
Pitfalls in substrate graph analysis: co-factors

I Path length in substrate graphs may not be biologically
relevant

I Shortest paths between metabolites in otherwise distant parts
of metabolism tend to go through co-factor metabolites
(NADP, NAPH, ATP, ADP).

I However, transfer of atoms occurs only between the co-factors



Pitfalls in substrate graph analysis: co-factors

Quick remedy used in most studies:

I Remove co-factors from the graph

I But sometimes it is difficult to decide which ones should be
removed and which ones to leave.



Atom-level representation

I Better solution is to trace the atoms accross pathways

I An acceptable path needs to involve transfer of atoms from
source to target.

I Spurious pathways caused by the co-factor problem are
filtered out

I This paradigm is used by Arita in his ARM software
(www.metabolome.jp)



Example system: transketolase and transaldolase

I Consider a system of three
reactions, catalyzed by
transketolase (tkt) and
transaldolase (tal) enzymes:

I Inspecting the reaction equations,
it would seem that it takes two
reactions to make E4P out of R5P
and X5P



Example system: transketolase and transaldolase

I If we trace the atoms through the
reactions, we notice that the
atoms of X5P take the route X5P
- G3P - F6P - E4P

I So after two steps (R1, R2) no
atoms from X5P have been
transferred to E4P

I R1: R5P + X5P
tkt⇒ G3P + S7P

I R2: G3P + S7P
tal⇒ F6P + E4P

I R3: F6P + G3P
tkt⇒ X5P + E4P



Example system: transketolase and transaldolase

I It takes one further step (R3) to transfer atoms from F6P to
E4P

I R1: R5P + X5P
tkt⇒ G3P + S7P

I R2: G3P + S7P
tal⇒ F6P + E4P

I R3: F6P + G3P
tkt⇒ X5P + E4P



Example system: transketolase and transaldolase

I The metabolite graph of the
example system is (almost) fully
connected graph

I Suggests path length 1 for all
metabolite pairs except R5P - F6P
and R5P - E4P which have path
length 2.

I R1: R5P + X5P
tkt⇒ G3P + S7P

I R2: G3P + S7P
tal⇒ F6P + E4P

I R3: F6P + G3P
tkt⇒ X5P + E4P

R5P

F6P E4P

X5P

G3P S7P



Pitfalls in substrate graph analysis: self-suffiency

I The shortest path may not correlate well with the effort that
the cell needs to make the conversion

I The conversions require other metabolites to be produced
than the ones along the direct path.

I Arguably a feasible pathway should be self-sufficiently capable
of performing the conversion from sources to target
metabolites

I To make this notion precise, we will use Boolean circuits as
the Metabolic representation



Metabolic networks as boolean circuits

I Each metabolite and reaction is either reachable (1) or not
reachable (0)

I A metabolite is reachable if and only if
I it is an external input substrate, or
I there EXISTS a reachable reaction that produces it

I A reaction is reachable if and only if ALL of its substrates are
reachable



Metabolic networks as boolean circuits

I Graphically a single
reaction can be drawn as
an AND gate that sends a
1 if all substrates have
state 1, and 0 otherwise

R1: R5P + X5P
tkt⇒

G3P + S7P



Metabolic networks as boolean circuits

I A system of reactions
induces a boolean circuit
by joining together the
circuits of the single
reactions

I One could draw an OR
gate above each
metabolite so as to denote
that the metabolite is on
if one of the reactions
producing it is on.

I These have been omitted
for clarity.

R1: R5P + X5P
tkt⇒ G3P + S7P

R2: G3P + S7P
tal⇒ F6P + E4P

R3: F6P + G3P
tkt⇒ X5P + E4P



Metabolic networks as boolean circuits

I From the circuit below one
can deduce that in order
to produce E4P, both R5P
and X5P are needed as
substrates

I This is complementary
kind of information to
atom-level representation:

I Atom-level
representation tells us
that only after R3
atoms from X5P are
transferred to E4P

I The need for R5P is not
high-lighted

R1: R5P + X5P
tkt⇒ G3P + S7P

R2: G3P + S7P
tal⇒ F6P + E4P

R3: F6P + G3P
tkt⇒ X5P + E4P



Applications of metabolic circuits

I The above described metabolic circuit, or AND-OR graph,
representation has two major uses

I First, we can pose the question whether the reconstructed
metabolic network is structurally consistent in the sense that
all metabolites can be produced available nutrients

I Interestingly, not all published metabolic reconstructions
satisfy this property

I Second, we can analyze the difficulty of producing some
metabolite from another in terms of how large a circuit needs
to be activated.



Checking reachability in metabolic circuits

Given a metabolic circuit, it is easy to check the reachability using
breadth-first search:

I Consider a set of nutrients, input metabolites that are marked
reachable from the start

I Iterate the following, until no new metabolites are reached

1. Mark reachable all reactions whose all substrates are marked
reachable

2. Mark reachable all products of the reachable reactions

In the end all reachable metabolites and reactions have been found



Metabolic circuits and the small-world property

I Using the metabolic circuit representation, one can redefine
the concept of pathway

I We define a feasible pathway from metabolite A to B, as the
minimal set of reactions F in the metabolic network so that in
the metabolic circuit constructed from F, B is reachable
whenever A is reachable.

I Intuitively, if we feed cell A as the sole nutrient, it can convert
A to B only using the reactions given in F.



Feasible pathway vs. shortest simple path

I Feasible pathway contains the yellow reactions r2, r3, r6 and
r7

I Shortest simple path has length 2, corresponding to the simple
path through r3 and r7



Feasible pathway vs. shortest simple path

I Simple path length
distribution shows the
small-world property: most
paths are short

I Feasible pathway size (in
the figure: green) shows no
small world property

I Many conversions between
two metabolites that
involve a large number of

enzymes
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Robustness & small world property

I It has been claimed that
the small-world property
gives metabolic networks
robustness towards random
mutations.

I As evidence the
conservation of short
pathways under random
gene deletions has been
offered

I However, the smallest
feasible pathways are not
as robust, showing that

even random mutations can
quickly damage the cells
capability to make
conversions between
metabolites (as easily).
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Stoichiometric network analysis

In stoichiometric analysis of metabolic networks, one concerns the
effect of the network structure on the behaviour and capabilities of
metabolism.
Questions that can be tackled include:

I Discovery of pathways that carry a distinct biological function
(e.g. glycolysis) from the network, discovery of dead ends and
futile cycles, dependent subsets of enzymes

I Identification of optimal and suboptimal operating conditions
for an organism

I Analysis of network flexibility and robustness, e.g. under gene
knockouts



Stoichiometric coefficients

Soitchiometric coefficients denote the proportion of substrate and
product molecules involved in a reaction. For example, for a
reaction

r : A + B 7→ 2C ,

the stoichiometric coefficients for A,B and C are −1,−1 and 2,
respectively.

I Assignment of the coeefficients is not unique: we could as well
choose −1/2,−1/2, 1 as the coefficients

I However, the relative sizes of the coeefficients remain in any
valid choice.

I Note! We will denote both the name of a metabolite and its
concentration by the same symbol.



Stoichiometry and reaction rates

I The rate of change of concentration of metabolites is the
most fundamental quantity in stoichiometric models

I Assume a reaction

r : A + B 7→ 2C ,

operates at some rate or velocity v (arbitrary units e.g.
mol/hour)

I Then, the change of concentration of the reactants and the
product are given by the reaction rate multiplied by the
shoichiometric coefficients

dA

dt
= −1 · v ,

dA

dt
= −1 · v ,

dC

dt
= 2 · v

I Thus, A and B are consumed at the rate of the reaction, C is
produced at the double rate.



Reversible reactions

I Many of metabolic reactions are reversible,

r : A + B � 2C ,

so they can work in either direction, depending on the
conditions within the cell

I In stoichiometric models a reversible reaction can be modelled
in two ways:

I As a single reaction that can operate from left to right,
indicated by positive reaction rate v > 0 or right to left,
indicated by negative reaction rate v < 0.

I As two separate reactions r ′ : A + B 7→ 2C and
r ′′ : 2C 7→ A + B, both with non-negative reaction rates
v ′, v ′′ ≥ 0.



Concentration and rate vectors

I Let us assume that our metabolic network has the reactions
R = {R1,R2, . . . ,Rr} and the metabolites
M = {M1,M2, . . . ,Mm}

I Let the reaction Ri operate with rate vi

I We collect the individual reaction rates to a rate vector
v = (v1, . . . , vr )

T



Stoichiometric vector and matrix

I The stoichiometric
coefficients of a reaction
are collected to a vector sr

I In sr there is a one position
for each metabolite in the
metabolic system

I The stoichiometric
co-efficient of the reaction
are inserted to appropriate
positions, e.g. for the
reaction

r : A + B 7→ 2C ,

sr =

·
·
A
·
·
B
·
·
C



0
0
−1
0
0
−1
0
0
2





Stoichiometric matrix

I The stoichiometric vectors
can be combined into the
stoichiometric matrix S .

I In the matrix S , the is one
row for each metabolite
M1, dots,Mm and one
column for each reaction
R1, . . . ,Rr .

I The coefficients s∗j along
the j ’th column are the

stoichiometric coeefficients
of of the reaction j .

S =


s11 · · · s1j · · · s1r
...

. . .
...

. . .
...

si1 · · · sij · · · sir
...

. . .
...

. . .
...

sm1 · · · smj · · · smr





Stoichiometric matrix

I The coefficients s∗j along
the j ’th column are the
stoichiometric coeefficients
of of the reaction j .

S =


s11 · · · s1j · · · s1r
...

. . .
...

. . .
...

si1 · · · sij · · · sir
...

. . .
...

. . .
...

sm1 · · · smj · · · smr





Stoichiometric matrix

I The coefficients along the
i ’th row denote the
relationship between the
concentration of metabolite
Mi and the reactions
consuming or producing it.

S =


s11 · · · s1j · · · s1r
...

. . .
...

. . .
...

si1 · · · sij · · · sir
...

. . .
...

. . .
...

sm1 · · · smj · · · smr





Example: stoichiometric matrix

I The stoichiometric
matrix of our
example system is
a 10-by-7 matrix:

R1: βG6P + NADP+ zwf⇒ 6PGL +
NADPH

R2: 6PGL + H2O
pgl⇒ 6PG

R3: 6PG + NADP+ gnd⇒ R5P + NADPH

R4: R5P
rpe⇒ X5P

R5: αG6P
gpi⇔ βG6P

R6: αG6P
gpi⇔ βF6P

R7: βG6P
gpi⇔ βF6P

S =

βG6P
αG6P
βF6P
6PGL
6PG
R5P
X5P

NADP+

NADPH
H2O



−1 0 0 0 1 0 −1
0 0 0 0 −1 −1 0
0 0 0 0 0 1 1
1 −1 0 0 0 0 0
0 1 −1 0 0 0 0
0 0 1 −1 0 0 0
0 0 0 1 0 0 0
−1 0 −1 0 0 0 0
1 0 1 0 0 0 0
0 −1 0 0 0 0 0





Systems equations

I Suppose that reactions R1,R5 and R7 operate at rates 2, 1
(left to right) and −2 (right to left), respectively

I Multiply the reaction rates with stoichiometric coefficients to
obtain the rates of change of concentration of βG6P caused
by each reaction: R1 : (−1) · 2 = −2, R5 : 1 · 1 = 1,
R7 : (−1) · (−2) = 2

R1: βG6P + NADP+ zwf⇒ 6PGL + NADPH

R5: αG6P
gpi⇔ βG6P

R7: βG6P
gpi⇔ βF6P

Stoichiometric coefficients from matrix
S :

SβG6P =
[
−1 0 0 0 1 0 −1

]



Systems equations

I The net rate of change βG6P is therefore

d [βG6P]

dt
= −2 + 1 + 2 = 1,

thus the system is accumulating βG6P

R1: βG6P + NADP+ zwf⇒ 6PGL + NADPH

R5: αG6P
gpi⇔ βG6P

R7: βG6P
gpi⇔ βF6P

Stoichiometric coefficients from matrix
S :

SβG6P =
[
−1 0 0 0 1 0 −1

]



Systems equations

In a network of n metabolites and r reactions, the dynamics of the
system are characterized by the systems equations

dXi

dt
=

r∑
j=1

sijvj , for i = 1, . . . ,m

I Xi is the concentration of the ith metabolite

I vj is the rate of the jth reaction and

I sij is the stoichiometric coefficient of ith metabolite in the jth
reaction.

Intuitively, each system equation states that the rate of change of
concentration of a is the sum of metabolite flows to and from the
metabolite.



Systems equation example

I Assume our example
metabolic network has the
following rate vector
v = (1, 1, 0, 0, 1, 0, 0)

I Let us compute the rate of
change for metabolites

R1: βG6P + NADP+ zwf⇒ 6PGL + NADPH

R2: 6PGL + H2O
pgl⇒ 6PG

R3: 6PG + NADP+ gnd⇒ R5P + NADPH

R4: R5P
rpe⇒ X5P

R5: αG6P
gpi⇔ βG6P

R6: αG6P
gpi⇔ βF6P

R7: βG6P
gpi⇔ βF6P

dβG6P

dt
= −1vR1 + 1vR5 − 1vR7 = 0

dαG6P

dt
= −1vR5 − 1vR6 = −1

⇒ net consumption!

dβF6P

dt
= 1vR6 + 1vR7 = 0

d6GPL

dt
= 1vR1 − 1vR2 = 0

d6PG

dt
= 1vR2 − 1vR3 = 1

⇒ net production!



Systems equation example

I Assume our example
metabolic network has the
following rate vector
v = (1, 1, 0, 0, 1, 0, 0)

R1: βG6P + NADP+ zwf⇒ 6PGL + NADPH

R2: 6PGL + H2O
pgl⇒ 6PG

R3: 6PG + NADP+ gnd⇒ R5P + NADPH

R4: R5P
rpe⇒ X5P

R5: αG6P
gpi⇔ βG6P

R6: αG6P
gpi⇔ βF6P

R7: βG6P
gpi⇔ βF6P

dR5P

dt
= 1vR3 − 1vR4 = 0

dX5P

dt
= 1vR4 = 0

dNADPH

dt
= 1vR1 + 1vR3 = 1

⇒ net production!

dNADP+

dt
= −1vR1 − 1vR3 = −1

⇒ net consumption!

dH20

dt
= −1vR2 = −1

⇒ net consumption!



Systems equations in matrix form

I The systems equation can be expressed in vector form as

dXi

dt
=

r∑
j=1

sijvj = ST
i v,

where Si contains the stoichiometric coefficients of a single
metabolite, that is a row of the stoichiometric matrix

I All the systems equations of different equations together can
then be expressed by a matrix equation

dX

dt
= Sv,

I Above, the vector

dX

dt
=

(
dX1

dt
, . . . ,

dXn

dt

)T

collects the rates of concentration changes of all metabolites


