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Monitors
Ch 7 [BenA 06]

Monitors
Condition Variables

BACI and Java Monitors
Protected Objects
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Lesson 8

Monitor Concept
• High level concept

– Semaphore is low level concept
• Want to encapsulate

– Shared data and access to it
– Operations on data
– Mutex and synchronization

• Problems solved by Monitor:
– Which data is shared?
– Which semaphore is used to synchronize processes?
– Which mutex is used to control critical section?
– How to use shared resources?
– How to maximize parallelizable work?

• Other approaches to the same (similar) problems
– Conditional critical regions, protected objects, path expressions,

communicating sequential processes, synchronizing resources,
guarded commands, active objects, rendezvous, Java object, Ada
package, …
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Semaphore problems
• forget P or V
• extra P or V
• wrong semaphore
• forget to use mutex
• used for mutex and

for synchronization

(monitori)
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Monitor  (Hoare 1974)

• Encapsulated data and operations for it
– Abstract data type, object
– Public methods are the only way to manipulate data
– Monitor methods can manipulate only monitor or parameter data

• Global data outside monitor is not accessible
– Monitor data structures are initialized at creation time and are

permanent
– Concept ”data” denotes here often to synchronization data only

• Actual computational data processing  usually outside monitor
• Concurrent access possible to computational data

– More possible parallelism in computation
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C.A.R. (Tony) Hoare

• Elliot
• Algol-60
• Sir Charles

Monitor
• Automatic mutex for monitor methods

– Only one method active at a time (invoked by some process)
• May be a problem: limits possible concurrency
• Monitor should not be used for work, but just for synchroniz.

– Other processes are waiting
• To enter the monitor (in mutex), or
• Inside the monitor in some method

– waiting for a monitor condition variable become true
– waiting for mutex after release from condition variable or

losing execution turn when signaling to condition variable
– No queue, just set of competing processes

• Implementation may vary

• Monitor is passive
– Does not do anything by itself

• No own executing threads
• Exception: code to initialize monitor data structures (?)

– Methods can be active only when processes invoke them
414.2.2011 Copyright Teemu Kerola 2011
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• Automatic mutex solution
– Solution with busy-wait, disable interrupts, or suspension!
– Internal to monitor, user has no handle on it, might be useful to know
– Only one procedure active at a time – which one?

• No ordered queue to enter monitor
– Starvation is possible, if many processes continuously trying to get in
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declarations,
initialization code

procedures

Monitor Condition
Variables

• For synchronization
inside the monitor
– Must be hand-coded
– Not visible to outside
– Looks simpler than really is

• Condition  CV
• WaitC (CV)
• SignalC (CV)
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(Fig. 5.15 [Stal05])

waitC

signalC

waitC

(ehtomuuttuja)

ready queue?
mutex queue?

WaitC
….

wait here?

SignalC
….
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Declaration and WaitC
• Condition CV

– Declare new condition variable
– No value, just fifo queue of waiting processes

• WaitC( CV )
– Always suspends, process placed in queue
– Unlocks monitor mutex

• Allows someone else into monitor?
• Allows another process awakened from (another?) WaitC to proceed?
• Allows process that lost mutex in SignalC to proceed?

– When awakened, waits for mutex lock to proceed
• Not really ready-to-run yet
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SignalC
• Wakes up first waiting process, if any

– Which one continues execution in monitor (in mutex)?
• The process doing the signalling?
• The process just woken up?
• Some other processes trying to get into monitor? No.

– Two signalling disciplines (two semantics)
• Signal and continue - signalling process keeps mutex
• Signal and wait - signalled process gets mutex

• If no one was waiting, signal is lost (no memory)
– Advanced signalling (with memory) must be handled in

some other manner
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Discuss
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Signaling Semantics
• Signal and Continue SignalC( CV )

– Signaller process continues
• Mutex can not terminate at signal operation

– Awakened (signalled) process will wait in
mutex lock

• With other processes trying to enter the semaphore
• May not be the next one active

– Many control variables signalled by one process?

• Condition waited for may not be true any more once
awaked process resumes (becomes active again)

• No priority or priority over arrivals for sem. mutex?
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Signaling Semantics
• Signal and Wait SignalC (CV )

– Awakened (signalled) process executes
immediately

• Mutex baton passing
– No one else can get the mutex lock at this time

• Condition waited for is certainly true when process
resumes execution

– Signaller waits in mutex lock
• With other processes trying to enter the semaphore
• No priority, or priority over arrivals for mutex?
• Process may lose mutex at any signal operation

– But does not lose, if no one was waiting!
– Problem, if critical section would continue over SignalC
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ESW-Priorities in Monitors
• Another way to describe signaling semantics

– Define priority order for monitor mutex
• Processes in 3 dynamic groups

– Priority depends on what they are doing in monitor
• E = priority of processes entering the monitor
• S = priority of a process signalling in SignalC
• W = priority of a process waiting in WaitC

• E < S < W (highest pri), i.e., IRR
– Processes waiting in WaitC have highest priority
– Entering new process have lowest priority
– IRR – immediate resumption requirement
– Signal and urgent wait
– Classical, usual semantics
– New arrivals can not starve those inside
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semaphore counter
kept separately,
initialized before
any process active

No need for
“if anybody waiting…”

What if signalC comes 1st?

1 (mutex sem)

Mutex
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Problem with/without IRR
• No IRR, e.g., E=S=W or  E<W<S

– Prosess P waits in WaitC()
– Process P released from WaitC, but is not

executed right away
• Waits in monitor mutex (semaphore?)

– Signaller or some other process changes the
state that P was waiting for

– P is executed in wrong state
• IRR

– Signalling process may lose mutex!
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No immediate resumption requirement, E = S = W

FIX: must test
for condition again

(2)

b) Q1 signals P, s=1

e) P advances,
sets s = -1,
enters CS

d) Q2 gets in,
finds s=1,
sets s=0,
enters CS

P Q1, Q2

a) P & Q1 compete, Q1 wins,
Q1 enters CS, s=0,
P waits

c) P waits for
mutex here

while (s = 0)

1
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No immediate resumption requirement, E = S = W
(1/3)

b) Q1 signals P, s=1

e) P advances,
sets s = -1,
enters CS

d) Q2 gets in,
finds s=1,
sets s=0,
enters CS

P Q1, Q2

a) P & Q1 compete, Q1 wins,
Q1 enters CS, s=0,
P waits

c) P waits for
mutex here

1
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No immediate resumption requirement, E = S = W

FIX: must test
for condition again

(2/3)

b) Q1 signals P, s=1

e) P advances,
sets s = -1,
enters CS

d) Q2 gets in,
finds s=1,
sets s=0,
enters CS

P Q1, Q2

a) P & Q1 compete, Q1 wins,
Q1 enters CS, s=0,
P waits

c) P waits for
mutex here

1



Concurrent Programming (RIO) 14.2.2011

Lecture 8: Monitors 9

1714.2.2011 Copyright Teemu Kerola 2011

No immediate resumption requirement, E = S = W

FIX: must test
for condition again

(3/3)

b) Q1 signals P, s=1

e) P advances,
sets s = -1,
enters CS

d) Q2 gets in,
finds s=1,
sets s=0,
enters CS

P Q1, Q2

a) P & Q1 compete, Q1 wins,
Q1 enters CS, s=0,
P waits

c) P waits for
mutex here

while (s = 0)

1
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buffer hidden,
synchronization hidden

(easy-to-write code)

IRR semantics
(important assumption)

append_tail(V, buffer)   ; typo in book

internal
procedures
in monitor,
no waitC
in them
(important
design
feature)

void append_tail()
bufferType head()

Discuss
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Other Monitor Internal Operations
• Empty( CV )

– Returns TRUE, iff CV-queue is empty
– Might do something else than wait for your turn ….

• Wait( CV, rank )
– Priority queue, release in priority order
– Small rank number, high priority

• Minrank( CV )
– Return rank for first waiting process (or 0 or whatever?)

• Signal_all( CV )
– Wake up everyone waiting

• If IRR, who gets mutex turn? Highest rank?
1st in queue? Last in queue?
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Readers and Writers with Monitor

• Many can
read
concurrently

• No writers
allowed
with readers

2014.2.2011 Copyright Teemu Kerola 2011

Data base
Readers Writers

Monitor  to control
access to database

• Only one can
write at a time

• No readers
allowed at
that time

outside monitor!

read()

write()

EndRead

StartWrite EndWrite

StartRead
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• 3 processes waiting in OKtoRead. Who is next?
• 3 processes waiting in OKtoWrite. Who is next?
• If writer finishing, and 1 writer and 2 readers waiting, who is next?

2114.2.2011 Copyright Teemu Kerola 2011

IRR semantics Compare to
Lesson 7, slide 26
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When executed?
Much later? Semantics?

Deadlock free? Why?
Starvation possible.

Signaling semantics?
IRR mutex will break here!

Number of forks
available to philosopher i

Both at
once!

Is order
Important?

IRR?

What changes were needed, if E=S=W semantics were used?
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BACI
Monitors

• waitc
– IRR
– Queue not FIFO
– Baton passing

• Also
– waitc() with priority:
– Default priority = 10 (big number, high priority ??)
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- -

waitc ( OKtoWrite, 1 );

No need
for counts
dr, dw

0; (typo fix)
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- -

RW.StartRead();
… read data base ..
RW.EndRead();

RW.StartWrite();
… write data base ..
RW.EndWrite();

0; (typo fix)

readers have priority, writer may starve



Concurrent Programming (RIO) 14.2.2011

Lecture 8: Monitors 13

Java Monitors
• No real support
• Emulate monitor with normal object with all

methods synchronized
• Emulate monitor condition variables operations

with Java wait(), notifyAll(), and try/catch.
– Generic wait-operation

• “E = W < S” signal semantics
– No IRR, use while-loops

• notifyAll() will wake-up all waiting processes
– Must check the conditions again
– No order guaranteed – starvation is possible

2514.2.2011 Copyright Teemu Kerola 2011
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PlusMinus with Java Monitor
• Simple Java solution with monitor-like code

– Plusminus_mon.java

– Better: make data structures visible only to ”monitor”
methods?
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vera: javac Plusminus_mon.java
vera: java Plusminus_mon

http://www.cs.helsinki.fi/u/kerola/rio/Java/examples/Plusminus_mon.java

Monitor Summary
+ Automatic Mutex
+ Hides complexities from monitor user
- Internal synchronization with semantically

complex condition variables
- With IRR semantics, try to place signalC

at the end of the method
- With IRR, mutex ends with signalC

- Does not allow for any concurrency inside
monitor
– Monitor should be used only to control concurrency
– Actual work should be done outside the monitor
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Protected Objects
• Like monitor, but condition variable definitions implicit

and coupled with when-expression on which to wait
– Automatic mutex control for operations (as in monitor)

• Barrier, fifo queue
– Evaluated only (always!)

when some operation
terminates within mutex

• signaller is exiting
– Implicit signalling
– Do not confuse with

barrier synchronization!
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Ada95?

(monitor)

(protected object)

suojattu objekti

puomi,
ehto
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• Mutex semantics?
– What if many barriers become true?  Which one resumes?
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E<W semantics

Readers and Writers as
ADA Protected Object
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Continuous flow of readers will starve writers.

How would you change it to give writers priority?
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Summary
• Monitors

– Automatic mutex, no concurrent work inside monitor
– Need concurrency – do actual work outside monitor
– Internal synchronization with condition variables

• Similar but different to semaphores
– Signalling semantics varies
– No need for shared memory areas

• Enough to invoke monitor methods in (prog. lang.) library
• Protected Objects

– Avoids some problems with monitors
– Automatic mutex and signalling

• Can signal only at the end of method
• Wait only in barrier at the beginning of method
• No mutex breaks in the middle of method

– Barrier evaluation may be costly – all tested with every signal?
– No concurrent work inside protected object
– Need concurrency – do actual work outside protected object
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