
Concurrent Programming (RIO) 14.2.2011

Lecture 8: Monitors 1

Monitors
Ch 7 [BenA 06]

Monitors
Condition Variables

BACI and Java Monitors
Protected Objects

114.2.2011 Copyright Teemu Kerola 2011

Lesson 8

Monitor Concept
• High level concept

– Semaphore is low level concept
• Want to encapsulate

– Shared data and access to it
– Operations on data
– Mutex and synchronization

• Problems solved by Monitor:
– Which data is shared?
– Which semaphore is used to synchronize processes?
– Which mutex is used to control critical section?
– How to use shared resources?
– How to maximize parallelizable work?

• Other approaches to the same (similar) problems
– Conditional critical regions, protected objects, path expressions,

communicating sequential processes, synchronizing resources,
guarded commands, active objects, rendezvous, Java object, Ada
package, …

214.2.2011 Copyright Teemu Kerola 2011

Semaphore problems
• forget P or V
• extra P or V
• wrong semaphore
• forget to use mutex
• used for mutex and

for synchronization

(monitori)

Concurrent Programming (RIO) 14.2.2011

Lecture 8: Monitors 2

Monitor (Hoare 1974)

• Encapsulated data and operations for it
– Abstract data type, object
– Public methods are the only way to manipulate data
– Monitor methods can manipulate only monitor or parameter data

• Global data outside monitor is not accessible
– Monitor data structures are initialized at creation time and are

permanent
– Concept ”data” denotes here often to synchronization data only

• Actual computational data processing usually outside monitor
• Concurrent access possible to computational data

– More possible parallelism in computation

314.2.2011 Copyright Teemu Kerola 2011

C.A.R. (Tony) Hoare

• Elliot
• Algol-60
• Sir Charles

Monitor
• Automatic mutex for monitor methods

– Only one method active at a time (invoked by some process)
• May be a problem: limits possible concurrency
• Monitor should not be used for work, but just for synchroniz.

– Other processes are waiting
• To enter the monitor (in mutex), or
• Inside the monitor in some method

– waiting for a monitor condition variable become true
– waiting for mutex after release from condition variable or

losing execution turn when signaling to condition variable
– No queue, just set of competing processes

• Implementation may vary

• Monitor is passive
– Does not do anything by itself

• No own executing threads
• Exception: code to initialize monitor data structures (?)

– Methods can be active only when processes invoke them
414.2.2011 Copyright Teemu Kerola 2011

Concurrent Programming (RIO) 14.2.2011

Lecture 8: Monitors 3

• Automatic mutex solution
– Solution with busy-wait, disable interrupts, or suspension!
– Internal to monitor, user has no handle on it, might be useful to know
– Only one procedure active at a time – which one?

• No ordered queue to enter monitor
– Starvation is possible, if many processes continuously trying to get in

514.2.2011 Copyright Teemu Kerola 2011

declarations,
initialization code

procedures

Monitor Condition
Variables

• For synchronization
inside the monitor
– Must be hand-coded
– Not visible to outside
– Looks simpler than really is

• Condition CV
• WaitC (CV)
• SignalC (CV)

614.2.2011 Copyright Teemu Kerola 2011
(Fig. 5.15 [Stal05])

waitC

signalC

waitC

(ehtomuuttuja)

ready queue?
mutex queue?

WaitC
….

wait here?

SignalC
….

Concurrent Programming (RIO) 14.2.2011

Lecture 8: Monitors 4

Declaration and WaitC
• Condition CV

– Declare new condition variable
– No value, just fifo queue of waiting processes

• WaitC(CV)
– Always suspends, process placed in queue
– Unlocks monitor mutex

• Allows someone else into monitor?
• Allows another process awakened from (another?) WaitC to proceed?
• Allows process that lost mutex in SignalC to proceed?

– When awakened, waits for mutex lock to proceed
• Not really ready-to-run yet

714.2.2011 Copyright Teemu Kerola 2011

SignalC
• Wakes up first waiting process, if any

– Which one continues execution in monitor (in mutex)?
• The process doing the signalling?
• The process just woken up?
• Some other processes trying to get into monitor? No.

– Two signalling disciplines (two semantics)
• Signal and continue - signalling process keeps mutex
• Signal and wait - signalled process gets mutex

• If no one was waiting, signal is lost (no memory)
– Advanced signalling (with memory) must be handled in

some other manner

814.2.2011 Copyright Teemu Kerola 2011
Discuss

Concurrent Programming (RIO) 14.2.2011

Lecture 8: Monitors 5

Signaling Semantics
• Signal and Continue SignalC(CV)

– Signaller process continues
• Mutex can not terminate at signal operation

– Awakened (signalled) process will wait in
mutex lock

• With other processes trying to enter the semaphore
• May not be the next one active

– Many control variables signalled by one process?

• Condition waited for may not be true any more once
awaked process resumes (becomes active again)

• No priority or priority over arrivals for sem. mutex?

914.2.2011 Copyright Teemu Kerola 2011

Signaling Semantics
• Signal and Wait SignalC (CV)

– Awakened (signalled) process executes
immediately

• Mutex baton passing
– No one else can get the mutex lock at this time

• Condition waited for is certainly true when process
resumes execution

– Signaller waits in mutex lock
• With other processes trying to enter the semaphore
• No priority, or priority over arrivals for mutex?
• Process may lose mutex at any signal operation

– But does not lose, if no one was waiting!
– Problem, if critical section would continue over SignalC

1014.2.2011 Copyright Teemu Kerola 2011

Concurrent Programming (RIO) 14.2.2011

Lecture 8: Monitors 6

ESW-Priorities in Monitors
• Another way to describe signaling semantics

– Define priority order for monitor mutex
• Processes in 3 dynamic groups

– Priority depends on what they are doing in monitor
• E = priority of processes entering the monitor
• S = priority of a process signalling in SignalC
• W = priority of a process waiting in WaitC

• E < S < W (highest pri), i.e., IRR
– Processes waiting in WaitC have highest priority
– Entering new process have lowest priority
– IRR – immediate resumption requirement
– Signal and urgent wait
– Classical, usual semantics
– New arrivals can not starve those inside

1114.2.2011 Copyright Teemu Kerola 2011

1214.2.2011 Copyright Teemu Kerola 2011

semaphore counter
kept separately,
initialized before
any process active

No need for
“if anybody waiting…”

What if signalC comes 1st?

1 (mutex sem)

Mutex

Concurrent Programming (RIO) 14.2.2011

Lecture 8: Monitors 7

Problem with/without IRR
• No IRR, e.g., E=S=W or E<W<S

– Prosess P waits in WaitC()
– Process P released from WaitC, but is not

executed right away
• Waits in monitor mutex (semaphore?)

– Signaller or some other process changes the
state that P was waiting for

– P is executed in wrong state
• IRR

– Signalling process may lose mutex!
1314.2.2011 Copyright Teemu Kerola 2011

1414.2.2011 Copyright Teemu Kerola 2011

No immediate resumption requirement, E = S = W

FIX: must test
for condition again

(2)

b) Q1 signals P, s=1

e) P advances,
sets s = -1,
enters CS

d) Q2 gets in,
finds s=1,
sets s=0,
enters CS

P Q1, Q2

a) P & Q1 compete, Q1 wins,
Q1 enters CS, s=0,
P waits

c) P waits for
mutex here

while (s = 0)

1

Concurrent Programming (RIO) 14.2.2011

Lecture 8: Monitors 8

1514.2.2011 Copyright Teemu Kerola 2011

No immediate resumption requirement, E = S = W
(1/3)

b) Q1 signals P, s=1

e) P advances,
sets s = -1,
enters CS

d) Q2 gets in,
finds s=1,
sets s=0,
enters CS

P Q1, Q2

a) P & Q1 compete, Q1 wins,
Q1 enters CS, s=0,
P waits

c) P waits for
mutex here

1

1614.2.2011 Copyright Teemu Kerola 2011

No immediate resumption requirement, E = S = W

FIX: must test
for condition again

(2/3)

b) Q1 signals P, s=1

e) P advances,
sets s = -1,
enters CS

d) Q2 gets in,
finds s=1,
sets s=0,
enters CS

P Q1, Q2

a) P & Q1 compete, Q1 wins,
Q1 enters CS, s=0,
P waits

c) P waits for
mutex here

1

Concurrent Programming (RIO) 14.2.2011

Lecture 8: Monitors 9

1714.2.2011 Copyright Teemu Kerola 2011

No immediate resumption requirement, E = S = W

FIX: must test
for condition again

(3/3)

b) Q1 signals P, s=1

e) P advances,
sets s = -1,
enters CS

d) Q2 gets in,
finds s=1,
sets s=0,
enters CS

P Q1, Q2

a) P & Q1 compete, Q1 wins,
Q1 enters CS, s=0,
P waits

c) P waits for
mutex here

while (s = 0)

1

1814.2.2011 Copyright Teemu Kerola 2011

buffer hidden,
synchronization hidden

(easy-to-write code)

IRR semantics
(important assumption)

append_tail(V, buffer) ; typo in book

internal
procedures
in monitor,
no waitC
in them
(important
design
feature)

void append_tail()
bufferType head()

Discuss

Concurrent Programming (RIO) 14.2.2011

Lecture 8: Monitors 10

Other Monitor Internal Operations
• Empty(CV)

– Returns TRUE, iff CV-queue is empty
– Might do something else than wait for your turn ….

• Wait(CV, rank)
– Priority queue, release in priority order
– Small rank number, high priority

• Minrank(CV)
– Return rank for first waiting process (or 0 or whatever?)

• Signal_all(CV)
– Wake up everyone waiting

• If IRR, who gets mutex turn? Highest rank?
1st in queue? Last in queue?

1914.2.2011 Copyright Teemu Kerola 2011

Readers and Writers with Monitor

• Many can
read
concurrently

• No writers
allowed
with readers

2014.2.2011 Copyright Teemu Kerola 2011

Data base
Readers Writers

Monitor to control
access to database

• Only one can
write at a time

• No readers
allowed at
that time

outside monitor!

read()

write()

EndRead

StartWrite EndWrite

StartRead

Concurrent Programming (RIO) 14.2.2011

Lecture 8: Monitors 11

• 3 processes waiting in OKtoRead. Who is next?
• 3 processes waiting in OKtoWrite. Who is next?
• If writer finishing, and 1 writer and 2 readers waiting, who is next?

2114.2.2011 Copyright Teemu Kerola 2011

IRR semantics Compare to
Lesson 7, slide 26

2214.2.2011 Copyright Teemu Kerola 2011

When executed?
Much later? Semantics?

Deadlock free? Why?
Starvation possible.

Signaling semantics?
IRR mutex will break here!

Number of forks
available to philosopher i

Both at
once!

Is order
Important?

IRR?

What changes were needed, if E=S=W semantics were used?

Concurrent Programming (RIO) 14.2.2011

Lecture 8: Monitors 12

BACI
Monitors

• waitc
– IRR
– Queue not FIFO
– Baton passing

• Also
– waitc() with priority:
– Default priority = 10 (big number, high priority ??)

2314.2.2011 Copyright Teemu Kerola 2011

- -

waitc (OKtoWrite, 1);

No need
for counts
dr, dw

0; (typo fix)

2414.2.2011 Copyright Teemu Kerola 2011

- -

RW.StartRead();
… read data base ..
RW.EndRead();

RW.StartWrite();
… write data base ..
RW.EndWrite();

0; (typo fix)

readers have priority, writer may starve

Concurrent Programming (RIO) 14.2.2011

Lecture 8: Monitors 13

Java Monitors
• No real support
• Emulate monitor with normal object with all

methods synchronized
• Emulate monitor condition variables operations

with Java wait(), notifyAll(), and try/catch.
– Generic wait-operation

• “E = W < S” signal semantics
– No IRR, use while-loops

• notifyAll() will wake-up all waiting processes
– Must check the conditions again
– No order guaranteed – starvation is possible

2514.2.2011 Copyright Teemu Kerola 2011

2614.2.2011 Copyright Teemu Kerola 2011

Concurrent Programming (RIO) 14.2.2011

Lecture 8: Monitors 14

PlusMinus with Java Monitor
• Simple Java solution with monitor-like code

– Plusminus_mon.java

– Better: make data structures visible only to ”monitor”
methods?

2714.2.2011 Copyright Teemu Kerola 2011

vera: javac Plusminus_mon.java
vera: java Plusminus_mon

http://www.cs.helsinki.fi/u/kerola/rio/Java/examples/Plusminus_mon.java

Monitor Summary
+ Automatic Mutex
+ Hides complexities from monitor user
- Internal synchronization with semantically

complex condition variables
- With IRR semantics, try to place signalC

at the end of the method
- With IRR, mutex ends with signalC

- Does not allow for any concurrency inside
monitor
– Monitor should be used only to control concurrency
– Actual work should be done outside the monitor

2814.2.2011 Copyright Teemu Kerola 2011

Concurrent Programming (RIO) 14.2.2011

Lecture 8: Monitors 15

2914.2.2011 Copyright Teemu Kerola 2011

Protected Objects
• Like monitor, but condition variable definitions implicit

and coupled with when-expression on which to wait
– Automatic mutex control for operations (as in monitor)

• Barrier, fifo queue
– Evaluated only (always!)

when some operation
terminates within mutex

• signaller is exiting
– Implicit signalling
– Do not confuse with

barrier synchronization!

3014.2.2011 Copyright Teemu Kerola 2011

Ada95?

(monitor)

(protected object)

suojattu objekti

puomi,
ehto

Concurrent Programming (RIO) 14.2.2011

Lecture 8: Monitors 16

• Mutex semantics?
– What if many barriers become true? Which one resumes?

3114.2.2011 Copyright Teemu Kerola 2011

E<W semantics

Readers and Writers as
ADA Protected Object

3214.2.2011 Copyright Teemu Kerola 2011

Continuous flow of readers will starve writers.

How would you change it to give writers priority?

Concurrent Programming (RIO) 14.2.2011

Lecture 8: Monitors 17

Summary
• Monitors

– Automatic mutex, no concurrent work inside monitor
– Need concurrency – do actual work outside monitor
– Internal synchronization with condition variables

• Similar but different to semaphores
– Signalling semantics varies
– No need for shared memory areas

• Enough to invoke monitor methods in (prog. lang.) library
• Protected Objects

– Avoids some problems with monitors
– Automatic mutex and signalling

• Can signal only at the end of method
• Wait only in barrier at the beginning of method
• No mutex breaks in the middle of method

– Barrier evaluation may be costly – all tested with every signal?
– No concurrent work inside protected object
– Need concurrency – do actual work outside protected object

3314.2.2011 Copyright Teemu Kerola 2011

