17.3.2011

Concurrent Programming (R10)
Lesson 10 (Generic) Distributed System
_— . « Nodes have processes
Distributed Mutual Exclusion e Communication channels between nodes
— Each node connected to every other node
Ch 10 [BenA 06] « Two-way channel
— Reliable communication channels s
—— « Provided by network layer below Dnrealistic
Distributed System M log Zsiliml?lﬂc’"s'-’
Distributed Critical Section essages are not 1o | ronreal
. * Messages processed concurrently with other
. R_'C&rt'Agrawala computations (e.g., critical sections)
Token Passing Ricart-Agrawala _ Nodes do not fail
Token Passing Neilsen-Mizuno « Requirements reduced later on
— courses on distributed systems topics
17.3.2011 Copyright TeemuKerola 2011 1 17.3.2011 Copyright TeemuKerola 2011 2

(Generic) Distributed System

« Processes (nodes) communicate with (asymmetric)
messages
— Message arrival order is not specified
— Transmission times are arbitrary, but finite
— Message (header) does not include send/receiver id
— Receiver does not know who sent the message
 Unless sender id is in the message itself

node 5 node@
integer k < 20 integer m, n
send(request,@ k, 30) receive(request, m, n)

17.3.2011 Copyright TeemuKerola 2011 3

Distributed Processes

¢ Sender does not block

« Receiver blocks (suspended wait) until message
of the proper type is received

« Atomicity problems in each node is not
considered here
— Solved with locking, semaphores, monitors, ...

« Message receiving and subsequent actions are
considered to be atomic actions
— Atomicity within each system considered solved

17.3.2011 Copyright TeemuKerola 2011 4

17.3.2011 Copyright TeemuKerola 2011 5

Distributed Critical Section Problem

* Processes within one node
— Problem solved before

» Processes in different nodes
— More complex
 State
— Control pointer (CP, PC, program counter)
— Local and shared variable values
— Messages
« Messages, that have been sent :
* Messages, thathave been received 7/

« Messages, that are on the way # Where are these?
— Arbitrary time, but finite!
17.3.2011 Copyright TeemuKerola 2011 6

Lecture 10: Distributed Mutual Exclusion

Concurrent

Programming (RIO)

17.3.2011

Two Approaches for Crit. Section

« A) Ask everybody for permission to see, if it is
my turn now
— Lots of questions/answers
e B) I’ll wait until | get the token, then it is my turn
— Pass the token to next one (which one?), or keep it?
— Wait until I get the token
— Token (turn) goes around all the time
* Moves only when needed?
« Both approaches have advantages/disadvantages
— Who is “everybody”? How do | know them?

Ricart-Agrawala 4
for Distributed Mutex

G. Ricart
¢ Distributed Mutex, 1981 (Lamport, 1978)
« Modification of Bakery algorithm with ticket numbers
e ldea
— Must know all other processes/nodes competing for CS
— Choose own ticket number, “larger than previous”
— Send it to everybody else

A. K. Agrawala

— Waituntil permission from everybody else mutex,
« Exactlyonewill always get permission | no deadlock,

from everybody else? no starvation?

/
local

mutex
control?

17.3.2011

{ p2: myNum « chooseNumber (—-

plo:
\ plt:
{ pl2: send(reply,source,mylD) /—
p13: else add source to deferred

p3: for all other nodes N

p4: send(request, N, myID, myNum)
p5: await reply's from all other nodes
p6: critical section

p7: for all nodes N in deferred
pa: remove N from deferred \-
p9: send(reply, N, myID)

receive server process, runs concurrently all the time

integer source, reqNum

receive(request, SOU'CEM
if reqNum < myNum

Copyright TeemuKerola 2011 9

— How do | know who has the token? Do not worry « Allotherswill wait
— What if node/network breaks down? ?O‘I’("::zzgti;ge - 29VOCUSFCS . N -
. . - Give ermission to everybody who was walting for you
— What if token is lost? lost ... P 4
17.3.2011 Copyright TeemuKerola 2011 7 17.3.2011 Copyright TeemuKerola 2011 8
Algorithm 10.1: Ricart-Agrawala algorithm (outline) -
rteger myNum — 0 Ricart-Agrawala Example
_ — set of node |st j_eieidt — empty set « 3processes, each trying to enter CS concurrently
main ication process, needs aistr mutex . .
_lappicanon]p — No status information needed on who had CS last
pl: non-cntlcal section

17.3.2011 Copyright TeemuKerola 2011 10

send

17.3.2011

if reqNum < myNum

else add source to deferred

Ricart-Agrawala Example (contd)

 Receive process runs at each node
— Whatif Aaron’s receive completes 1st? Last? Becky’s? not yet?

L myNum |

wm - peply 945 regsl reply
- . 1#0=105 reg10

Aaron, Chloe | —req:_5>| |

(reply,source,mylD)

“req=15
« Distributed | |
: Beck
virtual queue: i H Aaron |-—| Chlce
Copyright TeemuKerola 2011 11

Ricart-Agrawala Example (contd)
« Becky executes CS, and then sends deferred repliesto Aaron & Chloe
« Aaronhas now replies from everybody, and it can enter CS
« Whatif Becky now selects ticket number 8, and requests CS?
— Aaron’sand Chloe’sreceive will both reply immediately? Ouch!

ool

if reqNum < myNum
send(reply,source,mylD) =

else add source to deferred

reWzs?

rely
<

Copyright TeemuKerola 2011 12

req=8 ? | |

17.3.2011

Lecture 10: Distributed Mutual Exclusion

Concurrent Programming (RI10) 17.3.2011

Quiescent Nodes (hiljaiset solmut)
« Nodes that do not try to enter CS (but they could)
— Theyare still listed in “all other nodes”

How to select ticket numbers

if reqNum < myNum

« Select always larger one than you have seen before ~ Problemwith initial value of myNum send(reply,source,myID)
i — Initial value zero? else add source to deferred
— Larger than your previous myNum
— Larger than any requestedNum that you have seen II'
« They all came before you, and you should not try to get ahead of them I:l
. . req

« What if equal ticket numbers? L— No reply, because 0<5

— Fixed priority, based on node/process id numbers - Initial value N > 0 ; tickets numbers eventually will reach it

— Used only with equal ticket numbers to avoid deadlock

« Just like in Bakery algorithm 810 I_BTOOJ
[=

No reply, because 800<810

- — Cure: receive checks for tickets numbers only if main wants CS
17.3.2011 Copyright TeemuKerola 2011 13 17.3.2011 Copyright TeemuKerola 2011 14
Algorithm 10.2: Ricart-Agrawala algorithm Algorithm 10.2: Ricart-Agrawala algorithm (continued)
integer myNum « 0 Receive original
set of node IDs deferred « empty set integer source, requestedNum article
== integer highestNum « 0 [Algorithm 10.2: Ricart-Agrawala algorithm (continued)) loop forever ——
Main Receive pl: receive(request, source, requestedNum) cc.gatech.
integer source, requestedNum . . edu/classe
loop forever loop forever p2: highestNum <« max(highestNum, requestedNum) s/Av2002/
pl: non-critical section pl. receive(request, source, requestedNum) p3: if not requestCS or requestedNum@ myNum Epsgzpi?y;al
p2: reguestCS — true p2 highestNum « max(highestNum, requestedNum) pd: send(reply source myID) utualExFor
: if cs dN N ' ' Network.p
p3: myNum < highestNum + l:j ! %:‘:ﬁ; RIS VS p5: else add source to deferred dt
p4: for all other nodes N p5. else add source to deferred o Mutex between main & receive?
PS: send(request, N, mylD, myNum) — Exact mutex boundaries?
6: await reply's from all other nodes « Keep track of highest
S o e + What to do when myNum overflows?
p7:
o8 requestCS false « Whatif one process asks — Restart everybody? When? How?
0. for all nodes N in deferred for CS all the time? — Fairness is not the problem, mutex is
p10: remove N from deferred * Same myNum OK? « Correctness proofs
pli: send(reply, N, mylD) — Mutex? No deadlock? No starvation? -
17.3.2011 Copyright TeemuKerola 2011 15 17.3.2011 Copyright TeemuKerola 2011 16
Token Based Algorithms
« Problems with permission based algorithms
— Need permission from everybody (very many?)
« Atleast everybody active
— Inactive participants (those not wanting in CS) slow
you down
« Need reply from all of them!
« Lotsof synchronization even if only one tries to get into CS
* >->-> Lots of communication (many messages)
« Token based algorithms
— Have token, that is enough
« No synchronizationwith everybody else needed
— Gettoken, send token is simple
« Communicate only with a few (fewer) nodes
« Scalable?
— Mutex is trivial, how about deadlock and starvation?
17.3.2011 Copyright TeemuKerola 2011 17 17.3.2011 Copyright TeemuKerola 2011 18

Lecture 10: Distributed Mutual Exclusion 3

Concurrent Programming (R10)

17.3.2011

« Send token to next one only when | kno
someone wants it
— ofw keep token until needed

the most recent CS request times

knowledge when each node actually wa:
granted CS

— Update it only when CS granted

— Pass it with token to next node

« Other nodes have (slightly) old granted array

17.3.2011 Copyright TeemuKerola 2011

Ricart-Agrawala Token-Pass ldeas

w that

« Keep local requested array for best knowledge for

— Update this based on received CS request messages
« Keep local granted array, that has precise

s last

« Onlythisgranted array (with token) is exactly correct!

19

Algorithm 10.3: Ricart-Agrawala token-passing algorithm

boolean haveToken «
integer array[NODES]
integer array[NODES]

true in node 0, false in others
requested « [0,.. .,0] <==localdatain node
granted < [0,...,0] «=distributed global data

integer myNum « 0
boolean inCS « false

send Token
if exists N such that requested[N] > granted[N]

If no one else for some such N

wants token, send(token, N, granted) | Ticket

I will keep it haveToken — false | leimng\?\{est
Receive server process, runs all the time \ request
integer source, reqNum | ?;:;IS
loop forever . of)

receive(request, source, reqNum)

17.3.2011

requested[source] < max(requested|sou rce] req Num I:f:-,iter
if haveToken and not inCS last time
sendToken <« Give also most recent granted]] INCS
Copyright TeemuKerola 2011 20

Algorithm 10.3: Ricart-Agrawala token-passing algorithm (continued)

Main application process, needs distr mutex

loop forever
non-critical sectior/
if not haveToken

for all other nodes N

If I have token, no delays.

Request token from everybody

myNum < myNum +/ Very many messages?

Algorithm 10.3: Ricart-J reduested | 4 | ©) | 0 | ® | 1 |

Main |application prod

loop forever granted | 4 | 2 | 2 | 4 | ! |
. . Chloe’s
non-critical section view Aaron Becky Danielle Evan

if not haveToken

myNum < myNum +/ Very many messages?

for all other nodes N « Can Chloebe 3rd time in CS?

Request token from everybody

— Parentlinkpointsto the direction of last in line for

— Deferredlink pointsto nextin line for CS
Chloe has token, Aaron is waiting for it

§ - deferred- - - - - - - token

CSs

« Parent==0: node may have token and is last in line for CS

X,

| Aaron |——| Becky |<—|| Chloe ||<—| Dan|e||e|<—‘«qi{ Evan |

17.3.2011 Copyright TeemuKerola 2011

23

Just one very
su?nd(request, N, mylD, myNum large message? su?nd(request, N, mylD, myNum) |e Whowants CS now?
receive(token, granted) Swaituntl] « Mutex? receive(token, granted) < Waituntil | !fChloehastoken,and s in
haveToken < true token , haveToken < true token non-CS, what happens next?
inCS < true received No deadlock? inCS < true received |°* If C*uﬁe h;stoken andisin
.. . . i . . ; t t?
critical section Update No starvation? critical section Update \c1:\18hy isiﬁhlaope?:gxnex
— “some” in sendToken? .

granted[mylD] — myNum <— gne field ScaI:;)T:’) n sendroxen granted[mylD] — myNum <— gnefield | requested]i]zero?
inCS « false * ! inCS « false
sendToken Only if someone wants it! Overflows? sendToken Only if someone wants it! ti)?(l;Ldsie;t:yh:ta::eI;ept itz

<~ Send granted also. i <~ Send granted also. ‘
17.3.2011 Copyright TeemuKerola 2011 - 21 17.3.2011 Copyright TeemuKerola 2011 22

Neilsen-Mizuno
O Token Based Algorithm Neilsen-Mizuno Example
““ﬁ « Rigart-Agrawala: token carries queue of waiting processes « Fully
— Token can be very large, which may be problematic connected
Neilsen-Mizuno: virtual tree structure within the nodes nodes Danielle
A implements the queue virtuaalinen virittava (viritys-) puu * Chloeis
— Algorithmutilizesvirtual spanning tree of nodes inCS
.- Spanning t.ree:. all nodes linked as :el.tree, no c.ycles « NO one waits
— Simpletoken indicates “turn” for critical section for CS

x
IS
| Aaron |—¥4->|{v Bec
Q

17.3.2011

ky |—-|| Chloe ||-—| Danielle |-{Dé§‘—| Evan |
<

Copyright TeemuKerola 2011 24

Lecture 10: Distributed Mutual Exclusion

Concurrent Programming (R10)

17.3.2011

Neilsen-Mizuno Example (contd)

¢ Chloe has token, nobody waits for it

| Aaron hgz’ibl Becky |—-|| Chloe “:-k_' Danielle |-—| Evan |

* Aaron requests CS | deferred]

sender originator i
— Sends msg=(req, Aaron, Aaron) on parent link

— Removes himself from parent spanning tree

| Aaron | | Becky |—-|| Chloe "2*_' Danielle |-—| Evan |

« Becky receives msg, and forwards the request “upward”
— Sends msg=(req, Becky, Aaron) to Chloe

— Moves to new parent spanning tree, points to Aaron
« Aaronis now last to request CS

| Aaron I:*—qg—l Becky | “ Chloe ||'_*—| Danielle |-—| Evan |

17.3.2011 Copyright TeemuKerola 2011 25

Neilsen-Mizuno Example (contd)
| Aaron H Becky | “ Chloe ||-—| Danielle |-—| Evan |

¢ Chloe receives msg (req, Becky, Aaron)
— Chloe in CS, sets deferred field to Aaron
and sets parent field to Becky
« Chloewas (also) last in line for CS

----------- Tdeferred
| Aaron I:*—| Becky |‘—l'3—“ Chloe ||-—| Danielle |-—| Evan |

— When Chloe completes CS, she will pass token to Aaron

« Token transferred directly to the next process in line for critical
section (if any)

— Just token is passed, no big array with it

17.3.2011 Copyright TeemuKerola 2011 26

Neilsen-Mizuno Example (contd)

| Aaron I:'-l'_| Becky |'—|| Chloe ||-—| Danielle |-—| Evan |

« Chloe still has CS, Evan wants CS
— Sends (req, Evan, Evan) to Danielle
— Danielle sends (req, Danielle, Evan) to Chloe
— Chloe sends (req, Chloe, Evan) to Becky
— Becky sends (req, Becky, Evan) to Aaron
— Aaron makes a deferred link to Evan

¥ - 'g """" '|deferreq s
| Aaron ,D Becky t@—'“ Chloe ||-@——| Danielle |—¥‘——| Evan |
defelfedk — - = = = = — = = = - - = == - - - - - - - 3
17.3.2011 Copyright TeemuKerola 2011 27

Neilsen-Mizuno Example (contd)

¢ Chloe completes CS, passes token to Aaron

“ Aaron ||—-| Becky l—-l Chloe l—-l Danielle l—-l Evan |
« Aaron completes CS, passes token to Evan

| Aaron |——| Becky |——| Chloe |——| Danielle |—*:|| Evan

« Evan completes CS, keeps token

| Aaron |——| Becky l——l Chloe l——l Danielle |_:l-:" Evan

17.3.2011 Copyright TeemuKerola 2011 28

Algorithm 10.4: Neilsen-Mizuno token-passing algorithm

integer parent < (initialized to form a tree)
integer deferred < 0
boolean holding « true in the root, false in others

Main
loop forever T?rget node, not part of message
pl: non-critical section]
p2: if not holding holding = have token, not in CS
p3: send(request, parenti mylD, mylD) |
p4: parent < 0 mark latest request for cs
p5: receive(token) [wait here unti permlssmn for CS obtained
p6: holding < false
p7: critical section
p8: if deferred # 0 7 | someone wants the CS next
po: send(token, dgferred)
p10: deferred < 0O
p11: | else holding < true
17.3.2011 Copyright TeemuKerola 2011 29

Algorithm 10.4: Neilsen-Mizuno token-passing algorithm

Receive (runs concurrently with main, mutex problems solved...)

integer source, originator
loop forever
pl2: receive(request, source, originator)

p13: if parent =0 last in queue

pl4: if holding have token, notin CS

p15: send(token, originator)

p16: holding « false

p17: else deferred « originator | place new req last in queue

p18: else send(request, parent, mylD, originator) |forward request
pl9: parent « source update direction for last request

Discuss

17.3.2011 Copyright TeemuKerola 2011 30

Lecture 10: Distributed Mutual Exclusion

Concurrent Programming (R10)

17.3.2011

Ricart-Agrawala vs. Neilsen-Mizuno

¢ Number of messages needed?
 Size of messages?
« Size of data structures in each node?
« Behaviour with heavy load?
— Many need CS at the same time
« Behaviour with light load?
— Requests for CS do not come often
— Usually only one process requests CS at a time

17.3.2011 Copyright TeemuKerola 2011 31

Other Distributed Mutex Algorithms

e Other token-based algorithms

— Token ring: token moves all the time

— Lots of token traffic even when no CS requests
¢ Centralized server

— Simple, not very many messages

— Not scalable, may become bottleneck
« Give up unrealistic assumptions

— Nodes may fail

— Messages may get lost, token may get lost

¢ See other courses 3 Courseson
distributed systems topics
(hajautetut jarjestelmat)
17.3.2011 Copyright TeemuKerola 2011 32

Summary

« Distributed critical section is hard, avoid it
— Use centralized solutions if possible?
* Permission based solutions
— Ricart-Agrawala — ask everyone
 Token based solutions
— Ricart-Agrawala — centralized state in granted[]
— Neilsen-Mizuno — queue kept in spanning tree
* There are other algorithms
» How do they scale up?

17.3.2011 Copyright TeemuKerola 2011 33

Lecture 10: Distributed Mutual Exclusion

