
Concurrent Programming (RIO) 20.1.2011

Lecture 3: Mutual Exclusion 1

Critical Section Problem
Ch 3 [BenA 06]

Critical Section Problem
Solutions without HW Support
State Diagrams for Algorithms

Busy-Wait Solutions with HW Support
120.1.2011 Copyright Teemu Kerola 2011

Lesson 3

Mutual Exclusion
Real World Example

• How to reserve a laundry room?
– Housing corporation with many tenants

• Reliable
– No one else can reserve, once one reservation

for given time slot is done
– One can not remove other’s reservations

• Reservation method
– One can make decision independently (without discussing with

others) on whether laundry room is available or not
– One can have reservation for at most one time slot at a time

• People not needing the laundry room are not bothered
• One should not leave reservation on when moving out
• One should not lose reservation tokens/keys

220.1.2011 Copyright Teemu Kerola 2011

mutual
exclusion,
i.e., mutex

non-preemptive

distributed/centralized

Fig. Pesutuvan varaus

no simultaneous resource possession

recovery?

keskeytettämätön

Concurrent Programming (RIO) 20.1.2011

Lecture 3: Mutual Exclusion 2

320.1.2011 Copyright Teemu Kerola 2011

Photo P. Niklander

420.1.2011 Copyright Teemu Kerola 2011

Concurrent Programming (RIO) 20.1.2011

Lecture 3: Mutual Exclusion 3

Concurrent Indivisible Operations
• Echo

– What if out and/or in
local variables?

• Data base update
– Name, id, address, salary, annual salary, …

• How/when/by whom to define granularity for
indivisible operations?

520.1.2011 Copyright Teemu Kerola 2011

char out, in; //globals
procedure echo {

input (in, keyboard);
out = in;
output (out, display);

}

Process P1 Process P2
… …
input (in,..); …

input(in,..);
out = in; out = in;
… output (out,..);
output(out,..);

Executing Many Processes Concurrently
• One CPU

– Execute one process until
• It requests a service that takes time to do
• Some interrupt occurs and operating system gives execution

turn to somebody else
– E.g., time slice interrupt

– Another process may still run concurrently in
GPU or some other I/O controller

• Many CPU’s
– Execute many processes always concurrently
– Execution turn for one process may end any time

(request service, or interrupt occurs)
620.1.2011 Copyright Teemu Kerola 2011

aikaviipalekeskeytys

Concurrent Programming (RIO) 20.1.2011

Lecture 3: Mutual Exclusion 4

Critical Section Problem
• Critical section (CS)

– Code segment that only one process may be executing
at a time

– May also be set of code segments, and only one
process may be executing at a time any code segment
in that set

– Not necessarily an atomic operation
• Other processes may be scheduled, but they can not

execute in (this) critical section
• Critical Section Problem (Mutex Problem)

– How to guarantee that only one process at a time is
executing critical section?

720.1.2011 Copyright Teemu Kerola 2011
Discuss

Critical Section (CS) Solution
• Mutex (mutually exclusive code) solved
• No deadlock: someone will succeed
• No starvation (and no unnecessary delay)

– Everyone succeeds eventually
• Protocol does not use common variables with CS actual work

– Can use it’s own local or shared variables

820.1.2011 Copyright Teemu Kerola 2011

poissulkemisong. ratk.

ei lukkiutumista

ei nälkiintymistä

Concurrent Programming (RIO) 20.1.2011

Lecture 3: Mutual Exclusion 5

Critical Section Assumptions

• Preprotocol and postprotocol have no common local/global variables with
critical/non-critical sections
– They do not disturb/affect each other

• Non-critical section may stall or terminate
– Can not assume it to complete

• Critical section will complete (will not terminate or die)
– Postprotocol eventually executed once critical section is entered

• Process will not terminate in preprotocol or postprotocol (!!!)
– Process may terminate (die) only in non-critical section

920.1.2011 Copyright Teemu Kerola 2011

“safe zone”

“unsafe zone”

Critical Section Solution

• How to prove correct or incorrect?
– Mutex? (functional correct, one at a time in CS)
– No deadlock? (eventually someone from many will get in)
– No starvation? (eventually any specific one will get in)

1020.1.2011 Copyright Teemu Kerola 2011

Concurrent Programming (RIO) 20.1.2011

Lecture 3: Mutual Exclusion 6

“await condition” statement
• Pseudo language construct
• Implement somehow waiting until given condition

becomes true
– Use clever algorithms

• Dekker, Peterson, …
– Use hardware (HW) help – special instructions & data?

• Interrupts, lock variables with busy wait loops, …
– Use operating system (OS) – suspend process?

• Semaphores, barrier operations, busy waits loops, …
• Implemented using HW (or those clever algorithms)

– Use programming language utilities?
• Semaphores, monitor condition variables, barrier operations,

protected object when statements, …
• Implemented using OS

• Specifics discussed more later on
1120.1.2011 Copyright Teemu Kerola 2011

“await until my turn”

Correctness Proofs
• Prove incorrect

– Come up with one scenario that does not work
• Two processes execute in sync?
• Some other unlikely scenario?

• Prove correct
– Heuristics: “I did not come up with any proofs

(counterexample) for incorrectness and I am smart”
I can not prove incorrectness
It must be correct…

– State diagrams
• Describe algorithm with states:

{ relevant control pointer (cp) values,
relevant local/global variable values }

• Analyze state diagrams to prove correctness

1220.1.2011 Copyright Teemu Kerola 2011

“easy”, unreliable

difficult, reliable

often non-trivial

Concurrent Programming (RIO) 20.1.2011

Lecture 3: Mutual Exclusion 7

State Diagram for Alg. 3.2
• State {pi, qi, turn}

– Control pointer pi
– Control pointer qi
– Global variable turn
– 1st four states

• Mutex ok
– State {p3, q3, turn}

not accessible in
state diagram?

• No deadlock?
– When many processes try concurrently, one will

succeed
• No starvation?

– Whenever any (one) process tries, it will eventually
succeed

1320.1.2011 Copyright Teemu Kerola 2011

Algorithm 3.2

p

q

p
q

q

q

p

p

How to prove it?

… … …. …

State Diagram for
Algorithm 3.2

• Create complete diagram
with all accessible states

• No states
– {p3, q3, 1}
– {p3, p3, 2}

• I.e., mutex secured
• Problem:

– Too many states?
– Difficult to create
– Difficult to analyze

1420.1.2011 Copyright Teemu Kerola 2011

Algorithm 3.2

p q

q
p

p

p

(Fig. 3.1)

p

p

p

p

p

p

p

p

q

q

q

q

qq

q

q

q

q

q

p

p

p

p

q

q

q

proof!

Concurrent Programming (RIO) 20.1.2011

Lecture 3: Mutual Exclusion 8

Alternate Layout for Full State Diagram

1520.1.2011 Copyright Teemu Kerola 2011

q

p

p

p

p

p

p

p

p

p

pp

q

q

q

q

q

q

q

q

q
p q

p

p

p

q

q

q

p

q

q

Alg. 3.2

Correctness (3)

• Mutex?
– Ok, no state {p3, q3, ??}

• No deadlock?
– many try, one can always get in?

(into a state with p3 or q3)
– {p2, q1, 1}: P can get in
– {p2, q2, 1}: P can get in
– {p2, q1 tai q2, 2}:

• Q can get in
– {p2, q3 tai q4, 2}:

• P can get in eventually
– {pi, q2, ?} similarly. q.e.d.

• No starvation?
– One tries, it will eventually get in?
– {p2, q1, 2}

• Q dies (ok to die in q1),
P will starve! Not good!

1620.1.2011 Copyright Teemu Kerola 2011

(Fig. 3.1)

p q

q
p

p

p

p

p

p

p

p

p

p

p

q

q

q

q

qq

q

q

q

q

q

p

p

p

p

Algorithm 3.2

q

q

q

All
states
with
p2

Concurrent Programming (RIO) 20.1.2011

Lecture 3: Mutual Exclusion 9

Reduced Algorithm for Easier Analysis

• Reduce algorithm to reduce number of states of
state diagrams: leave irrelevant code out
– Nothing relevant (for mutex) left out?

1720.1.2011 Copyright Teemu Kerola 2011

Proven
erroneous!

State Diagram for Reduced Algorithm

• Much fewer states!
1820.1.2011 Copyright Teemu Kerola 2011

(Fig. 3.2)

p q

p q p q

p q

Alg. 3.5

Concurrent Programming (RIO) 20.1.2011

Lecture 3: Mutual Exclusion 10

Correctness
of Reduced
Algorithm (2)

• Mutex?
– No state {p2, q2, turn}

• No deadlock: Some are trying, one may get in?
– Top left (p & q trying): q will get in
– Bottom left (p trying): q will eventually execute (assumption!)
– Top & bottom right: mirror situation

• No starvation?
– Tricky, reduced too much!

• NCS combined with await
– Look at original diagram

• Problem if Q dies in NCS

1920.1.2011 Copyright Teemu Kerola 2011

p q

p q p q

p q

Alg. 3.5

OK

OK

Not OK

should
be OK to
die in
NCS, but
not OK to
die in
protocol

Critical Section Solution #2

• Each have their own global variable wantp and wantq
– True when process is in critical section

• Process dies in NCS?
– Starvation problem ok, because it’s want-variable is false

• Mutex? Deadlock?
2020.1.2011 Copyright Teemu Kerola 2011

Concurrent Programming (RIO) 20.1.2011

Lecture 3: Mutual Exclusion 11

Attempt #2 Reduced

• No mutex! {p3, q3, ?} reachable
– Problem: p2 should be part of critical section (but is not!)

2120.1.2011 Copyright Teemu Kerola 2011

p q

p

q

NCS

CS

pro-
to-
col

Critical Section Solution #3

• Avoid previous problem, mutex ok
• Deadlock possible: {p3, q3, wantp=true, wantq=true}
• Problem: cyclic wait possible, both insist their turn next

– No preemption

2220.1.2011 Copyright Teemu Kerola 2011

Concurrent Programming (RIO) 20.1.2011

Lecture 3: Mutual Exclusion 12

• Avoid deadlock by giving away your turn if needed
• Mutex ok: P in p6 only if !wantq (Q is not in q6)
• Deadlock (livelock) possible:

{p3, q3, …} {p4, q4, …} {p5, q5, …}
– Unlikely but possible!
– Livelock: both executing all the time, not waiting suspended

• Neither one advances
2320.1.2011 Copyright Teemu Kerola 2011

elolukko

• Combine 1st and 4th attempt
• 3 global (mutex ctr) variables: shared turn, semi-private want’s

– only one process writes to wantp or wantq (= semi-private)
• turn gives you the right to insist, i.e., priority

– Used only when both want CS at the same time
2420.1.2011 Copyright Teemu Kerola 2011

Concurrent Programming (RIO) 20.1.2011

Lecture 3: Mutual Exclusion 13

Proof
• Mutex ok: P in p8 only if !wantq (Q can not be in q8)
• No deadlock, because P or Q can continue to CS from {p3, q3, ..}
• No starvation, because

– If in {p6, …}, then eventually {p6, q9, …} and {..., q10, ...}
– Next time {p3, …} or {p4, …} will lead to {p8, …}

2520.1.2011 Copyright Teemu Kerola 2011

• mutex with no HW-support needed, need only shared memory
• Bad: complex, many instructions

– Must execute each instruction at a time, in this order
• Will not work, if compiler optimizes code too much!

– In simple systems, can do better with HW support
• Special machine instructions to help with this problem

2620.1.2011 Copyright Teemu Kerola 2011

Proven
correct!

Discuss

Concurrent Programming (RIO) 20.1.2011

Lecture 3: Mutual Exclusion 14

Mutex with HW Support
• Specific machine instructions for this purpose

– Suitable for many situations
– Not suitable for all situations

• Interrupt disable/enable
instructions

• Test-and-set instructions
– Other similar instructions

• Specific memory areas
– Reserved for concurrency control solutions
– Lock variables (for test-and-set) in their own cache?

• Different cache protocol for lock variables?
• Busy-wait without memory bus use?

2720.1.2011 Copyright Teemu Kerola 2011

Lock (L)
-- Critical Section --
Unlock (L)

Disable
-- Critical Section --
Enable

Disable Interrupts
• Environment

– All (competing) processes on run on the same processor
(core?)

– Not for multiprocessor systems
• Disabling interrupts does it only for

the processor executing that instruction

• Disable/enable interrupts
– Prevent process switching during critical sections

• Good for only very short time
• Prevents also (other) operating system work (in that processor)

while in CS

2820.1.2011 Copyright Teemu Kerola 2011

Disable
Enable

Disable
-- CS --
Enable

Disable
-- CS --
Enable

Can not execute this,
if not running…

Concurrent Programming (RIO) 20.1.2011

Lecture 3: Mutual Exclusion 15

Test-and-set Lock Variables
• Environment

– All processes with shared memory
– Should have multiple processors
– Not very good for uniprocessor systems (or synchronizing

processes running on the same processor)
• Wait (busy-wait) while holding the processor!

• Test-and-set machine instruction
– Indivisibly read old value and write new value (complex mem-op)

2920.1.2011 Copyright Teemu Kerola 2011

Test-and-set (common, local)
local common ; read old state
common 1 ; mark reserved

Test-and-set (shLock, locked);
while (locked)

Test-and-set (shLock, locked);
-- CS --
shLock = 0;

Test-and-set (shLock, locked);
while (locked)

Test-and-set (shLock, locked);
-- CS --
shLock = 0;

shared local

Lukkomuuttujat

Other Machine Instructions for
Synchronization Problem Busy-Wait Solutions

• Test-and-set

• Exchange

• Fetch-and-add

• Compare-and-swap

3020.1.2011 Copyright Teemu Kerola 2011

Exchange (common, local)
local common ; swap values

Test-and-set (common, local)
local common ; read state
common 1 ; mark reserved

Fetch-and-add (common, local, x)
local common ; read state
common common+x ; add x

int Compare-and-swap (common, old, new)
return_val common
if (common == old)

common new

“read-after-write”
memory bus
transaction
may also be used

“read-modify-write”
memory bus
transaction
(local in HW register)

Use all in
busy-wait loops

Concurrent Programming (RIO) 20.1.2011

Lecture 3: Mutual Exclusion 16

Lock variables and busy wait

• Need shared memory
• Use processor while waiting

– Waste of a processor?
– Not so smart with just one processor

• Busy waits suspended when time slice ends
(i.e., when OS time slice interrupt occurs)

– Should wait only a very short time
• Unless plenty of processors

– Real fast resume when wait ends
• Good property in some environments

3120.1.2011 Copyright Teemu Kerola 2011

Summary

• Critical section (CS)
• Critical Section Problem
• Solutions without HW Support
• State Diagrams for Algorithms
• Busy-Wait Solutions with HW Support

3220.1.2011 Copyright Teemu Kerola 2011

