Lecture 6: Instruction sets 10.11.2010

i Instruction cycle

B CPU executes instructions “one after another”

B Execution of one instruction has several phases (see state
diagram). The CPU repeats these phases

Multiple
operands

Multiple

Instruction complete,
fetch next instruction

Return for string
or vector data

(Sta10Fig101).
Computer Organization Il, Autumn 2010, Teemu Kerola 10.11.2010 2
. A . .) . A
‘\ Computer Instructions (konekéaskyt) ‘\ Instructions and data (kaskyt ja data)
. .
»
. " _ < | Address Contents Address Contents
B Instruction set (késkykanta) = S| o0 010 0000 101 2201
i i | g o] 102 0001 0010 0000 0010 102 1202
m Set of instructions CPU ‘knows 319 103 0010 0000 8‘1)66 103 1203
. " . B 0011 0010 0000 104 3204
B Operation code (kaskykoodi) - £
X . 0000 0000 0000
= What does the instruction do? E %8% 0000 0000 0000 %H %% %%
. 3| 203 0000 0000 0000 0100 203 0004
B Datareferences (viitteet) — one, two, several? 204 0000 0000 0000 (0000 204 0000
m Where does the data come for the instruction? (@) Binary program (©) Hexadecimal program
- Registers, memory, disk, 1/0 Address Instruction Label Operation Operand | ,
. 101 LDA 201 | B FORMUL A 17 (|= o
= Where is the result stored? 102 ADD 202 || & I |8 E
Regi) 103 ADD 203 [(|S K [|E S
- Registers, memory, disk, /0 104 STA 204) | B N S <
[2)
B Whatinstruction is executed next? 201 DAT 2)| 1 2
. L 202 DAT 3 L3 J 3
= Implicit? Explicit? 203 DAT 4 < K 4
204 DAT 0 N 0
m |/O? (c) Symbolic program (d) Assembly program
= Memory-mapped I/O = I/O with memory reference operations |(StalOFig11.13).
Computer Organization II, Autumn 2010, Teemu Kerola 10.11.2010 3 Computer Organization II, Autumn 2010, Teemu Kerola 10.11.2010 4

. Instruction types? . What h_appens during instruction
- S . execution?
" B Transfer between memory and registers " Transfer data from one location to another
= LOAD, STORE, MOVE, PUSH, POP, ... If memory is involved:
B Controlling I/0 Data Transfer Determine memory address _
= Memory-mapped l/O - like memory gx;,lrfo;m vl.l:tual—to—actual—memory address transformation
= |/O not memory-mapped — own instructions to control Ini;;:e:mry eroe
B Arithmetic and logical operations May involve data transfer, before and/or after
= ADD, MUL, CLI.?, SET, COMP, AND, SHR, NOP, ... Arithmetic Perform function in ALU
B Conversions (esitystapamuunnokset) e S o
= TRANS, CONV, 16bTo32b, IntToFloat, ... N N 3
. . . . Logical Same as arithmetic
B Transfer of control (k&skyjen suoritusjarjestyksen ohjaus), oot et i ot
conditional, unconditional Conversion pe'mﬂrfomar zoﬂmmmme € anc logical. May mvolve special fogic
= JUMP, BRANCH, JEQU, CALL, EXIT, HALT, ... -
- X | Q | N Transfer of Control Update Pprogram counter. For subroutine call/return, manage
Service requests (palvelupyyntd) parameter passing and linkage
= SVC, INT, IRET, SYSENTER, SYSEXIT, ... Issue command to /O module
B Privileged instructions (etuoikeutetut kaskyt) 1o If memory-mapped I/O, determine memory-mapped address
m DIS, IEN, flush cache, invalidate TLB, ... (Stalo Table104)
Computer Organization II, Autumn 2010, Teemu Kerola 10.11.2010 5 Computer Organization Il, Autumn 2010, Teemu Kerola 10.11.2010 6

Comp. Org 11, Autumn 2010 1

Lecture 6: Instruction sets 10.11.2010

. Operation INumber of Bits . f ;
What kind of data? | Mremonic Neme | Tramsferred Instruction representation
* L Toad 3 ‘ (kaskyformaatti)
LH Load Halfword 16
B Integers, floating-points LR Load 32 B How many bits for each field in the instruction?
. LER Load (Short) 32 = How many different instructions?
u Boolean (totuusarvoja) Mavi ber of d instruction?
- h) 1E Load (Shord)) = Maximum number of operands per instruction?
Characters, strings = Operands in registers or in memory?
= |RA (aka ASCII), EBCDIC LDR Load (Long) 64 = How many registers?
B Vectors, tables i Tond (Long) o B Fixed or variable size (vakio vai vaihteleva koko)?
= N elements in sequence
B Memory references 5] S i Number of Add —
St v kAol s 3 OPA,B,C A — BOPC
STC Store Character 8 5 OPA.B A~ AOPB
W Different sizes S Sesh 32 1 OPA AC — ACOPA
m 8/16/32/ 64b, ... STD Store (Long) m - 0 . op . Tfﬁ i(T -1)OPT
N . e t = top of stac]
= Eachtype ?nd size has its ETTEATSS A/B.C = memory or register locations (T-1) = second element of stack
own operation code (Stal0 Table 10.5) (Stal0 Table 10.1)
Computer Organization ll, Autumn 2010, Teemu Kerola 10.11.2010 7 Computer Organization ll, Autumn 2010, Teemu Kerola 10.11.2010 8
‘ How many registers? ‘ Architectures
B Minimum 16 to 32
= Work data in registers B Accumulator-based architecture (akkukone)
B Different register (sets) for different purpose? m Just one register, accumulator, implicit reference to it

= Integers vs. floating points, indices vs. data, code vs. data
m All sets can start register numbering from 0
m Opcode determines which set is used

B Stack-based (pinokone)
m Operands in stack, implicit reference

m PUSH, POP Example: VM
B More registers than can be referenced?
m CPU allocates them internally n RegiSter'baSEd (yleierKiSterikone)
- Register window — virtual register names m All registers of the same size
= Example: function parameters passed in registers m Instructions have 2 or 3 operands

- Programmer thinks that registers are always r8-r15,
- CPU maps r8-r15 somewhere to r8-r132
- (We'll come back to this later)

B | oad/Store architecture
m Only LOAD/STORE have memory refs
m ALU-operations have 3 regs

Computer Organization I}, Autumn 2010, Teemu Kerola 10.11.2010 9 Computer Organization I}, Autumn 2010, Teemu Kerola 10112010 10

. Byte ordering (tavujérjestys):
& Bigvs. Little Endian “@. Bigvs. Little Endian
: See : Appendix 108 (Stal0) | .

M How to store a multibyte scalar value?

0X1200: | ‘ | ‘ | |] ALQ uses qnly one of them .
sanaosoite) Word 0x1200 0x1201 0x1202 0x1203 [] Ll.ttle-en-dlan: x86, Pentium, VAX (SEOEROE]
(ite) Byte (tavuosoitteet) = Big-endian: BM 370/390, Motorola 680x0 (Mac),
ETPee m RISC-architectures
Isoimmassa lopputavu most
;) STORE 0x11223344,0x1200 ??? = ARM, a bi-endian machine, accepts both
Big-Endian: - | 0x11 ‘ 0x22 | 0x33 ‘ 0x44 - System control register has 1 bit (E-bit) to incidate the endian mode

Most significant byte

in lowest byte addr 0x1200 0x1201 0x1202 0x1203 - Program controls which to use

B Byte order must be known, when transfering data from one machine

7tgg§t§|ngdr:§2nt e [[0x44 Jox33 Joxe2 Joxu1 | to another
. 0x1202 0x1203 ig-endi
in lowest byte addr 0x1200 0x1201 X X = Internet uses big-endian format
— m Socket library (pistokekirjasto) has routines htoi() and itoh()
0x00000044:| 0x44 ‘ 0x00 | 0x00 ‘ 0x00 | (Host to Internet & Internet to Host)
0x1200 0x1201 0x1202 0x1203
Computer Organization I, Autumn 2010, Teemu Kerola 1011200 11 Computer Organization I, Autumn 2010, Teemu Kerola 1011200 12

Comp. Org II, Autumn 2010 2

Lecture 6: Instruction sets

10.11.2010

. . . 0010...10010
‘ Data alignment (kohdentaminen gpio...10100
. 0010...11000

B 16b data starts with even (parillinen) (byte)address
B 32b data starts with address divisible (jaollinen) by 4
B 64b data starts with address divisible by 8

]

Aligned data is easier to access
m 32b data can be loaded by one
operation accessing the word address (sanaosoite)

B Unaligned data would contain no 'wasted’ bytes, but

= For example, loading 32b unaligned data requires two loads
from memory (word address) and combining it

loadr1,0(r4) or loadrl, 2(r4) 4 1122
shl r1,=16
r4— [11[22 [33 |44] load r2, 4(r4) 33 |44
shr r2, =16 .
ri:[11]2233]44] o mp [21[22]33]44]
Computer Organization Il, Autumn 2010, Teemu Kerola. 10.11.2010 13

i Computer Organization Il

Memory references

(Muistin osoitustavat)
Ch 11 [Stal0]

Computer Organization Il, Autumn 2010, Teemu Kerola. 10112000 14

‘ Where are the operands?

i Addressing modes (osoitusmuodot)

B Inthe memory — . ien e
m Variable of the program, stack (pino), heap (keko) Memory l Memory
B In the registers
m During the instruction execution, for speed Regisers o
H H H H (a) Immediate (b) Direct (e) Register Indirect (f) Displacement
B Directly in the instruction — —— —
= Small constant values T [=] []
Memory Implicit
B How does CPU know the specific location?
m Bits in the operation code Top of Stack
Register
m Several alternative addressing modes allowed Regisers
(c) Indirect (d) Register (g) Stack
(StalO Fig11.1)
Computer Organization ll, Autumn 2010, Teemu Kerola 10.11.2010 15 Computer Organization ll, Autumn 2010, Teemu Kerola 10.11.2010 16

i Addressing modes

Mode Algorithm Principal Advantage Principal Disadvantage
Immediate Operand = A No memory reference Limited operand magnitude
Direct EA=A Simple Limited address space
Indirect EA=(A) Large address space Multiple memory references
Register EA=R No memory reference Limited address space
Register indirect EA=(R) Large address space Extra memory reference
Displacement ~ EA = A+ (R) Flexibility Complexity
Stack EA=topofstack No memory reference Limited applicability
(Stal0 Table 11.1)

B EA = Effective Address

B (A) = content of memory location A

B (R)=content of register R

B One register for the top-most stack item’s address

Register (or two) for the top stack item (or two)

Computer Organization Il, Autumn 2010, Teemu Kerola 10112000 17

‘ Displacement Address (siirtyma)

B Effective address = (R1) + A (tehollinen muistiosoite)

register content + constant in the instruction

B Constant relatively small (8 b, 16 b?)

B Usage

. JUMP *+5
= Relational to PC

CALL SP, Summation(BX)
ADDF F2,F2, Table(R5)
MUL F4,F6, Salary(R8)

STORE F2, -4(FP.

= Relational to Base

m Indexing a table

= Ref to record field

= Stack content

(e.g., in activation record)

Computer Organization Il, Autumn 2010, Teemu Kerola. 10112000 18

Comp. Org 11, Autumn 2010

Lecture 6: Instruction sets

10.11.2010

i More addressing modes

. operand size
B Autoincrement (before/after) =
m Example Currindex=i++; EA=RIR<(R)+S
B Autodecrement (before/after)

R« (R)-S,EA=(R)
m Example Currindex=

B Autoincrement deferred

EA=Mem(R),R«< (R)+S
m Example Sum = Sum + (*ptrX++);

i Computer Organization Il

Pentium

B Autoscale
m Example Double X; EA= A+(R)*S
=Thi[i];
Computer Organization l, Autumn 2010, Teemu Kerola 10.11.2010 19 Computer Organization l, Autumn 2010, Teemu Kerola 10.11.2010 20
Data Type Description
. General Byte, word (16 bits), doubleword (32 bits), quadword (64 bits), Not aligned
H . H N and double quadword (128 bits) locations with arbitrary binary : X
. N Pentium: Registers conteats Little Endian
= Integer A signed binary value codntained in a byte, word, or doubleword,
X X X . using twos complement representation.
B General registers (yleisrekisterit), 32-b Ordinal An unsigned integer contained in a byte, word, or doubleword
m EAX, EBX, ECX, EDX accu, base, count, data Unpacked binary coded A representation of a BCD digit in the range 0 through 9, with one
L decimal (BCD) digit in each byte. .
L} .
ESI, EDI source & destination |r?de)< Packed BCD Packed byte representation of two BCD digits; value in the range 0 X 86
m ESP, EBP stack pointer, base pointer 099, Data
| | -Di i Near pointer A 16-bit, 32-bit, or 64-bit effective address that represents the
Part of them can be used as16-bit registers offset within a segment. Used for all pointers in a nonsegmented: typ es
m AX, BX, CX, DX, S|, DI, SP, BP ‘memory and for references within a segment in a segmented
. . General Registers memory.
W Oreven as 8-bit registers EAX AX Far pointer A logical address consisting of a 16-bit segment selector and an
m AH, AL, BH, BL, CH, CL, DH, DL EBX BX offset of 16, 32, or 64 bits. Far pointers are used for memory
! references in a segmented memory model where the identity of a
B Segmentregisters 16b ECX CX segment being accessed must be specified explicitly.
m CS, SS. DS, ES, FS, GS EDX LI Bit field A contiguous sequence of bits in which the position of each bit is
! d’ t' K ’d : ' dat considered as an independent unit. A bit string can begin at any bit
- coae, stack, data, data, ... ESP SP position of any byte and can contain up to 32 bits
B Program counter (kaskynosoitin) | EBP BP Bit string A coniguous squence o biscotiing fom 2022 D
y) ESI ST its.
= EIP Extended Instruction Pointer EDI DI Byte string A contiguous seq\ds,or doublewords,
B Status register (StaloFig 12.30) containing from zerGe 222 - 1 byds
m EFLAGS Floating point Single / Double / Extended precision ||EEE 754 standard
. . Packed SIMD (single Packed 64-bit and 128-bit data types
- overflow, sign, zero, parity, carry,... instruction, multiple data) (StalOTable 10.2)
Computer Organization l, Autumn 2010, Teemu Kerola 10.11.2010 21 Computer Organization l, Autumn 2010, Teemu Kerola 10.11.2010 22

Data transfers, arithmetics,
moves, jumps, stricts, etc

" Pentium: Operations

(just part of)

. Pentium: MMX Operations

‘ (just part of)

High-Level Language Support [Category | 5 =
ENTER Creates a stack frame that can be used to implement the rules of a block-structured BADD [B, W, D] Darailel i ot packed eipht bytes) ot 16t words of bRo 220t
high-level language. _lEl;dm o
LEAVE Reverses the action of the previous ENTER
BOUND Check siay b, Vertfes thot e valee i operand L vithin lower and vpoe: ﬁiggﬁgf&n ﬁg: :;:‘gi‘:‘i::“(mm‘m SSNo under/overflow.]
SegmeniReyialen PSUB [B_W. D] Sublract with wraparomsd___Use closest representation_
DS Load pointer anto D segment register. T e ~
System Control Arithmetic PSUBUS [B, W] ubtract unsigned with saturation
HLT Halt PMULHW Parallel multiply of four signed 16-bit words, with high-order 16
LOCK Asserts a hold on shared memory so that the Pentium has exclusive use of it during ‘bis of 32-bit result chosen.
the instruction that follows the LOCK. PMULLW Parallel nultiply of four signed 16-bit words, with low-order 16 bits
ESC Processor catension escape. An escape code that indicates the succeeding of 32-Dit result chosen.
instructions are to be executed by a numeric coprocessor that supports high- PMADDWD Parallel multiply of four signed 16-bit words; add together adjacent
precision integer and floati pairs of 32-bit zesults.
WAIT, ‘Wait until BUS Y# ncgated. Suspends Pentium program caccution until the
processor detects that the BUSY pin is inactive, indicating that the numeric
‘has finished execution. PACKUSWB Pack words into bytes with unsigned saturation.
Protection PACKSS [WB, DW] Pack words into bytes, or doublewords into words, with signed
SGDT [Store global descriptor table. saturation.
| Load segment Limit Loads a user-specified register with a segment limit Conversion PUNPCKH [BW, WD, | Parallel unpack (interleaved meree) high-order bytes, words, or
VERR/VERW | Verify scement for reading/writing DQl from MMX register
Cache M: PUNPCEL [BW, WD, Parallel unpack (interleaved merge) low-order bytes, words. or
INVD\ [Flushes the internal cache memory DO L
WBINVD) | Flushes the internal cache memory after writing dirty lines to memory.
\avirg/ | Tavalidates 2 translation lookaside buffer (TLB) entry. (Stal0 Table 10.11)
(StalO Table 10.8)
Computer Organization Il, Autumn 2010, Teemu Kerola 10112000 23 Computer Organization Il, Autumn 2010, Teemu Kerola 10112000 24

Comp. Org 11, Autumn 2010

Lecture 6: Instruction sets

10.11.2010

. Pentium: Addressing modes
‘*\ (muistin osoitustavat)
x86 Addressing Mode Algorithm
Immediate Operand = A 1,2,4,88B
Register Operand Operand = (R)
Displacement LA=(SR)+A Registers:
Base LA=(SR)+(B) il 2.4, Gl

Base with Displacement LA=(SR)+(B)+A
Scaled Index with Displacement LA=(SR)+ (D xS +A

Base with Index and Displacement LA=CBR)+B)+ (M +A

Base with Scaled Index and Displacement TA=(SR)+[MxS+(B)+A

Relative LA=(PC)+A

LA = lincaraddress R = register - -

() = contents of X B = base register indexing arrays?

SR f segment register I = m(le_x register arrays in stack?

PC = program counter S = scaling factor

A = contents of an address ficld in the instruction two dimensional arrays?
(Stal0 Table 11.2)

Computer Organization I}, Autumn 2010, Teemu Kerola 10112010 25

Y Pentium: Addressing Mode Calculation

Segment Registers

Base Register
Index Register,

__LA = (SR)+()*S+(B)+A

Ny Segem
Base

Address

Effective
Address

Descriptor Registers

Linear
Address

E

s ccess Rights""

Limit

- Limit—— p

L|Base Address|

L

Computer Organization Il, Autumn 2010, Teemu Kerola. 10112000 26

i Pentium: Instruction format

B CISC
m Complex Instruction Set Computer
W | ots of alternative fields
= Part may be present or absent in the bit sequence
m Prefix 0-4 bytes
m Interpretation of the rest of the bit sequence depends on the
content of the preceding fields
B Plenty of alternative addressing modes (osoitustapa)
m At most one operand can be in the memory
m 24 different

B Backward compatibility
m OLD 16-bit 8086-programs must still work
- How to handle old instructions: emulate, simulate?

Computer Organization I}, Autumn 2010, Teemu Kerola 10112000 27

i Pentium: Instruction format

Oorl Oorl dorl Oorl bytes
[R— Operand | Address
nstruction] Segment |~V 7 size (Stal0 Fig11.9)
prefix | override : H
override | override
’
H 7z
H .
H L .
H . Addressing
.
P 7’
0,1,23,or4bytes " lor2 Oorl Oorl 0.1,2,0r4 0.1,2.0r4
Instruction prefixes Opcode | MoaraM | sIB Displacement | Immediate |

|‘. Mod | Reg/Opcode | RAI | | Seale | Index | Base |
7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0

%r_}
1. Operand 2. operand (register)
(register) or form part of the addressing-mode

Computer Organization Il, Autumn 2010, Teemu Kerola. 10112000 28

i Pentium: Instruction format

B |nstruction prefix (optional)
m LOCK —exclusive use of shared memory in multiprocessor env.
m REP - repeat operation to all characters of a string

B Segment override (optional)
m Use the segment register explicitly specified in the instruction
m Else use the default segment register (implicit assumption)

B Operand size override (optional)
m Switch between 16 or 32 bit operand, override default size

B Address size override (optional)

m Switch between 16 or 32 bit addressing. Override the default,
which could be either

Computer Organization I}, Autumn 2010, Teemu Kerola 10112010 29

‘ Pentium: Instruction format

B Opcode
m Eachinstruction has its own bit sequence (incl. opcode)
m Bits specify the size of the operand (8/16/32b)

B ModR/m(optional)
m |ndicate, whether operand is in a register or in memory
m What addressing mode (osoitusmuoto) to be used
m Sometimes enhance the opcode information (with 3 bits)

B S|B = Scale/Index/Base (optional)
m Some addressing modes need extra information
m Scale: scale factor for indexing (element size)
m Index: index register (number)
m Base: base register (number)

Computer Organization 1), Autumn 2010, Teemu Kerola 10112010 30

Comp. Org 11, Autumn 2010

Lecture 6: Instruction sets 10.11.2010

i Pentium: Instruction format ‘ Computer Organization Il

M Displacement (optional)
m Certain addressing modes need this
m 0,1, 2or4bytes (0, 8, 16 or 32 hits)

B Immediate (optional)

m Certain addressing modes need this, value for
operand

m 0,1, 2 or 4 bytes

ARM Instructions

Computer Organization ll, Autumn 2010, Teemu Kerola 10.11.2010 31 Computer Organization ll, Autumn 2010, Teemu Kerola 10.11.2010 32
‘ ARM: Instruction set (kdskykanta) ‘ ARM Data Types
- m RISC)

m Reduced Instruction Set Computer
B Fixed instruction length (32b), regular format
m Allinstructions have the condition code (4 bits) ms (byte) 16 (halfword) 32 (Word) bits - word aligned

B Small number of different instructions

m Instruction type (3 bit) and additional opcode /modifier (5 bit) W Unsigned integer and twos-complement signed integer

u Easier hardware implementation, faster execution B Majority of implementations do not provide floating-
= Longer programs? point hardware

B |oad/Store-architecture W Little and Big Endian supported

B 16 visible general registers (4 bits in the instruction) m Bit E in status register defines which is used

B Fixed data size

B Thump instruction set uses 16 bit instructions

Compuer Organization I, Autumn 2010, Teemu Kerola 10112010 33 Computer Organization I, Autumn 2010, Teemu Kerola 10112010 34

B
ARM -
Addressing . . ARM Addressing mode
. " g .
modes
W | oad/Store : ; ; :
B Indirect 0 0ffet ' B Data Processing instructions
i 0 Ofse i)
m base reg + offset STRB 10, [r1, #12]1 = Register addressmg
B Indexing alternatives " ot - Value in register operands may be scaled using a shift
» Offoet - operator
Address is = Or mixture of register and immediate addressing
N original . .
E?:fnd;’;fse‘ bmeregiter W Branch instructions
L}
Form address (®) Preindes = Immediate
Write addresstobase S = Instruction contains 24 bit value
= Postindex T u Shifted 2 bits left
Use base as address yJpdaed
Calculate new address """ - On word boundary
to base - Effective range +/-32MB from PC.
b
(Stal0 Fig11.3)
Computer Organization ll, Autumn 2010, Teemu neiuia (0 Postindex . 5o Computer Organization ll, Autumn 2010, Teemu Kerola 10.11.2010 36

Comp. Org 11, Autumn 2010 6

Lecture 6: Instruction sets 10.11.2010

. . . . H
ARM Load/Store Multiple Addressing ARM Instruction Formats)
‘ ‘ (Stal0 Fig 11.10)
= W | oad/store subset of general-purpose registers .) 313029282726252423222120191817161514131211109 8 7 6 54 3 2 1 0
o o oo) ata processing - -
= 16-bit instruction field specifies list of registers shift | cond |° 0 °| opcode ISI Rn | Rd {Sh'f‘ a""0“"‘| Sh'f‘l “l Rm
i data processing "
= Sequential range of memory addresses Tenteter shift [cond |° 0 °| opcode. Isl Rn | Rd [Rs |0 | Shml 1 | Rm
= Base register specifies main memory address
9 P Y data processing ‘ cond |0 01 | opcode | S| Rn | Rd ‘ rotate | immediate
LDMxx 710, {0, rl, T4} ioad/store [nd 0 1 o|p[ule[W[L] Fn Rd immediate
offset
STMxx r10. {r0. rl. r4} oo
Increment Increment Decrement Decrement ,Egr;:l;;zi { cond |0 11 |P|U|B {WI LI Rn | Rd {shift amount|5hift| 0| Rm
10 after (1A) before (IB) after (DA) before (DB) load/store
m“mle cond |1 0 0|P|U[S[WILI Rn | register list
Base register | 0x20C ‘ (r4) 0x218 b nchiteanch
ranch/branc -
(r4) (r1) 02214 withlink | €ond | 101 | L| 24-bit offset
(r1) (xr0) 02210 B S = For data processing instructions, updates condition codes
(r0) (rd) 0zz0C B S = For load/store multiple instructions, execution restricted to supervisor mode
(rl) (r4) 0x208 B P, U, W =distinguish between different types of addressing mode
(ro) (rl) 02204 B B = Unsigned byte (B==1) or word (B==0) access
+0 0x=200 W | = For load/store instructions, Load (L==1) or Store (L==0 T o
(Sta10Fig11.4) (=DM o= 7 A L= =0
W L = For branch instructions, is return address stored in link register
Computer Organizaiion Il Autumn 2010, Teemu Kerola 1011200 37 Compuer Organizaiion Il Autumn 2010, Teemu Kerola 1011200 38
. ARM Condition codes .]
‘ Code | Symbol | Condition Tested Comment ‘ RISC vs. CISC [We’ll return to this later (lecture 8) |
n 0000 |EQ zZ=1 Equal n
0001 |NE z=0 Not equal
o010 [csHs [c=1 Camry set/unsigned higher or same ~ = =
il |CCLo |C=0 Cany cleariunsigned lower High-level High-level High-level
Condition flags: 0100 |MI N=1 Minus/negative programming programming programming
oo |pL N=0 Plus/positive or zero language language language
N,Z Cand V o110 |vs V=1 Overflow cIsC CISC
o | Y=o CDvECToN support support high-level lang
N — Negative T T e high-level -
= = i i difficult to execute
Z—Zero 1010 |GE N=V Signed greater than or equal languages
C-Carry [N=1ANDV=1)
OR (N=0ANDV =0 iffi
V - oVerflow 1011 |LT N (v . Signed less than ?Iﬁlcu“t
= igned less 0 execute
[(N=1AND V=0) RISC RISC
OR(N=0ANDV=1)] easy to execute easy to execute|
O B [Hw | [Hw |
101 [LE (Z=1)OR(N=Y) Signed less than or equal HW HW
0 [AL - Always (unconditional)
(Stal0 Thl10.12) | — = ‘This instruction can only be executed.
unconditionally
Computer Organizaiion Il Autumn 2010, Teemu Kerola 1011200 39 Computer Organizaiion Il Autumn 2010, Teemu Kerola 1011200 40

‘ Summary ‘ Review Questions / Kertauskysymyksia

B |nstruction set types: Stack, register, load-store
B Datatypes: Int, float, char W Fields of the instruction?
|] i L ? . . .

Addressing modes: indexed, others B How does CPU know if the integer is 16 b or 32 b?
n

Operation types? - . f Bi dian?
= Arithmetic & logical, shifts, conversions, vector Meanmg 0 BIg_En lan
= Comparisons B Benefits of fixed instruction size vs. variable size

u Control instruction format?
- If-then-else, loops, function calls/returns
- Conditional instructions

= Loads/stores, stack ops, vector ops

= Privileged, os instructions

B [nstruction formats

B |ntel and Arm case studies

Computer Organization I}, Autumn 2010, Teemu Kerola 10112010 41 Computer Organization I}, Autumn 2010, Teemu Kerola 10112000 42

Comp. Org II, Autumn 2010 7

