
Concurrency
Ch 1 [BenA 06]

Terminology
Concurrency in Systems

Problem Examples
Solution Considerations

112.1.2011 Copyright Teemu Kerola 2011

Lesson 1

Concurrency Terminology
• Process, thread
• “Ordinary” program

– Sequential process, one thread of execution
• Concurrent program

– Many sequential process, that may be executed in parallel
• multi-threaded Java-program, runs in one system
• Web-application, distributed on many systems

• Multiprocessor system, parallel program
– Many sequential or concurrent processes are executed in

parallel
– Many architectures, no winner yet

• Distributed system, distributed program
– No shared memory
– Interconnected systems

212.1.2011 Copyright Teemu Kerola 2011

tavallinen ohjelma

rinnakkaisohjelma

hajautettu ohjelma

rinnakkaisohjelma, moniprosessorisovellus

prosessi,
säie

Concurrency at HW-level

• Processor
– Execute many instructions in parallel
– Execute many threads in parallel
– Execute many processes in parallel

• System
– Many processors/display processors
– Many I/O devices

• LAN or WAN
– Many systems (in clusters)

• Internet and other networks
– Many sub-systems

312.1.2011 Copyright Teemu Kerola 2011

STI Cell

http://ops.fhwa.dot.gov/publications/telecomm_handbook/images/fig2-14.gif

Problem
• Moore’s Law will not

give us (any more)
faster processors
– But it gives us now

more processors on
one chip

• Multicore CPU
• Chip-level

multiprocessor
(CMP)

412.1.2011 Copyright Teemu Kerola 2011

Herb Sutter, “A Fundamental Turn
Toward Concurrency in SW”,
Dr. Dobb’s Journal, 2005.
http://www.ddj.com/web-development/184405990;jsessionid=BW05DMMAOT3ZGQSNDLPCKH0CJUNN2JVN?_requestid=1416784

512.1.2011 Copyright Teemu Kerola 2011

Borkar, Dubey, Kahn, et al. “Platform 2015.” Intel White Paper, 2005.

(hyper-
threads)

http://download.intel.com/technology/computing/archinnov/platform2015/download/Platform_2015.pdf

The Multicore Challenge
• We have a heat-barrier dead-end to develop

simple to program single core chips
– So, we leap to multicore chips in pursuit for ever higher

processing power
• Parallel Challenge: how to use these multicore

computers efficiently to speed up computing?
– Concurrent programming
– We should have launched a parallel programming

“Manhattan Project” a long time ago
• Would need now 100’s of millions ($), not 10’s of

millions ($) per year for long term funding

612.1.2011 Copyright Teemu Kerola 2011

David Patterson, The Multicore Challenge, The CCC Blog, Aug 26, 2008,
http://www.cccblog.org/2008/08/26/the-multicore-challenge/

Concurrency at HW-level
• Machine language code

– Many instructions at execution
concurrently

– Logically “one at a time” (von Neumann arch.)
• At least one “instruction cluster” at a time

– Program execution may stop/pause after any instruction
• High level programming language code

– Process switch can occur at any time
– No “handle” on process switch times (in general)

• Operating system & external events decide
– Need to synchronize with other programs
– Need to communicate with other programs
– Need to get handle to process switch occurrences
– Other processes may be in execution at the same time

712.1.2011 Copyright Teemu Kerola 2011

Comp.Org. I, II
(tito, tikra)

Problem Free Concurrency?
• No problems at all?

– Concurrent threads in execution
– No shared data, no I/O (or private I/O)
– No communication, no synchonization

• No shared data, but data in shared memory
– Bus congestion may be problem

• Concurrency problem (bus use) solved in HW
• Slows down execution

• Communication/synchronization is needed
eventually
– Combine results from concurrent threads

812.1.2011 Copyright Teemu Kerola 2011

Concurrency Problems
• Keep data consistent

– Update all fields of shared data
– Complete writing a buffer before reading starts

• Synchronize with someone
– Complete writing before reading starts
– Give money only after bank card is taken
– Compile new Java class before execution resumes
– Do not wait forever, if the other party is dead

• Communicate with someone
– Send a short message to someone
– Send data to be processed to someone
– Send 2 GB data for remote processing, wait for result

912.1.2011 Copyright Teemu Kerola 2011

Concurrency Examples
• Playstation 3

– Use effectively 2 cells, 9 processors at each cell
• Use two different processor architectures

– Divide-and-conquer or filtering approach?
• Desktop PC

– Use effectively 4 processors and a graphics adapter to
generate graphics for fast moving game

– Divide processing for CPU’s and graphics adapter?
– Utilize all 4 processors
– Control shared access to game data base

• In memory? In disk?
• In a file server in Japan?

1012.1.2011 Copyright Teemu Kerola 2011

Concurrency Examples
• Multithreaded Java program on a multiprocessor

system
– Access to shared

data structures

– Synchronization between threads
• Displaying these slides from file server

– Transfer slides to local buffer and display them

1112.1.2011 Copyright Teemu Kerola 2011

clickvera: javac Plusminus8.java
vera: time java Plusminus8 >& a &

vera has 8 processors visible to operating system
Why is result different with extra output?

clickvera: javac Plusminus1.java
vera: time java Plusminus1

vera: ps -eo pcpu,pid,user,args | sort -k 1 -r | head -10

http://www.cs.helsinki.fi/u/kerola/rio/Java/examples/Plusminus1.java

http://www.cs.helsinki.fi/u/kerola/rio/Java/examples/Plusminus8.java

Concurrency Examples

• Linux Beowulf 6 node cluster
– How to solve weather forecast Hirlam model as fast

as possible?
– How to best distribute data?
– Solution scalable to 100 or 1000 nodes?

• Web server
– How to serve 1000 or 10000 concurrent requests with

100 file servers
• Most reads, but some writes to same files?
• How to guarantee consistent reads with simultaneous writes?

1212.1.2011 Copyright Teemu Kerola 2011

Concurrency Examples
• Operating system

– How to keep track of all concurrent processes, each
with multiple threads?

– What type of concurrency control utilities should be
offered to user programs?

• Which utilities offered to OS services?
– How do we guarantee that the system does not

“freeze”
– How to write an 8-disk disk controller device driver?
– How do I guarantee, that nothing disturbs an ongoing

process switch?

1312.1.2011 Copyright Teemu Kerola 2011

Concurrency Problem Solution Level
• Processor level, i.e., below machine language level

– HW solutions, automatic, no errors
– Need to understand, this is where it really happens

• Machine language level
– Specific (HW) machine instructions for concurrency solutions
– Clever solutions without specific instructions
– Need to be used properly, this is where it really happens

• Program level, i.e., programming language level
– SW solutions, many possibilities for error
– Solve problem by programming the solution your self

• Very error prone
• Requires privileged execution mode (usually)

– Solve problem directly by invoking certain available library
services

• Error prone – may invoke wrong routines at wrong times
– Solve problem by letting available library service do it all for you

• Not suitable always – may not fit to your problem well

1412.1.2011 Copyright Teemu Kerola 2011

Library Solutions for
Concurrency Problems

• Programming language run-time library
– E.g., Java thread management
– Usually within one process (in one system)
– Any program can use
– May be implemented directly or with OS-libraries

• Operating systems services (libraries)
– Any process can use these, not so portable across OS’s
– Usually only choice between many processes

• Exception: programming language library that
implements its services with OS

– Only choice between many systems
– May need privileged execution mode

• Some services reserved only for OS programs or
utilities

1512.1.2011 Copyright Teemu Kerola 2011

Basic Concurrency Problem Types

• Mutex
– One or more critical code

segments, i.e., critical section
– At most one process executing

critical section (of code) at any time
– I.e., at most one process

holds this resource
(code) at any time

• Synchronization

• Communication

1612.1.2011 Copyright Teemu Kerola 2011

Mutual exclusion,
poissulkemisongelma

Person.id = idX;
Person.name = nameX;
Person.age = ageX;

Q
P1

P3 P4

P2

P Q

P Qdata

continue

Discuss

Basic Concurrency Problems
• Dining philosophers

– think-eat cycle
– need 2 forks to eat
– can take one fork at a time
– no discussion
– question: what protocol to

use to reserve forks?
– multi-process

synchronization
– Avoid deadlock
– Avoid starvation
– Prove correctness

1712.1.2011 Copyright Teemu Kerola 2011

http://en.wikipedia.org

Edsger Dijkstra, 1971 Aterioivat filosofit

photo ©2002 Hamilton Richards, http://www.cs.utexas.edu/users/EWD/EWDwww.jpg Discuss

Basic Concurrency Problems
• Sleeping barber

– One barber, one barber chair
– Waiting room with n chairs
– No customers?

• Barber sleeps until arriving
customer wakes him up

– Customer arrives?
• Barber sleeps? Wake him up!
• Barber busy and empty chairs?

Reserve one and wait.
• o/w leave

– Question: what protocol for
barber & customers?

– Inter-process communication,
synchronization?

– Avoid deadlock and starvation

1812.1.2011 Copyright Teemu Kerola 2011

Nukkuva parturi

http://www.cs.uml.edu/~fredm/courses/91.308-fall05/assignment7.shtml

Fred G. Martin

Dijkstra

Basic Concurrency Problems
• Bakery algorithm

– Baker, ticket machine
– Each arriving customer gets a

ticket number
– Customers are served in

increasing ticket number order
– Question: how to implement the

ticket machine
• In distributed system?
• With/without shared

memory?
– Multi-threaded mutual

exclusion
– Critical section use order?

1912.1.2011 Copyright Teemu Kerola 2011

Leipurin vuorolappu

Leslie Lamport, 1974

http://research.microsoft.com/users/
lamport/leslie.gif

Basic Concurrency Problems
• Producer-Consumer

– Bounded shared buffer area
– Producers insert data items
– Consumers take data items in arriving order
– Full buffer?

• Producer blocks

– Empty buffer?
• Consumer blocks

– Question: protocol for producer/consumer
– Communication, synchronization

• Unix/linux “pipe”

– Avoid deadlock, starvation
2012.1.2011 Copyright Teemu Kerola 2011

tuottaja-kuluttaja

P1

P3

P2
C1

C2

data
data

data

Basic Concurrency Problems
• Readers-writers

– Shared data-base
– Many can read same item

concurrently
– Only one can write at a time

• Reading not allowed at that time
– Readers have priority over writers
– Question: protocol for

readers/writers?
– Mutual exclusion, synchronization
– Avoid deadlock, starvation

2112.1.2011 Copyright Teemu Kerola 2011

read
read

w
rite

lukijat-kirjoittajat

System Considerations

• Different threads in same process?
– Who controls thread switching? Application or OS?

• Different processes in same system?
– Shared memory or not?
– Many threads in each process?

• Different threads/processes in processors grid?
– No shared memory

• Different threads/processes in distributed system?
– No shared memory
– Large communication delays

2212.1.2011 Copyright Teemu Kerola 2011

Solution Considerations
• Solution at application level without HW support

– Do everything from scratch
• Solution at application level with HW support

– Use special machine language level instructions or
structures

• Solution at operating system level
– Use utilities in operating system library

• Solution at programming language level
– Use utilities in programming language library

• Solution at network level
– Use utilities in some network server

• Need to understand what really happens
2312.1.2011 Copyright Teemu Kerola 2011

Summary

• Terminology
• Concurrency in systems
• Concurrency problem examples

– Educational: philophers, barber, bakery
– Practical: consumer-producer, readers-writers

• Solution considerations

2412.1.2011 Copyright Teemu Kerola 2011

