
UML Exercise Session 3 (Math)

Handed out: April 6 (Tue)

Hints for solution: Exercise class on April 8 (Thu)

Hand in: April 14 (Wed), the latest, @ Room A348

This assignment gives you maximally 5% worth of extra points for the
computer assignments and the final exam. Note: Not all exercises have
equal weight!

Ex. 1 — PCA and data representation (1 out of 5 %)
Denote by U = (u1, . . . um) the first m ≤ p principal component directions
(weights) of the zero mean random variable x ∈ R

p. Assume you have n
observations of x, organized in the matrix X

X = (x1 . . .xn). (1)

1. What are the elements of the rows vT
i of X?

2. Express the sample covariance matrix in terms of vi.

3. Let z = UTx and Z = UT X. Write down an explicit expression for
the rows of Z, and give an interpretation of the rows in terms of
PCA.

4. Show that the rows of Z are orthogonal to each other.

5. Interpret orthogonality of the rows of Z.

Ex. 2 — Correlations, linear dependence, and small eigenvalues (1 out of
5 %)

1. Assume the covariance matrix C of X = (x1, x2)
T has the form

C =

(

1 ρ
ρ 1

)

(2)

Calculate the eigenvalues in function of ρ (by hand). What is the
effect of correlation between the random variables on the
eigenvalues?

2. Let x2 = ax1 + n where n is uncorrelated with x1, and x1 has mean
zero and variance 1. How do you have to choose the factor a and
the noise n so that X has covariance matrix C ?

3. Calculate the variance of n (the noise variance) and make a scatter
plot of X for ρ = (−1,−0.25, 0, 0.5, 1) (either sketch by hand or
make the plots with matlab/R)

4. Let v1 and v2 be the vector with the observations of X1 and X2,
respectively. What happens to v1 and v2 as |ρ| tends to one, and
what happens to the conditioning number of C ?
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Ex. 3 — Correlation and Projection (1 out of 5 %)
Let u1,u2,u3 be the three orthogonal, unit norm eigenvectors of the
covariance matrix C, given by

C =





1 0 cos(α)
0 1 sin(α)

cos(α) sin(α) 1



+
1

2
λ3





cos2(α) cos(α) sin(α) − cos(α)
cos(α) sin(α) sin2(α) − sin(α)
− cos(α) − sin(α) 1





u1 =
1√
2





cos(α)
sin(α)

1



u2 =





− sin(α)
cos(α)

0



u3 =
1√
2





− cos(α)
− sin(α)

1





with α ∈ [0, 2π]

1. For λ3 = 0, show that C is not invertible

2. For λ3 = 0, verify that ui, i = 1, 2, 3 are eigenvectors and calculate
the eigenvalues λ1 and λ2.

3. For arbitrary λ3, recalculate C from the ui and λi.

4. For λ3 = 0.1, if you want to reduce the dimension of your data by 1,
i.e. project your data on a two-dimensional subspace, which two
principal components (PCs) would you use?

5. For λ3 = 0.1, what is the proportion of the variance explained by
your choice of PCs in the previous question?

6. Show where observations of the form (x1, 0, 0)
T , (0, x2, 0)

T and
(0, 0, x3)

T are projected to when using the first two PCs: Make a
sketch for α = 0, π

2
, π

4
and 5π

6
.

7. How does the projection change in function of the correlation
between the variables?

Ex. 4 — PCA and linear regression (2 out of 5 %)
Assume yk = xT

k β + ǫk, for k = 1, . . . , n where the ǫk are iid Gaussian with
mean zero and variance σ2, and xk ∈ R

p.

1. The observed data is (yk,xk), k = 1 . . . n, and the goal is to
estimate β from that data. The argument β̂ which minimizes the
residual sums of squares J(β) is an estimate for β,

J(β) =
1

n

n
∑

k=1

(yk − xT
k β)2. (3)

Show that β̂ is
β̂ = (XXT )−1Xy (4)

where X = (x1, . . . ,xn), and y = (y1, . . . , yn)T . Express β̂ also in
terms of the sample covariance matrix Ĉx of x (Hint:
Ĉx = 1/nXXT )
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2. What does β̂ become as n → ∞?

3. Show that the expectation and variance of β̂ given X, i.e. E(β̂|X)
and V (β̂|X) are

E(β̂|X) = β (5)

V (β̂|X) =
σ2

n
Ĉ−1

x . (6)

4. The mean squared error (MSE) of β̂ given X is defined as
E(||β − β̂||2|X). It equals

MSE = Tr V (β̂|X) + ||β − E(β̂|X)||2 (7)

Find an expression for the MSE in terms of the eigenvalues of Ĉx.
What kind of data leads to a large MSE? (Hint: what kind of data
gives small eigenvalues?)

5. We are now introducing PCA regression. Let U = (u1, . . . um)
contain the first m ≤ p principal component directions (weights)
that are obtained from X. Assume further that the variances di of
the principal components satisfy d1 ≥ d2 ≥ . . . ≥ dm. In
PCA-regression, one looks for β in the form of

β = Umγ. (8)

Give an expression for the residual sums of squares in Equation (3)
in function of γ. Denote this cost function by Jpc(γ). Show that
Jpc(γ) has the same form as J(β) but that the principal components
take the place of the inputs xk.

6. Show that γ̂, the γ which minimizes Jpc(γ), is given by

γ̂ = D−1

m UT
m

1

n
Xy, (9)

where Dm = diag(d1, . . . , dm).

7. Let β̂pc = Umγ̂, i.e.

β̂pc = UmD−1

m UT
m

1

n
Xy, (10)

Show that

E(β̂pc|X) = UmUT
mβ (11)

V (β̂pc|X) =
σ2

n
UmD−1

m UT
m. (12)

8. What is the MSE (defined in Eq (7)) of β̂pc ? Discuss the effect of
the parameter m (the number of principal components) on the MSE.


