library (pistokekirjasto) has routines htoi() and itoh()
(Host to Internet & Internet to Host)

Computer Organization I, Autumn 2010, Teemu Kerola 10.11.2010 12

. . . 10010...10010
Data alignment (kohdentaminen gg10. 10100

o 0010...11000
16b data starts with even (parillinen) (byte)address
32b data starts with address divisible (jaollinen) by 4
64b data starts with address divisible by 8

Aligned data is easier to access
32b data can be loaded by one
operation accessing the word address (sanaosoite)

Unaligned data would contain no 'wasted’ bytes, but

For example, loading 32b unaligned data requires two loads
from memory (word address) and combining it

load r1, 0(r4) or loadrl, 2(r4) (4 —> 11 | 22
shl rl, =16
r4 — |11 (22 |33 |44 load r2, 4(r4) 33 |44
_ shr r2, =16 _
rli]11 |22 |33 |44 or L 12 ri:]11 |22 |33 |44

Computer Organization I, Autumn 2010, Teemu Kerola 10.11.2010 13

Computer Organization Il

Memory references

(Muistin osoitustavart)
Ch 11 [Stal0]

Computer Organization Il, Autumn 2010, Teemu Kerola 10.11.2010 14

wah. Where are the operands?

In the memory
Variable of the program, stack (pino), heap (keko)

In the registers
During the instruction execution, for speed

Directly in the instruction
Small constant values

How does CPU know the specific location?
Bits in the operation code
Several alternative addressing modes allowed

Computer Organization I, Autumn 2010, Teemu Kerola 10.11.2010

15

Addressing modes (osoitusmuodot)

Instruction Instruction Instruction Instruction
|| Operand | L A | I | R | L [R[A |
Memory Memory Memory
==
—p| Operand : p| Dperand : L’
Registers Registers
(a) Immediate (b)) Direct {e) Register Indirect (f) Displacement
Instruction Instruction Instruction
[] A | | | R | | |
Memory o
Implicit
Operand |4
Operand
Top of Stack
- Repgister
Registers
(c) Indirect (d) Register {z) Stack

Computer Organization Il, Autumn 2010, Teemu Kerola

(Stal0 Fig 11.1)

10.11.2010

16

‘ Addressing modes

Mode Algorithm Principal Advantage Principal Disadvantage
Immediate Operand = A No memory reference Limited operand magnitude
Direct EA=A Simple Limited address space
Indirect EA =(A) Large address space Multiple memory references
Register EA=R No memory reference Limited address space

Register indirect EA =(R)
Displacement EA=A+(R)
Stack EA =top of stack

Large address space
Flexibility

EA = Effective Address

(A) = content of memory location A

(R) = content of register R

No memory reference

Extra memory reference
Complexity
Limited applicability

One register for the top-most stack item’s address

Register (or two) for the top stack item (or two)

Computer Organization I, Autumn 2010, Teemu Kerola

10.11.2010

17

Displacement Address (siirtyma)

Effective address = (R1) + A (tehollinen muistiosoite)

register content + constant in the instruction

Constant relatively small (8 b, 16 b?)

Usage
_ JUMP *+5
Relational to PC _
Relational to Base CALL SP, Summation(BX)
Indexing a table ADDF F2,F2, Table(R5)
Ref to record field MUL F4.F6, Salary(R8)

Stack content

(e.g., in activation record) STORE F2, -4(EP)

Computer Organization I, Autumn 2010, Teemu Kerola 10.11.2010 18

Autoincrement (before/after)
Example Currindex=i++;

Autodecrement (before/after)
Example Currindex=--i;

Autoincrement deferred
Example Sum = Sum + (*ptrX++);

Autoscale
Example Double X;

%;Tbmk

Computer Organization I, Autumn 2010, Teemu Kerola

More addressing modes

operand size

EA=(R),R<« (R) +S

R« (R)-S,EA=(R)

EA=Mem(R), R« (R)+S

EA= A+ (R)*S

10.11.2010

19

‘ Computer Organization Il

Pentium

Computer Organization I, Autumn 2010, Teemu Kerola 10.11.2010 20

Pentium: Registers

General registers (yleisrekisterit), 32-b
EAX, EBX, ECX, EDX accu, base, count, data
ESI, EDI source & destination index
ESP, EBP stack pointer, base pointer

Part of them can be used as16-bit registers
AX, BX, CX, DX, SI, DI, SP, BP

: : General Registers
Or even as 8-bit registers EAX e
AH, AL, BH, BL,CH, CL,DH, DL |gpx BX
Segment registers 16b ECX CX
EDX DX
CS, SS, DS, ES, FS, GS
code, stack, data, data, ... ESP 3P
Program counter (kaskynosoitin) EBP gi‘
. . ESI
EIP Exte.nded Instruction Pointer EDI DI
Status register (Stal0 Fig 12.3c)
EFLAGS

overflow, sign, zero, parity, carry,...

Computer Organization I, Autumn 2010, Teemu Kerola 10.11.2010 21

Not aligned
Little Endian

Data Type Description

General Byte, word (16 bits). doubleword (32 bats), quadword (64 bats),
and double quadword (128 bats) locations with arbitrary binary
contents.

Integer A signed binary value codntained m a byte, word, or doubleword,
using twos complement representation.

Ordinal An unsigned integer contained 1n a byte, word, or doubleword.

Unpacked binary coded A representation of a BCD digit in the range O through 9. with one

decimal (BCD) digit 1 each byte.
Packed BCD Packed byte representation of two BCD digits; value in the range 0

Near pointer

Far pomter

Bit field

Bit string
Byte string

Floating point
Packed SIMD (single

mstruction, multiple data)

to 99.

A 16-bat, 32-bat, or 64-bit effective address that represents the
offset within a seement. Used for all pointers in a nonsegmentad
memory and for references within a segment 1n a segmented
Mmemory.

A logical address consisting of a 16-bit segment selector and an
offset of 16, 32, or 64 bats. Far pointers are used for memory
references in a segmented memory model where the 1dentity of a
segment being accessed must be specified explicitly.

A contignous sequence of bits in which the position of each bit 1s
considered as an independent unit. A bit string can begin at any bt
position of any byte and can contain up to 32 bats.

A contiguous sequence of bits, contaiming from ze

bits

A contiguous sequence of bytes _words, or doublewords,
containing from ze m 5.

X86:
Data

types

Single / Double / Extended precision |IEEE 754 standard

Packed 64-bit and 123-bit data types

Computer Organization Il, Autumn 2010, Teemu Kerola

(StalOTable 10.2)

10.11.2010 22

5 Pentium: Operations

Data transfers, arithmetics,

- moves, jumps, stricts, etc

-~ (Just part of)

High-Level Language Support
ENTER Creates a stack frame that can be used to implement the rules of a block-structured
high-level language.

| LEAVE Reverses the action of the previous ENTER.

BOUND) Check array bounds. Verifies that the value in operand 1 1s within lower and upper

Segment Register
LDS Load pointer into D segment register.
Swvstem Control

HLT Halt.

LOCK Asserts a hold on shared memory so that the Pentium has exclusive use of it dunng

o~ the instruction that immediately follows the LOCK.

ESC Processor extension escape. An escape code that indicates the succeeding
mstructions are to be executed by a numenc coprocessor that supports hugh-
precision integer and floating-point calculations.

WAIT Wait until BUSY# negated. Suspends Pentium program execution until the
processor detects that the BUSY pin 1s inactive, indicating that the numenc
coprocessor has finished execution.

Protection

SGDT Store global descriptor table.

ILSIE Load segment limit. Loads a user-specified register with a segment linat.

VERR/VERW Venfy segment for reading/writing.

| | Cache Management

INVD \ Flushes the internal cache memory.

< WEBINVD) Flushes the internal cache memory after wnting dirty lines to memory.
\QJVLP'Q/ Invalidates a translation lookaside buffer (TLE) entry.

(StalO Table 10.8)

Computer Organization Il, Autumn 2010, Teemu Kerola 10.11.2010

Pentium: MMX Operations

(just part of) SIMD
| Category | Instruction P Description
PADD [B, W, I] (Parallel Add of packed eight bytes, four 16-bit words, or two 32-bit
doublewords, with wraparound.
PADDS [B, W] Add with saturation.
PADDUS [B, W] Add unsigned witiGaturationd O under/overflow. B
PSUB [B, W, D] Subtract with wraparound. Use closest representation N
PSUBS [B, W] Subtract with samration.
Arithmetic PSUBUS [B, W] Subtract unsigned with saturation
PMULHW Parallel multiply of four signed 16-bit words, with high-order 16
bits of 32-bit result chosen.
PMULLW Parallel multiplv of four signed 16-bit words, with low-order 16 bits
_ of 32-bit result chosen.
PMADDWD Parallel multiply of four signed 16-bit words; add together adjacent
pairs of 32-bit results.

PACEUSWDB Pack words 1nto bytes with unsigned saturation.
PACEKSS [WEB, DW] Pack words 1nto bytes, or doublewords into words, with signed
saturation.
Conversion PUNPCEH [BW, WD, Parallel unpack (interleaved merge) high-order bytes, words, or
D] doublewords from MMX register.
PUNPCEL [BW, WD, Parallel unpack (interleaved merge) low-order bytes, words, or
DQ] doublewords from MMX register.

(StalO Table 10.11)

Computer Organization Il, Autumn 2010, Teemu Kerola 10.11.2010 24

o Pentium: Addressing modes
‘ (muistin osoitustavat)

X86 Addressing Mode Algorithm
Immediate Operand = A 1,2, 4, 8B
Register Operand Operand — (R)
Displacement LA=(SR)+ A Registers:
1,2,4,8B
Base LA =(5R)+(B)
Base with Displacement LA=(S5R)+(B)+ A
Scaled Index with Displacement LA=(SR)+(DxS+A
Base with Index and Displacement LA=(S5R)+(B)+(I)+A
Base with Scaled Index and Displacement @R) +(DxS+(B)+ A
Relative LA=(PC)+ A
LA = linear address R = register : :
(X) = contents of X B = base register Indexing arrays?
SE i segment register I i 111::16.15; register array’s in stack?
PC = program counter S = scaling factor
A = contents of an address field in the instruction two dimensional arrays?

(StalO Table 11.2)

Computer Organization Il, Autumn 2010, Teemu Kerola 10.11.2010 25

Pentium: Addressing Mode Calculation

TEal
Segment Registers

Base Register

LA = (SR)+(1)*S+(B)+A

Index Register

x
~scale
1.2.4, or 8
+ !}i?placemf_‘ur /ﬂ___...d‘ Segment
(In mstruciion: Base
A 0, 8, or 32 hits) Address
| Effective
Descriptor Registers Address
Linear
Address
—p.(+) 7\ »
h— Lccess Rigllt&c' C E
- Limit B N +
_; Base Address
StalO Fig 11.2 - :
(g112) L—~___J |Discussion?

Computer Organization Il, Autumn 2010, Teemu Kerola 10.11.2010 26

wi Pentium: Instruction format

CISC
Complex Instruction Set Computer
Lots of alternative fields only op-code always!

Part may be present or absent in the bit sequence
Prefix 0-4 bytes

Interpretation of the rest of the bit sequence depends on the
content of the preceding fields

Plenty of alternative addressing modes (osoitustapa)
At most one operand can be in the memory
24 different

Backward compatibility

OLD 16-bit 8086-programs must still work
How to handle old instructions: emulate, simulate?

Computer Organization I, Autumn 2010, Teemu Kerola 10.11.2010

27

N

Pentium: Instruction format

0 nr-l Dorl Dorl Oorl bytes
Instructi S Operand | Address
nstruction egm:ent size size (StalO Fig 11.9)
prefix override : .
override | override
' ’
. s
: R4
1 =
: 7 Addressing
E P 7’ e
: 0.1, 2, 3 or 4 bytes //101'2 Dorl Dorl 0.1,2, ord 0.1,2. ord
Instruction prefixes Opcode ModR/NM SIB Displacement Immediate
- - ’ :"“ ."l-
. . - : ‘1,‘ — -~ - -
- -7 - : 1‘.‘ - —
Mod Reg/Opcode RM Scale Index Base
¥T i 5 4 3 - \1 1 0 Y, 7 i 5 4 1 0

Computer Organization Il, Autumn 2010, Teemu Kerola

V

1,
1. Operand 2. operand (register)

(register) or form part of the addressing-mode

10.11.2010

28

wi. Pentium: Instruction format

Instruction prefix (optional)
LOCK —exclusive use of shared memory in multiprocessor env.
REP — repeat operation to all characters of a string

Segment override (optional)
Use the segment register explicitly specified in the instruction
Else use the default segment register (implicit assumption)

Operand size override (optional)
Switch between 16 or 32 bit operand, override default size

Address size override (optional)

Switch between 16 or 32 bit addressing. Override the default,
which could be either

Computer Organization I, Autumn 2010, Teemu Kerola 10.11.2010 29

Pentium: Instruction format

Opcode

Each instruction has its own bit sequence (incl. opcode)
Bits specify the size of the operand (8/16/32b)

ModR/m(optional)
Indicate, whether operand is in a register or in memory
What addressing mode (osoitusmuoto) to be used
Sometimes enhance the opcode information (with 3 bits)

SIB = Scale/Index/Base (optional)
Some addressing modes need extra information
Scale: scale factor for indexing (element size)
Index: index register (number)
Base: base register (number)

Computer Organization Il, Autumn 2010, Teemu Kerola 10.11.2010 30

Pentium: Instruction format

Displacement (optional)

Certain addressing modes need this
0, 1, 2 or 4 bytes (0, 8, 16 or 32 bits)

Immediate (optional)

Certain addressing modes need this, value for
operand

0, 1, 2 or 4 bytes

Computer Organization Il, Autumn 2010, Teemu Kerola 10.11.2010 31

i Computer Organization Il

ARM Instructions

Computer Organization I, Autumn 2010, Teemu Kerola 10.11.2010 32

. ARM: Instruction set (kaskykanta)
RISC

Reduced Instruction Set Computer

Fixed instruction length (32b), regular format
All instructions have the condition code (4 bits)

Small number of different instructions
Instruction type (3 bit) and additional opcode /modifier (5 bit)
Easier hardware implementation, faster execution
Longer programs?

Load/Store-architecture
16 visible general registers (4 bits in the instruction)

Fixed data size

Thump instruction set uses 16 bit instructions

Computer Organization I, Autumn 2010, Teemu Kerola 10.11.2010

33

ARM Data Types

8 (byte), 16 (halfword), 32 (word) bits - word aligned
Unsigned integer and twos-complement signed integer

Majority of implementations do not provide floating-
point hardware

Little and Big Endian supported
Bit E In status register defines which is used

Computer Organization I, Autumn 2010, Teemu Kerola 10.11.2010 34

ARM .
‘ AddreSS|ng 0xC — Dx20C| 0x5 \ o

0=z5 ist
= modes 4 = fersme

Original
base”gelgii;ter ol 0x200
Load/Store :
Indirect (@) Offset
base reg + offset STRB r0, [rl, #12]!
Indexing alternatives spdated "1 Offset :
Offset base register | 0220C |« O0xC p—> 0x20C D%5 0 o
A Destination
AddreSS iS r1 0x5 rfzgister
rSTR
Original
base + offset base aqater | 0%200 0x200
Preindex :
FOI‘m addreSS (b) Preindex
Write address to base
. STRBw r0, [rl]. #12
Postindex)
Use base as address updaed ;Lc OD“‘SZ* —
base register X = b4 X
Calculate new address 5 0 Dectinationt
to base r 0x5 register
Original 02200 _ / for STR
base register = » 0x200| 0x5

(Stal0 Fig 11.3)
(c) Postindex

Computer Organization I, Autumn 2010, Teemu neruia LlU.11.£U1U 50

i ARM Addressing mode

Data Processing instructions

Register addressing

Value in register operands may be scaled using a shift
operator

Or mixture of register and immediate addressing

Branch instructions
Immediate

Instruction contains 24 bit value

Shifted 2 bits left

On word boundary
Effective range +/-32MB from PC.

Computer Organization I, Autumn 2010, Teemu Kerola 10.11.2010

36

i ARM Load/Store Multiple Addressing

" Load/store subset of general-purpose registers

LDMzz rl0, {r0, rl, r4}
oIMzx rl0, {r0, rl, r4}

r10

Base register | 0x20C

Increment
after (1A)

Increment
before (IB)

(rd)

(rd)

16-Dbit instruction field specifies list of registers
Seqguential range of memory addresses
Base register specifies main memory address

Decrement
after (DA)

(rl)

(rl)

(StalO Fig 11.4)

» (r0)

(r0)

(rd)

(rl)

Computer Organization I, Autumn 2010, Teemu Kerola

(r0)

Decrement
before (DB)
O0x218
Ox214
O0x210
O0x20C
(rd) O0x208
(rl) Ox204
(r0) 0x200
10.11.2010 37

R

data processing
immediate shift

data processing
register shift

data processing
immediate

load/store
immediate offset

load/store
register offset

load/store
multiple

branch/branch
with link

ARM Instruction Formats

(Stal0 Fig 11.10)

3130202827 262524 2322212019181716151413 1211109 B 7 6 5 4 3 2 1 O
cond |0 O 0| opcode |[S Rn Rd shift amount | shift| 0 Rm
cond |0 0 0| opcode |5 Rn Rd Rs 0| shift| 1 Rm
cond [0 O 1| opcode [S Rn Rd rotate immediate
cond |0 1 O|P|U|IB|W|L Rn Rd immediate
cond |0 1 1|P|UIB|{W|L Rn Rd shift amount| shift| 0 Rm
cond |1 0 O|P|U|S|W|L Rn register list
cond 101]|L 24-bit offset

S = For data processing instructions, updates condition codes

S = For load/store multiple instructions, execution restricted to supervisor mode

P, U, W = distinguish between different types of addressing mode

B = Unsigned byte (B==1) or word (B==0) access

L = For load/store instructions, Load (L==1) or Store (L==0) . .
Discussion?

L = For branch instructions, is return address stored in link register

Computer Organization I, Autumn 2010, Teemu Kerola

10.11.2010

38

Condition flags:
N, Z, CandV
N — Negative
Z— Zero

C - Carry

V — oVerflow

(Stal0 Thbl 10.12)

ARM Condition codes

Code Symbol Condition Tested Comment
0000 EQ Z=1 Equal
0001 NE Z=0 Not equal
0010 CS/HS C=1 Carry set/unsigned higher or same
0011 CC/LO C=0 Carry clear/unsigned lower
0100 MI N=1 Minus/negative
0101 PL N=0 Plus/positive or zero
0110 VS V=1 Overflow
0111 VC V=0 No overflow
1000 HI C=1ANDZ=0 Unsigned higher
1001 LS C=00RZ=1 Unsigned lower or same
1010 GE N=V Signed greater than or equal
[N=1ANDV=1)
OR(N=0ANDV=0)
1011 LT NV Signed less than
[N=1ANDV =0)
OR(N=0ANDV =1)]
1100 GT (Z=0)AND(N=V) Signed greater than
1101 LE (Z=1)OR(N=YV) Signed less than or equal
1110 AL — Always (unconditional)
1111 — — This 1nstruction can only be executed

unconditionally

Computer Organization Il, Autumn 2010, Teemu Kerola

10.11.2010

39

‘ RISC vs. CISC We’ll return to this later (lecture 8)

High-level
programming
language
CISC
support high-level lang

High-level High-level
programming programming
language language

CISC

support
high-level

difficult to execute
languages

difficult

RISC to execute
easy to execute
| HW |

HW

RISC
easy to execute

Computer Organization I, Autumn 2010, Teemu Kerola 10.11.2010 40

Wi, Summary

Instruction set types: Stack, register, load-store
Data types: Int, float, char

Addressing modes: indexed, others?

Operation types?
Arithmetic & logical, shifts, conversions, vector
Comparisons

Control
If-then-else, loops, function calls/returns
Conditional instructions

Loads/stores, stack ops, vector ops
Privileged, os instructions

Instruction formats

Intel and Arm case studies

Computer Organization I, Autumn 2010, Teemu Kerola 10.11.2010

41

Review Questions / Kertauskysymyksia

Fields of the instruction?
How does CPU know if the integer is 16 b or 32 b?
Meaning of Big-Endian?

Benefits of fixed instruction size vs. variable size
Instruction format?

Computer Organization I, Autumn 2010, Teemu Kerola 10.11.2010 42

