Handed out: April 6 (Tue)
Hints for solution: Exercise class on April 8 (Thu)
Hand in: April 14 (Wed), the latest, @ Room A348
This assignment gives you maximally 5% worth of extra points for the computer assignments and the final exam. Note: Not all exercises have equal weight!

Ex. 1 - PCA and data representation (1 out of 5%)
Denote by $U=\left(\mathbf{u}_{1}, \ldots \mathbf{u}_{m}\right)$ the first $m \leq p$ principal component directions (weights) of the zero mean random variable $\mathbf{x} \in \mathbb{R}^{p}$. Assume you have n observations of \mathbf{x}, organized in the matrix X

$$
\begin{equation*}
X=\left(\mathrm{x}_{1} \ldots \mathrm{x}_{n}\right) \tag{1}
\end{equation*}
$$

1. What are the elements of the rows \mathbf{v}_{i}^{T} of X ?
2. Express the sample covariance matrix in terms of \mathbf{v}_{i}.
3. Let $\mathbf{z}=U^{T} \mathbf{x}$ and $Z=U^{T} X$. Write down an explicit expression for the rows of Z, and give an interpretation of the rows in terms of PCA.
4. Show that the rows of Z are orthogonal to each other.
5. Interpret orthogonality of the rows of Z.

Ex. 2 - Correlations, linear dependence, and small eigenvalues (1 out of 5%)

1. Assume the covariance matrix C of $X=\left(x_{1}, x_{2}\right)^{T}$ has the form

$$
C=\left(\begin{array}{ll}
1 & \rho \tag{2}\\
\rho & 1
\end{array}\right)
$$

Calculate the eigenvalues in function of ρ (by hand). What is the effect of correlation between the random variables on the eigenvalues?
2. Let $x_{2}=a x_{1}+n$ where n is uncorrelated with x_{1}, and x_{1} has mean zero and variance 1 . How do you have to choose the factor a and the noise n so that X has covariance matrix C ?
3. Calculate the variance of n (the noise variance) and make a scatter plot of X for $\rho=(-1,-0.25,0,0.5,1)$ (either sketch by hand or make the plots with matlab/R)
4. Let \mathbf{v}_{1} and \mathbf{v}_{2} be the vector with the observations of X_{1} and X_{2}, respectively. What happens to \mathbf{v}_{1} and \mathbf{v}_{2} as $|\rho|$ tends to one, and what happens to the conditioning number of C ?

Ex. 3 - Correlation and Projection (1 out of 5%)
Let $\mathbf{u}_{1}, \mathbf{u}_{2}, \mathbf{u}_{3}$ be the three orthogonal, unit norm eigenvectors of the covariance matrix C, given by

$$
\begin{gathered}
C=\left(\begin{array}{ccc}
1 & 0 & \cos (\alpha) \\
0 & 1 & \sin (\alpha) \\
\cos (\alpha) & \sin (\alpha) & 1
\end{array}\right)+\frac{1}{2} \lambda_{3}\left(\begin{array}{ccc}
\cos ^{2}(\alpha) & \cos (\alpha) \sin (\alpha) & -\cos (\alpha) \\
\cos (\alpha) \sin (\alpha) & \sin ^{2}(\alpha) & -\sin (\alpha) \\
-\cos (\alpha) & -\sin (\alpha) & 1
\end{array}\right) \\
\mathbf{u}_{1}=\frac{1}{\sqrt{2}}\left(\begin{array}{c}
\cos (\alpha) \\
\sin (\alpha) \\
1
\end{array}\right) \mathbf{u}_{2}=\left(\begin{array}{c}
-\sin (\alpha) \\
\cos (\alpha) \\
0
\end{array}\right) \mathbf{u}_{3}=\frac{1}{\sqrt{2}}\left(\begin{array}{c}
-\cos (\alpha) \\
-\sin (\alpha) \\
1
\end{array}\right)
\end{gathered}
$$

with $\alpha \in[0,2 \pi]$

1. For $\lambda_{3}=0$, show that C is not invertible
2. For $\lambda_{3}=0$, verify that $\mathbf{u}_{i}, i=1,2,3$ are eigenvectors and calculate the eigenvalues λ_{1} and λ_{2}.
3. For arbitrary λ_{3}, recalculate C from the \mathbf{u}_{i} and λ_{i}.
4. For $\lambda_{3}=0.1$, if you want to reduce the dimension of your data by 1 , i.e. project your data on a two-dimensional subspace, which two principal components (PCs) would you use?
5. For $\lambda_{3}=0.1$, what is the proportion of the variance explained by your choice of PCs in the previous question?
6. Show where observations of the form $\left(x_{1}, 0,0\right)^{T},\left(0, x_{2}, 0\right)^{T}$ and $\left(0,0, x_{3}\right)^{T}$ are projected to when using the first two PCs: Make a sketch for $\alpha=0, \frac{\pi}{2}, \frac{\pi}{4}$ and $\frac{5 \pi}{6}$.
7. How does the projection change in function of the correlation between the variables?

Ex. 4 - PCA and linear regression (2 out of 5%)
Assume $y_{k}=\mathbf{x}_{k}^{T} \beta+\epsilon_{k}$, for $k=1, \ldots, n$ where the ϵ_{k} are iid Gaussian with mean zero and variance σ^{2}, and $\mathbf{x}_{k} \in \mathbb{R}^{p}$.

1. The observed data is $\left(y_{k}, \mathbf{x}_{k}\right), k=1 \ldots n$, and the goal is to estimate β from that data. The argument $\hat{\beta}$ which minimizes the residual sums of squares $J(\beta)$ is an estimate for β,

$$
\begin{equation*}
J(\beta)=\frac{1}{n} \sum_{k=1}^{n}\left(y_{k}-\mathbf{x}_{k}^{T} \beta\right)^{2} . \tag{3}
\end{equation*}
$$

Show that $\hat{\beta}$ is

$$
\begin{equation*}
\hat{\beta}=\left(X X^{T}\right)^{-1} X \mathbf{y} \tag{4}
\end{equation*}
$$

where $X=\left(\mathbf{x}_{1}, \ldots, \mathbf{x}_{n}\right)$, and $\mathbf{y}=\left(y_{1}, \ldots, y_{n}\right)^{T}$. Express $\hat{\beta}$ also in terms of the sample covariance matrix \hat{C}_{x} of \mathbf{x} (Hint:

$$
\left.\hat{C}_{x}=1 / n X X^{T}\right)
$$

2. What does $\hat{\beta}$ become as $n \rightarrow \infty$?
3. Show that the expectation and variance of $\hat{\beta}$ given X, i.e. $E(\hat{\beta} \mid X)$ and $V(\hat{\beta} \mid X)$ are

$$
\begin{align*}
E(\hat{\beta} \mid X) & =\beta \tag{5}\\
V(\hat{\beta} \mid X) & =\frac{\sigma^{2}}{n} \hat{C}_{x}^{-1} \tag{6}
\end{align*}
$$

4. The mean squared error (MSE) of $\hat{\beta}$ given X is defined as $E\left(\|\beta-\hat{\beta}\|^{2} \mid X\right)$. It equals

$$
\begin{equation*}
M S E=\operatorname{Tr} V(\hat{\beta} \mid X)+\|\beta-E(\hat{\beta} \mid X)\|^{2} \tag{7}
\end{equation*}
$$

Find an expression for the MSE in terms of the eigenvalues of \hat{C}_{x}. What kind of data leads to a large MSE? (Hint: what kind of data gives small eigenvalues?)
5. We are now introducing PCA regression. Let $U=\left(\mathbf{u}_{1}, \ldots \mathbf{u}_{m}\right)$ contain the first $m \leq p$ principal component directions (weights) that are obtained from X. Assume further that the variances d_{i} of the principal components satisfy $d_{1} \geq d_{2} \geq \ldots \geq d_{m}$. In PCA-regression, one looks for β in the form of

$$
\begin{equation*}
\beta=U_{m} \gamma \tag{8}
\end{equation*}
$$

Give an expression for the residual sums of squares in Equation (3) in function of γ. Denote this cost function by $J_{p c}(\gamma)$. Show that $J_{p c}(\gamma)$ has the same form as $J(\beta)$ but that the principal components take the place of the inputs \mathbf{x}_{k}.
6. Show that $\hat{\gamma}$, the γ which minimizes $J_{p c}(\gamma)$, is given by

$$
\begin{equation*}
\hat{\gamma}=D_{m}^{-1} U_{m}^{T} \frac{1}{n} X \mathbf{y} \tag{9}
\end{equation*}
$$

where $D_{m}=\operatorname{diag}\left(d_{1}, \ldots, d_{m}\right)$.
7. Let $\hat{\beta}_{p c}=U_{m} \hat{\gamma}$, i.e.

$$
\begin{equation*}
\hat{\beta}_{p c}=U_{m} D_{m}^{-1} U_{m}^{T} \frac{1}{n} X \mathbf{y} \tag{10}
\end{equation*}
$$

Show that

$$
\begin{align*}
E\left(\hat{\beta}_{p c} \mid X\right) & =U_{m} U_{m}^{T} \beta \tag{11}\\
V\left(\hat{\beta}_{p c} \mid X\right) & =\frac{\sigma^{2}}{n} U_{m} D_{m}^{-1} U_{m}^{T} \tag{12}
\end{align*}
$$

8. What is the MSE (defined in Eq (7)) of $\hat{\beta}_{p c}$? Discuss the effect of the parameter m (the number of principal components) on the MSE.
