Metabolic Control Analysis (MCA)

- The restriction imposed by MCA is that we only study effects of small perturbations: what will happen if we 'nudge' the metabolic system slightly of its current steady state
- Mathematically, we employ a linearized system around the steady state, thus ignoring the non-linearity of the kinetics.
- The predictions are local in nature; in general different for each steady state

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Questions of interest

- How does the change of enzyme activity affect the fluxes?
- Which individual reaction steps control the flux or concentrations?
- Is there a bottle-neck or rate-limiting step in the metabolism?
- Which effector molecules (e.g. inhibitors) have the greatest effect?
- Which enzyme activities should be down-regulated to control some metabolic disorder? How to distrub the overall metabolism the least?

The central concept in MCA is the *control coefficient* between two quantities (fluxes, concentations, activities, \dots) y and x:

$$c_x^y = \left(\frac{x}{y}\frac{\Delta y}{\Delta x}\right)_{\Delta x \to 0}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Intuitively, c_x^y is the relative change of y in response of infinitely small change to x

$\epsilon\text{-elasticity coefficient}$

► ε-elasticity coefficient

$$\epsilon_i^k = \frac{S_i}{v_k} \frac{\partial v_k}{\partial S_i}$$

quantifies the change of a reaction rate v_k in response to a change in the concentration S_i , while everything else is kept fixed.

Flux control coefficients

The flux-control coefficient (FCC)

$$FCC_k^j = \frac{\mathbf{v}_k}{J_j} \frac{\partial J_j}{\partial \mathbf{v}_k}$$

is defined as the change of flux J_j of a given pathway, in response to a change in the reaction rate v_k .

A D > A P > A B > A B >

Concentration control coefficients

The concentration-control coefficient (CCC)

$$CCC_k^i = \frac{\mathbf{v}_k}{S_i} \frac{\partial S_i}{\partial \mathbf{v}_k}$$

is defined as the change of concentration S_i , in response to a change in the reaction rate v_k .

Theorems of MCA

- Unlike the elasticity coefficients, the control coefficients cannot be directly computed from the kinetic parameters of the reactions, even in principle.
- In order to determine the coefficients we need both some MCA theory and experimental data
- MCA theory consists of two sets of theorems:
 - Summation theorems make statements about the total control of a flux or a steady-state concentration

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

 Connectivity theorems relate the control coefficients to the elasticity coefficients

Summation theorems

The first summation theorem says that for each flux J_j the flux-control coefficients must sum to unity

$$\sum_{k=1}^{r} FCC_k^j = 1$$

Thus, control of a flux is shared across all enzymatic reactions For concentration control coefficients we have

$$\sum_{k=1}^{r} CCC_{k}^{i} = 0$$

Control of a concentration is shared across all enzymatic reactions, some exerting positive control, other exerting negative control.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Flux control connectivity theorems

- ► Connectivity theorems tie elasticity coefficients e^{vk}_{Si} and control coefficients FCC^{Jj}_{vk}, CCC^{Si}_{vk} together.
- Flux control connectivity is given by

$$\sum_{k=1}^{r} FCC_{v_k}^{J_j} \epsilon_{S_i}^{v_k} = 0$$

► In our example we have $FCC_1^J \epsilon_S^1 + FCC_2^J \epsilon_S^2 = 0$ giving

$$\frac{FCC_1^J}{FCC_2^J} = -\frac{\epsilon_S^2}{\epsilon_S^1}$$

which shows that, everything else remaining constant, an increase in ϵ_5^2 needs to be countered with a decrease in FCC_2^J

Concentration control connectivity

- Similar connectivity theorems hold for concentrations,
- The concentration control connectivity theorem ties the elasticity of reaction v_k with respect to concentration S_i to the concentration control of v_k over the concentration S_h
- We have

$$\sum_{k=1}^{r} CCC_{v_k}^{S_h} \epsilon_{S_i}^{v_k} = 0$$

for $h \neq i$, and

$$\sum_{k=1}^{r} CCC_{v_k}^{S_i} \epsilon_{S_i}^{v_k} = -1$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Calculating control coefficients

- With the help of the summation and connectivity theorems and elasticities for single reactions one can determine values for the control coefficients.
- For the two step pathway below, we apply the summation theorem FCC^J₁ + FCC^J₂ = 1 and the connectivity theorem FCC^J₁ℓ¹₅ + FCC²₂ℓ²₅ = 0
- We obtain

$$FCC_1^J = \frac{\epsilon_s^2}{\epsilon_s^2 - \epsilon_s^1}, FCC_2^J = \frac{-\epsilon_s^1}{\epsilon_s^2 - \epsilon_s^1}$$

where the elasticity coefficients, computed from reaction kinetics can be substituted.

Calculating control coefficients

• Since typically we have $\epsilon_S^1 < 0$ and $\epsilon_S^2 > 0$ from

$$FCC_1^J = \frac{\epsilon_S^2}{\epsilon_S^2 - \epsilon_S^1}, FCC_2^J = \frac{-\epsilon_S^1}{\epsilon_S^2 - \epsilon_S^1}$$

we see that both reactions exert positive control over the flux of the pathway

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Calculating control coefficients

The concentration control coefficients fulfill

1

$$CCC_{v_1}^{S} + CCC_{v_2}^{S} = 0, CCC_{v_1}^{S}\epsilon_{S}^{v_1} + CCC_{v_2}^{S}\epsilon_{S}^{v_2} = -1$$

which yields

$$CCC_1^S = \frac{1}{\epsilon_S^{\nu_2} - \epsilon_S^{\nu_1}}$$

and

$$CCC_2^S = \frac{-1}{\epsilon_S^{\nu_2} - \epsilon_S^{\nu_1}}$$

With e¹_S < 0 and e²_S > 0 we get CCC^S_{v1} > 0 and CCC^S_{v2} < 0, that is the rise of first reaction rate rises the concentration of S while rise of the second reaction rate lowers the concentration of S</p>

- Reaction R0 has constant flux v₀ = 0.1
- Reactions R1, R4 and R5 irreversible with mass action kinetics v = k₊S
- Reactions R2 and R3 reversible with mass action kinetics v = k₊S - k₋P
- All kinetic constants equal
 k₊ = k₋ = 0.1
- Let us perform MCA analysis with given steady

state

 Results computed with the COPASI simulator (www.copasi.org)

◆□▶ ◆□▶ ◆注▶ ◆注▶ 「注」のへで

Elasti	citie	s ϵ_i^k	$=\frac{S_i}{v_k}$	$\frac{\partial v_k}{\partial S_i}$
	А	В	С	D
R0	0	0	0	0
R1	1	0	0	0
R2	0	2	-1	0
R3	0	2	0	-1
R4	0	0	1	0
R5	0	0	0	1

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへ⊙

Flux control coefficients $FCC_J^k = \frac{v_k}{J} \frac{\partial J}{\partial v_k}$						
	R0	R1	R2	R3	R4	R5
R0	1	0	0	0	0	0
R1	1	0	0	0	0	0
R2	1	0	0.25	-0.25	0.25	-0.25
R3	1	0	-0.25	0.25	-0.25	0.25
R4	1	0	0.25	-0.25	0.25	-0.25
R5	1	0	-0.25	0.25	-0.25	0.25

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

• Concentration control coefficients $CCC_i^k = \frac{v_k}{S_i} \frac{\partial S_i}{\partial v_k}$

	R0	R1	R2	R3	R4	R5
Α	1	-1	0	0	0	0
В	1	0	-0.25	-0.25	-0.25	-0.25
С	1	0	0.25	-0.25	-0.75	-0.25
D	1	0	-0.25	0.25	-0.25	-0.75

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

MCA example: predicting the results of perturbation

Let us consider optimization of the flux over a linear pathway of four reactions by modulating enzyme concentrations.

► Assume the following kinetics v_i = E_i(k_iS_{i-1} - k_{-i}S_i), initial enzyme concentrations E_i = 1 and rate constants k_i = 2, k_{-i} = 1 and concentrations of external substrates S₀ = S₅ = 1

▶ The steady state flux J = 1 and the flux control coefficients $FCC_1^J = 0.533$, $FCC_2^J = 0.267$, $FCC_3^J = 0.133$, $FCC_4^J = 0.067$ can be solved from the above equations.

(日) (同) (三) (三) (三) (○) (○)

MCA example: predicting the results of perturbation

- According to MCA, increasing the concentration of a single enzyme *E_i* by *p*% will increase the flux approximately by Δ_i = *FCC_i^J(p/100)*, giving Δ₁ = 0.00533, Δ₂ = 0.00267, Δ₃ = 0.00133, Δ₄ = 0.00067.
- On the other hand, the underlying 'true' kinetic model would predict

 $\tilde{\Delta}_1 = 0.00531, \tilde{\Delta}_2 = 0.00265, \tilde{\Delta}_3 = 0.00132, \tilde{\Delta}_4 = 0.00066.$

 Thus MCA predicts fairly accurately the results of a small preturbation. MCA example: predicting the results of perturbation

- Large perturbations would not be equally accurately predicted by MCA.
- ► Assume we can double the total enzyme concentration $\sum E_i = 4 \mapsto 8$. How should the enzyme be allocated for best results?
- ► $E_1 \mapsto 5E_1$: MCA predicts $\Delta_1 = 0.533 \cdot 5 = 2.665$, kinetic model gives $\tilde{\Delta}_1 = 0.7441$
- ► $E_4 \mapsto 5E_4$: MCA predicts $\Delta_4 = 0.067 \cdot 5 = 0.335$, kinetic model 0.0563
- The maximal increase of 1.2871 for the flux is obtained by modifying all the enzyme concentrations:
 E₁ = 3.124, E₂ = 2.209, E₃ = 1.562, E₄ = 1.105

The End

Course Exam

- ▶ Wednesday 29.4.2009 9am-12pm, in A111
- Examined contents: lecture slides and exercises
- Exam will consist of five questions, each worth 8 points
- Types of questions: defining concepts, essays as well as technical questions asking for analysis of a given metabolic model

▲ロト ▲帰 ト ▲ヨト ▲ヨト - ヨ - の々ぐ