
More about pointers

Timo Karvi

September, 2013

Timo Karvi () More about pointers September, 2013 1 / 1

More about Pointers

We study the following topics:

generic pointers,

pointer conversions,

pointer subtraction,

protecting return values and parameter values: const,

pointers to functions,

generic pointers,

pointers to blocks containing pointers.

Timo Karvi () More about pointers September, 2013 2 / 1

Generic Pointers

A special pointer type void* can be safely converted to any other
pointer type.
Example:

void * p;

char c = ’c’;

char *cp = &c;

p = cp;

/* illegal putchar(*p); */

putchar(*(char*)p);

Timo Karvi () More about pointers September, 2013 3 / 1

Pointer Conversions I

Storage alignment means that storage units must begin on certain
addressing boundaries. For example, on a byte-oriented machine, a
16-bit word may have to start on a multiple of bytes, such as 4. In
order to satisfy this requirement, compilers insert pad bytes. Storage
alignment is one of the reasons for the lack of portability.

Consider the following variable definitions:

char * pc;

int * pi;

and assume that pc is initialized to 1001. Given this information,
what is the value of (int*)pc?

The conversion of pc to integer pointer type may require an
adjustment to an address that is divisible by 4, accomplished either by
scaling down to 1000 or scaling up to 1004. The C language does not
specify whether the adjustment is backward or forward, so both
possibilities could occur.

Timo Karvi () More about pointers September, 2013 4 / 1

Pointer Conversions II

Thus the value of (int*)pc can differ from the value of pc because of
this scaling.

The other possibility is that no address adjustment is performed when
pointers are converted from one type another. In this case, an
expression involving the derefencing of that converted pointer, for
example *((int*)pc), may result in the operating system aborting the
program because of illegal addressing (an integer at an address not
divisible by 4).

In general, pointers to a type S may be safely converted to pointers to
a type T and back if S is more restrictive than T.

Timo Karvi () More about pointers September, 2013 5 / 1

Pointer Subtraction I

Given two pointers, p and q, which are of the same type, assuming
that p is greater than q and that both point to objects in a single
memory block, the expression

p − q

yields the number of objects between p and q, including the object
pointed to by q.

The type of the result of pointer difference is ptrdiff t, defined in
stddef.h.

The type is defined in the library because the result of pointer
subtraction may have to be represented as a ”small” value, if the
so-called small memory model is used (for example , the model limited
to 64K). It may also have to be represented as a large value for large
memory models. Therefore, for the sake of portability, you can only
assume that this type is signed, and avoid making of conversions.

Timo Karvi () More about pointers September, 2013 6 / 1

Pointer Subtraction II

Pointer subtraction can be used to find the first occurence of the
value 0 in a block of doubles. Variable position will be initialized to
the position in the block that the 0 occurs, or to -1 if 0 does not
occur in the block.

int position;

for (q=p; q<p+SIZE; q++)

if (*q == 0.0)

break;

position = (q == p+SIZE) ? -1 : (q-p)+1;

This code compares q with the pointer pointing to p + SIZE , which
points beyond the block allocated for p. C allows to do this, as long
as you do not try to derefence such a pointer.

Timo Karvi () More about pointers September, 2013 7 / 1

Protecting Return Values I

Sometimes a function can have unwanted side effects. Consider the
following function.

#define SIZE 10

double *p;

if (MALLOC(p, double, 10))

error;

double product(double *block, int size) {

int i;

for (i=1; i<size; i++)

block[0] *= block[i];

return block[0];

}

Timo Karvi () More about pointers September, 2013 8 / 1

Protecting Return Values II

The function calculates the product using the first element of the
block. (Do not use this kind solutions in your programs!) A call to
this function will confuse the caller, who most likely does not expect
the function to modify his or her block of memory.

This side effect can be prevented by adding the const keyword:

double product (const double * block, int size);

Now const specifies that block is a pointer to constant data, and any
attempt to modify this data would produce a compiler’s warning.

Consider a different example:

Timo Karvi () More about pointers September, 2013 9 / 1

Protecting Return Values III

const int* f(int i) {

int * p;

if ((p = malloc(sizeof(int)) == NULL)

return NULL;

*p = i;

return p;

}

f() return a pointer to constant data, and any attempt to modify it
will fail. Specifically,

int *p = f(2);

will produce a compiler warning, while

const int * q = f(2);

*q = 3;

will produce an error.

Timo Karvi () More about pointers September, 2013 10 / 1

Qualified Pointers

Especially, we have the following possibilities with constant pointers:

const int *p; pointer to constant integer, the value of p may
change, but the value of *p can not;

int *const p; constant pointer to integer; the value of *p can
change, but the value of p can not;

const int *const p; constant pointer to constant integer;

There is an alternative syntax for a pointer to constant data:
int const *p.
Pointers can also be qualified as volatile, mainly to deal with problems
encountered with real-time systems. Volatile variables can be modified
asynchronously.

Timo Karvi () More about pointers September, 2013 11 / 1

Pointers to Functions I

Consider a type definition

int (*fp) (void)

Here fp is a pointer to an integer function that has no parameters.
The brackets around *fp are necessary. By C’s precedence rules,

int *fp()

is a function returning a pointer to int.

Another example:

double* (*gp)(int);

gp is a pointer to a function that returns a pointer to a double and
has one integer parameter.

A pointer to a function determines the prototype of this function, but
it does not specify its implementation. You can assign an existing
function to the pointer as long as both have identical parameter lists
and return types, using this assignment

Timo Karvi () More about pointers September, 2013 12 / 1

Pointers to Functions II

ptrName = funcName;

For example:

int (*fp) (void);

double* (*gp) (int);

int f(void);

double* g(int);

fp = f;

gp = g;

You can call the function f() through the pointer fp:

int i = fp();

One application of this techniques is to write generic sort functions
that make the assumption the user provides the required function,
such as the comparison function.

Timo Karvi () More about pointers September, 2013 13 / 1

Pointers to Functions III

Pointers to functions may be used to pass function as parameters to
other functions. Suppose we want to write a function tabulate()
which has a function, say f(), as one of its parameters:

void tabulate (double low, double high, double step,

double (*f)(double)) {

double x;

for (x = low; x <= high; x += step)

printf("%13.5f %20.10f\n", x, f(x));

}

tabulate(-1.0, 1.0, 0.01, pol1);

tabulate(-2.0, 2.0, 0.02, pol2);

Timo Karvi () More about pointers September, 2013 14 / 1

Generic Pointers I

It may be very useful to have functions with typeless parameters.
Consider first a task where there is a block of double values and a
function must search a particulary value in this block. In this case the
function is simple:

int search(const double *block, size_t size,

double value) {

double * p;

if (block == NULL)

return 0;

for (p=block; p < block+size; p++)

if (*p == value)

return 1;

return 0;}

Timo Karvi () More about pointers September, 2013 15 / 1

Generic Pointers II

Next we try to generalize this function so that the function can be
used with any parameter type: double, int, etc. The result is as
follows:

int searchGen(const void *block, size_t size,

void *value, size_t elsize,

int (*compare) (const void *,

const void *))

{ void *p;

if (block == NULL)

return 0;

for (p = block; p < block + size*elsize; p += elsize)

if (compare(p, value))

return 1;

return 0; }

Timo Karvi () More about pointers September, 2013 16 / 1

Pointers to Blocks Containing Pointers I

In the excises we have defined an arrays whose elements are pointers
to some elements. These kind of definitions can also be made by the
following way:

double **block;

Now block points to an area in the memory, where every element
points to a double value. We can reserve, for example, space for three
block element:

#define SIZE 3;

if ((block = calloc(SIZE, sizeof(double*))) == NULL)

...

The next step allocates memory for each element of the block:

Timo Karvi () More about pointers September, 2013 17 / 1

Pointers to Blocks Containing Pointers II

for (i = 0; i < SIZE; i++)

if ((block[i] = calloc(1, sizeof(double))) == NULL)

...

If we want to save a double value to the element pointed by block[0], we
can use different notations:

*(*block) = 2.1; or

*(block[0]) = 2.1; or

block[0][0] = 2.1;

block[1,0] = 3.1; or

*(block[1]) = 3.1; or

((block + 1)) = 3.1;

Timo Karvi () More about pointers September, 2013 18 / 1

Macros

Any line of C code that begins with # (pound symbol) contains a
preprocessing command. These commands can be used to define macros.
We start with

parameterless macros and continue with

predefined macros,

macros with parameters.

Timo Karvi () More about pointers September, 2013 19 / 1

Parameterless Macros I

Examples:

#define PI 3.14

#define SCREEN_W 80

#define GUI Graphical User \

Interface

The difference between a macro and a constant is the scope: the macro
can be used, starting with its definition, until the end of the file (unless it
is later undefined, see later). The declaration of a constant is subject to
the same scope rules as any other declared variable.
More examples:

#define ABORT return EXIT_FAILURE

#define PROMPT printf("Enter real value: ")

#define SKIP while (getchar() != ’\n’);

Timo Karvi () More about pointers September, 2013 20 / 1

Parameterless Macros II

Macro can be used in the definition of another macro:

#define EMPTY (maxUsed == 0)

#define ASSERT if (!(EMPTY ? current == 0 :\

0 < current && current <= maxUsed)) { \

fprintf(stderr, "invariant failed;\

current = %d\t; maxUsed = %d\n",

current, maxUsed); \

exit(1); }

Using macros may be prone to errors. For example

#define A 2+4

#define B A*3

produces the expression 2 + 4 ∗ 3. If you want (2 + 4) ∗ 3, then define A by

define A (2+4)

Timo Karvi () More about pointers September, 2013 21 / 1

Predefined Macros I

There are four predefined macros:

LINE current line number of the source file

FILE name of the current source file

TIME time of translation

STDC 1 if the compiler conforms to ANSI C

Example:

if (y = 0) {

fprintf(stderr, "divide by zero error on line

%d in the file %s\n",

LINE, _FILE_);

return EXIT_FAILURE;

} else x /= y;

Timo Karvi () More about pointers September, 2013 22 / 1

Macros with Parameters I

Examples of macros with parameters:

#define RANGE(i) (1 <= (i) && (i) <= maxUsed)

#define R(x) scanf("%d", &x);

#define READ(c, fileHandle) (c = fgetc(fileHandle))

Take care, if you use macros. Often extra parentheses must be added. If
the macro READ is defined without parentheses and the code

if (READ(c, fileHandle) == ’x’)

then the expanded text would result in

if (c = fgetc(fileHandle) == ’x’)

and 0 or 1 would get assigned to c - probably not what was intended.

Timo Karvi () More about pointers September, 2013 23 / 1

Undefining Macros

If you must redefine a macro, it is best to undefine it first, using the undef
command:

#undef PI

Timo Karvi () More about pointers September, 2013 24 / 1

Building Software with GNU make I

Consider a C-project consisting of several files. First, there is a project
directory. It contains a subdirectory src which has files app.c, app.h,
main.c, lib.c, bar.c. Executing the following command in the top-level
project directory will generate the application named appexp:

gcc -o appexp src/main.c src/app.c src/bar.c src/lib.c

This command can also be broken into the incremental steps:

gcc -c -o main.o src/main.c

gcc -c -o app.o src/app.c

gcc -c -o bar.o src/bar.c

gcc -c -o lib.o src/lib.c

gcc -o appexp main.o app.o bar.o lib.o

It is also possible to arrange these commands in a script file. For example,
consider buildit script:

Timo Karvi () More about pointers September, 2013 25 / 1

Building Software with GNU make II

1: #!/bin/sh

2: # Build the example project

3:

4: gcc -c -o main.o src/main.c

5: gcc -c -o app.o src/app.c

6: gcc -c -o bar.o src/bar.c

7: gcc -c -o lib.o src/lib.c

8: gcc -o appexp main.o app.o bar.o lib.o

Then a simple command ./buildit in the command line will build the
application. One of the disadvantages of the build script is that it rebuilds
the entire project every time it is invoked. One of the major enhancements
of the make utility over a shell script solution is its capability to
understand the dependencies of a project. This allows the make utility to
rebuild only parts of the project that need updating due to source file
changes. A simple Makefile would be in this case:

Timo Karvi () More about pointers September, 2013 26 / 1

Building Software with GNU make III

1: appexp: main.o app.o bar.o lib.o

2: gcc -o appexp main.o app.o bar.o lib.o

3:

4: main.o : src/main.c src/lib.c src/app.h

5: gcc -c -o main.o src/main.c

6:

7: app.o : src/app.c src/lib.h src/app.h

8: gcc -c -o app.o src/app.c

9:

10: bar.o : src/bar.c src/lib.h

11: gcc -c -o bar.o src/bar.c

12:

13: lib.o : src/lib.c src/lib.h

14: gcc -c -o lib.o src/lib.c

Timo Karvi () More about pointers September, 2013 27 / 1

Makefile variables I

GNU make provides support for variables. The basic syntax is

MY_VAR = A text string

For example, a simple variable Makefile:

1:

2: MY_VAR = file1.c file2.c

3:

4: all:

5: echo ${MY_VAR}

6:

when the make utility is invoked, it will attempt to build the all target and
the command on line 5 will be executed. The output is as follows:

Timo Karvi () More about pointers September, 2013 28 / 1

Makefile variables II

1:

2: $ make

3: echo file1.c file2.c

4: file1.c file2.c

5:

It is possible to catenate strings

MY_VAR = file.c

MY_VAR += file2.c

Using string variable may shorten Makefile, but it can also make it more
complicated. Consider the former Makefile with main, app, lib, and bar
and construct it now with the help of variables:

Timo Karvi () More about pointers September, 2013 29 / 1

Makefile variables III

1:

2: SRC_FILES=main.c app.c bar.c lib.c

3: OBJ_FILES=$(patsubst %.c, %.o, ${SRC_FILES})

4:

5: VPATH = src

6:

7: CFLAGS = -c -g

8: LDFLAGS = -g

9:

10: appexp: ${OBJ_FILES}

11: gcc ${LDFLAGS} -o appexp ${OBJ_FILES}

12:

13: %.o:%.c

14: gcc ${CFLAGS} -o $@ $15:

16: clean:

17: rm *.o.appexp

Timo Karvi () More about pointers September, 2013 30 / 1

Makefile variables IV

18:

19: MAIN_HDRS=lib.h app.h

20: LIB_HDRS=lib.h

21:

22: main.o : $(addprefix src/, ${MAIN_HDRS})

23: app.o : $(addprefix src/, ${MAIN_HDRS})

24: bar.o : $(addprefix src/, ${LIB_HDRS})

25: lib.o : $(addprefix src/, ${LIB_HDRS})

Line 13 introduces a pattern rule to indicate to the make utility how to
transform an arbitrary file ending with a.c extension into corresponding file
ending in a.o extension.The transformation is accomplished by executing
the commands associated with the pattern rule, in this case the command
on line 14. Notice that the command on line 14 uses some special variable
references to indicate the files that GCC should operate on.

Timo Karvi () More about pointers September, 2013 31 / 1

Makefile variables V

The $ variable contains the filename matched for the left side of the rule,
and the $ variable contains the filename matched for the right side of the
variable.

Timo Karvi () More about pointers September, 2013 32 / 1

