
Metabolic Control Analysis (MCA)

I The restriction imposed by MCA is that we only study effects
of small perturbations: what will happen if we ’nudge’ the
metabolic system slightly of its current steady state

I Mathematically, we employ a linearized system around the
steady state, thus ignoring the non-linearity of the kinetics.

I The predictions are local in nature; in general different for
each steady state



Questions of interest

I How does the change of enzyme activity affect the fluxes?

I Which individual reaction steps control the flux or
concentrations?

I Is there a bottle-neck or rate-limiting step in the metabolism?

I Which effector molecules (e.g. inhibitors) have the greatest
effect?

I Which enzyme activities should be down-regulated to control
some metabolic disorder? How to distrub the overall
metabolism the least?



Coefficients of control analysis

The central concept in MCA is the control coefficient between two
quantities (fluxes, concentations, activities, . . . ) y and x :

cy
x =

(
x

y

∆y

∆x

)
∆x→0

I Intuitively, cy
x is the relative change of y in response of

infinitely small change to x



ε-elasticity coefficient

I ε-elasticity coefficient

εki =
Si

vk

∂vk

∂Si

quantifies the change of a reaction rate vk in response to a
change in the concentration Si , while everything else is kept
fixed.
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Flux control coefficients

The flux-control coefficient
(FCC)

FCC j
k =

vk

Jj

∂Jj

∂vk

is defined as the change of flux
Jj of a given pathway, in
response to a change in the
reaction rate vk .
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Concentration control coefficients

The concentration-control
coefficient (CCC)

CCC i
k =

vk

Si

∂Si

∂vk

is defined as the change of
concentration Si , in response to
a change in the reaction rate vk .
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Theorems of MCA

I Unlike the elasticity coefficients, the control coefficients
cannot be directly computed from the kinetic parameters of
the reactions, even in principle.

I In order to determine the coefficients we need both some
MCA theory and experimental data

I MCA theory consists of two sets of theorems:
I Summation theorems make statements about the total control

of a flux or a steady-state concentration
I Connectivity theorems relate the control coefficients to the

elasticity coefficients



Summation theorems

The first summation theorem says that for each flux Jj the
flux-control coefficients must sum to unity

r∑
k=1

FCC j
k = 1

Thus, control of a flux is shared across all enzymatic reactions
For concentration control coefficients we have

r∑
k=1

CCC i
k = 0

Control of a concentration is shared across all enzymatic reactions,
some exerting positive control, other exerting negative control.



Flux control connectivity theorems

I Connectivity theorems tie elasticity coefficients εvk
Si

and control

coefficients FCC
Jj
vk ,CCCSi

vk
together.

I Flux control connectivity is given by

r∑
k=1

FCC
Jj
vk ε

vk
Si

= 0

I In our example we have FCC J
1 ε1S + FCC J

2 ε2S = 0 giving

FCC J
1

FCC J
2

= −
ε2S
ε1S

which shows that, everything else remaining constant, an
increase in ε2S needs to be countered with a decrease in FCC J

2
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Concentration control connectivity

I Similar connectivity theorems hold for concentrations,

I The concentration control connnectivity theorem ties the
elasticity of reaction vk with respect to concentration Si to
the concentration control of vk over the concentration Sh

I We have
r∑

k=1

CCCSh
vk

εvk
Si

= 0

for h 6= i , and
r∑

k=1

CCCSi
vk

εvk
Si

= −1



Calculating control coefficients

I With the help of the summation and connectivity theorems
and elasticities for single reactions one can determine values
for the control coefficients.

I For the two step pathway below, we apply the summation
theorem FCC J

1 + FCC J
2 = 1 and the connectivity theorem

FCC J
1 ε1S + FCC 2

2 ε2S = 0

I We obtain

FCC J
1 =

ε2S
ε2S − ε1S

,FCC J
2 =

−ε1S
ε2S − ε1S

where the elasticity coefficients, computed from reaction
kinetics can be substituted.
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Calculating control coefficients

I Since typically we have ε1S < 0 and ε2S > 0 from

FCC J
1 =

ε2S
ε2S − ε1S

,FCC J
2 =

−ε1S
ε2S − ε1S

we see that both reactions exert positive control over the flux
of the pathway

v1 v2

P2P1

v1 v2

S

J



Calculating control coefficients

I The concentration control coefficients fulfill

CCCS
v1

+ CCCS
v2

= 0,CCCS
v1

εv1
S + CCCS

v2
εv2
S = −1

which yields

CCCS
1 =

1

εv2
S − εv1

S

and

CCCS
2 =

−1

εv2
S − εv1

S

I With ε1S < 0 and ε2S > 0 we get CCCS
v1

> 0 and CCCS
v2

< 0,
that is the rise of first reaction rate rises the concentration of
S while rise of the second reaction rate lowers the
concentration of S
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MCA example: simple junction

I Reaction R0 has constant
flux v0 = 0.1

I Reactions R1,R4 and R5
irreversible with mass
action kinetics v = k+S

I Reactions R2 and R3
reversible with mass action
kinetics v = k+S − k−P

I All kinetic constants equal
k+ = k− = 0.1

I Let us perform MCA
analysis with given steady

state

I Results computed with the
COPASI simulator
(www.copasi.org)
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MCA example: simple junction

I Elasticities εki = Si
vk

∂vk
∂Si

A B C D

R0 0 0 0 0
R1 1 0 0 0
R2 0 2 -1 0
R3 0 2 0 -1
R4 0 0 1 0
R5 0 0 0 1
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MCA example: simple junction

I Flux control coefficients FCC k
J = vk

J
∂J
∂vk

R0 R1 R2 R3 R4 R5

R0 1 0 0 0 0 0
R1 1 0 0 0 0 0
R2 1 0 0.25 -0.25 0.25 -0.25
R3 1 0 -0.25 0.25 -0.25 0.25
R4 1 0 0.25 -0.25 0.25 -0.25
R5 1 0 -0.25 0.25 -0.25 0.25
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MCA example: simple junction

I Concentration control coefficients CCC k
i = vk

Si

∂Si
∂vk

R0 R1 R2 R3 R4 R5

A 1 -1 0 0 0 0
B 1 0 -0.25 -0.25 -0.25 -0.25
C 1 0 0.25 -0.25 -0.75 -0.25
D 1 0 -0.25 0.25 -0.25 -0.75
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MCA example: predicting the results of perturbation

I Let us consider optimization of the flux over a linear pathway
of four reactions by modulating enzyme concentrations.

I Assume the following kinetics vi = Ei (kiSi−1 − k−iSi ), initial
enzyme concentrations Ei = 1 and rate constants
ki = 2, k−i = 1 and concentrations of external substrates
S0 = S5 = 1

I The steady state flux J = 1 and the flux control coefficients
FCC J

1 = 0.533,FCC J
2 = 0.267,FCC J

3 = 0.133,FCC J
4 = 0.067

can be solved from the above equations.



MCA example: predicting the results of perturbation

I According to MCA, increasing the concentration of a single
enzyme Ei by p% will increase the flux approximately by
∆i = FCC J

i (p/100), giving
∆1 = 0.00533,∆2 = 0.00267,∆3 = 0.00133,∆4 = 0.00067.

I On the other hand, the underlying ’true’ kinetic model would
predict
∆̃1 = 0.00531, ∆̃2 = 0.00265, ∆̃3 = 0.00132, ∆̃4 = 0.00066.

I Thus MCA predicts fairly accurately the results of a small
preturbation.



MCA example: predicting the results of perturbation

I Large perturbations would not be equally accurately predicted
by MCA.

I Assume we can double the total enzyme concentration∑
Ei = 4 7→ 8. How should the enzyme be allocated for best

results?

I E1 7→ 5E1: MCA predicts ∆1 = 0.533 · 5 = 2.665, kinetic
model gives ∆̃1 = 0.7441

I E4 7→ 5E4: MCA predicts ∆4 = 0.067 · 5 = 0.335, kinetic
model 0.0563

I The maximal increase of 1.2871 for the flux is obtained by
modifying all the enzyme concentrations:
E1 = 3.124,E2 = 2.209,E3 = 1.562,E4 = 1.105



The End

Course Exam

I Wednesday 29.4.2009 9am-12pm, in A111

I Examined contents: lecture slides and exercises

I Exam will consist of five questions, each worth 8 points

I Types of questions: defining concepts, essays as well as
technical questions asking for analysis of a given metabolic
model


