
Representing metabolic networks

I In the following we assume
that we posses a set of
reactions composing our
metabolic network, with
catalyzing enzymes
assigned

I How should we represent
the network?

I For computational and
statistical analyses, we need
to be exact, much more so
than when communicating
between humans

(picture:E.Coli glycolysis, EMP database,

www.empproject.com/)



Levels of abstraction

I Everything relevant should be included in our representation

I What is relevant depends on the questions that we want to
solve

I There are several levels of abstraction to choose from

1. Graph representations: Connectivity of reactions/metabolites,
structure of the metabolic network

2. Stoichiometric (reaction equation) representation: capabilities
of the network, flow analysis, steady-state analyses

3. Kinetic models: dynamic behaviour under changing conditions



Representing metabolic networks as graphs

For structural analysis of metabolic networks, the most frequently
encountered representations are:

I Enzyme interaction network

I Reaction graph

I Substrate graph

We will also look briefly at

I Atom-level representations

I Boolean circuits (AND-OR graphs)



Example reaction List

I A set of reactions implementing a part of pentose-phosphate
pathway of E. Coli

I Enzyme catalyzing the reaction annoted over the arrow symbol

R1: β-D-glucose 6-phosphate (βG6P) + NADP+ zwf⇒
6-phosphoglucono-lactone (6PGL) + NADPH

R2: 6-phosphoglucono δ-lactone + H2O
pgl⇒ 6-phosphogluconate (6PG)

R3: 6-phosphogluconate + 1 NADP+ gnd⇒ ribulose 5-phosphate (R5P) +
NADPH
R4: ribulose 5-phosphate (R5P)

rpe⇒ xylulose 5-phosphate (X5P)

R5: α-D-glucose 6-phosphate(αG6P)
gpi⇔ βG6P

R6: α-D-glucose 6-phosphate(αG6P)
gpi⇔ β-D-Fructose-6-phosphate

(βF6P)

R7: β-D-glucose 6-phosphate(αG6P)
gpi⇔ βF6P



Enzyme interaction networks

I Enzymes as nodes

I Link between two enzymes
if they catalyze reactions
that have common
metabolites

I A special kind of
protein-protein interaction
network



Enzyme interaction network construction

I In our pathway, we have 5
enzymes catalyzing a total
of 7 reactions

R1: βG6P + NADP+ zwf⇒ 6PGL +
NADPH

R2: 6PGL + H2O
pgl⇒ 6PG

R3: 6PG + NADP+ gnd⇒ R5P +
NADPH
R4: R5P

rpe⇒ X5P

R5: αG6P
gpi⇔ βG6P

R6: αG6P
gpi⇔ βF6P

R7: βG6P
gpi⇔ βF6P rpe gnd

pgl

gpi

zwf



Enzyme interaction network construction

I We take each pair of
enzymes in turn

I Draw and edge between if
they share metabolites

I (gpi,zwf) — βG6P

R1: βG6P + NADP+ zwf⇒ 6PGL +
NADPH

R2: 6PGL + H2O
pgl⇒ 6PG

R3: 6PG + NADP+ gnd⇒ R5P +
NADPH
R4: R5P

rpe⇒ X5P

R5: αG6P
gpi⇔ βG6P

R6: αG6P
gpi⇔ βF6P

R7: βG6P
gpi⇔ βF6P rpe gnd

pgl

gpi

zwf



Enzyme interaction network construction

I We take each pair of
enzymes in turn

I Draw and edge between if
they share metabolites

I (zwf, pgl) — 6PGL

R1: βG6P + NADP+ zwf⇒ 6PGL +
NADPH

R2: 6PGL + H2O
pgl⇒ 6PG

R3: 6PG + NADP+ gnd⇒ R5P +
NADPH
R4: R5P

rpe⇒ X5P

R5: αG6P
gpi⇔ βG6P

R6: αG6P
gpi⇔ βF6P

R7: βG6P
gpi⇔ βF6P rpe gnd

pgl

gpi

zwf



Enzyme interaction network construction

I (zwf, gnd) — NADP,
NADPH

I (zwf, rpe) — ∅

R1: βG6P + NADP+ zwf⇒ 6PGL +
NADPH

R2: 6PGL + H2O
pgl⇒ 6PG

R3: 6PG + NADP+ gnd⇒ R5P +
NADPH
R4: R5P

rpe⇒ X5P

R5: αG6P
gpi⇔ βG6P

R6: αG6P
gpi⇔ βF6P

R7: βG6P
gpi⇔ βF6P rpe gnd

pgl

gpi

zwf



Enzyme interaction network construction

I (pgl,gnd) — 6PG

I (gnd, rpe) — R5P

R1: βG6P + NADP+ zwf⇒ 6PGL +
NADPH

R2: 6PGL + H2O
pgl⇒ 6PG

R3: 6PG + NADP+ gnd⇒ R5P +
NADPH
R4: R5P

rpe⇒ X5P

R5: αG6P
gpi⇔ βG6P

R6: αG6P
gpi⇔ βF6P

R7: βG6P
gpi⇔ βF6P rpe gnd

pgl

gpi

zwf



Enzyme interaction network construction

I (zwf, gnd) — NADP,
NADPH

I (pgl,gnd) — 6PG

I (gnd, rpe) — R5P

R1: βG6P + NADP+ zwf⇒ 6PGL +
NADPH

R2: 6PGL + H2O
pgl⇒ 6PG

R3: 6PG + NADP+ gnd⇒ R5P +
NADPH
R4: R5P

rpe⇒ X5P

R5: αG6P
gpi⇔ βG6P

R6: αG6P
gpi⇔ βF6P

R7: βG6P
gpi⇔ βF6P rpe gnd

pgl

gpi

zwf



Reaction clumping in Enzyme networks

As each enzyme is represented once in the network reactions
catalyzed by the same enzyme will be clumped together:

I For example, an alcohol dehydrogenase enzyme (ADH)
catalyzes a large group of reactions of the template:
an alcohol + NAD+ <=> an aldehyde or ketone +
NADH + H+

I Mandelonitrile lyase catalyzes a single reaction:
Mandelonitrile <=> Cyanide + Benzaldehyde

I The interaction between the two is very specific, only via
benzaldehyde, but this is not deducible from the enzyme
network alone



Co-factor effects

I A group of ”currency
molecules”
(ATP,ADP,NAD,NADH,
NADP, NADPH) act as
co-factors in many
reactions

I The reactions that share
the co-factors may not
otherwise have anything in
common

I Sharing a co-factor induces
an arc between reactions.

I This can be misleading,
unless we are specifically
interested in co-factors

zwf: G6P + NADP+ ⇒ 6PGL + NADPH
gnd: 6PG + NADP+ ⇒ R5P + NADPH

rpe gnd

pgl

gpi

zwf



Co-factor effects

I For example, the edge
(zwf,gnd) in our example
network arises solely
because of the co-factor
molecules (NADP,NADPH)

I This fact cannot be
decuded from the enzyme
network

I Chance to be mislead?

zwf: G6P + NADP+ ⇒ 6PGL + NADPH
gnd: 6PG + NADP+ ⇒ R5P + NADPH rpe gnd

pgl

gpi

zwf



Reaction graph

A reaction graph removes the reaction clumping property of
enzyme networks.

I Nodes correspond to reactions

I A connecting edge between two reaction nodes R1 and R2

denotes that they share a metabolite

Difference to enzyme networks

I Each reaction catalyzed by an enzyme as a separate node

I A reaction is represented once, even if it has multiple
catalyzing enzymes



Reaction graph example

R1: βG6P + NADP+ zwf⇒ 6PGL +
NADPH

R2: 6PGL + H2O
pgl⇒ 6PG

R3: 6PG + NADP+ gnd⇒ R5P +
NADPH
R4: R5P

rpe⇒ X5P

R5: αG6P
gpi⇔ βG6P

R6: αG6P
gpi⇔ βF6P

R7: βG6P
gpi⇔ βF6P

R1 R2

R4 R3

R5

R6 R7

Edge Supporting metabolites
(R6,R7): βF6P
(R6,R5): αG6P
(R5,R7) βG6P
(R7,R1): βG6P
(R1,R2): 6PGL
(R1, R3): NADP, NADPH
(R2,R3): 6PG
(R3, R4): R5P



Substrate graph

A dual representation to a reaction graph is a substrate graph.

I Nodes correspond to metabolites

I Connecting edge between two metabolites A and B denotes
that there is a reaction where both occur as substrates, both
occur as products or one as product and the other as substrate

I A reaction A + B ⇒ C + D is spread among a set of edges
{(A,C ), (A,B), (A,D), (B,C ), (B,D), (C ,D)}



Substrate graph example

I Add and edge between all molecule pairs in R1

I (G6P,NADPH), (G6P,6PGL), (G6P,NADP+),
(NADP+,NADPH), (NADP+, 6PGL), (6PGL, NADPH)

R1: βG6P + NADP+ zwf⇒ 6PGL +
NADPH

R2: 6PGL + H2O
pgl⇒ 6PG

R3: 6PG + NADP+ gnd⇒ R5P +
NADPH
R4: R5P

rpe⇒ X5P

R5: αG6P
gpi⇔ βG6P

R6: αG6P
gpi⇔ βF6P

R7: βG6P
gpi⇔ βF6P

H O
2

+
NADP

F6Pβ

G6Pα

G6P NADPH

X5P R5P 6PG

6PGL



Substrate graph example

I Add and edge between all molecule pairs in R2

I (6PGL,6PG), (6PGL,H2O), (6PG,H2O)

R1: βG6P + NADP+ zwf⇒ 6PGL +
NADPH

R2: 6PGL + H2O
pgl⇒ 6PG

R3: 6PG + NADP+ gnd⇒ R5P +
NADPH
R4: R5P

rpe⇒ X5P

R5: αG6P
gpi⇔ βG6P

R6: αG6P
gpi⇔ βF6P

R7: βG6P
gpi⇔ βF6P

H O
2

G6P NADPH

+

X5P R5P 6PG

6PGL

F6P

G6Pα

β NADP



Substrate graph example

I Add and edge between all molecule pairs in R3

I (6PG,NADP+),(6PG,R5P), (6PG,NADPH), (NADP+, R5P),
(R5P,NADPH)

R1: βG6P + NADP+ zwf⇒ 6PGL +
NADPH

R2: 6PGL + H2O
pgl⇒ 6PG

R3: 6PG + NADP+ gnd⇒ R5P +
NADPH
R4: R5P

rpe⇒ X5P

R5: αG6P
gpi⇔ βG6P

R6: αG6P
gpi⇔ βF6P

R7: βG6P
gpi⇔ βF6P

H O
2

G6P NADPH

+

X5P R5P 6PG

6PGL

F6P

G6Pα

β NADP



Substrate graph example

R1: βG6P + NADP+ zwf⇒ 6PGL +
NADPH

R2: 6PGL + H2O
pgl⇒ 6PG

R3: 6PG + NADP+ gnd⇒ R5P +
NADPH
R4: R5P

rpe⇒ X5P

R5: αG6P
gpi⇔ βG6P

R6: αG6P
gpi⇔ βF6P

R7: βG6P
gpi⇔ βF6P

H O
2

G6P NADPH

NADP
+

X5P R5P 6PG

6PGL

F6P

G6Pα

β



Graph analyses of metabolism

Enzyme interaction networks, reaction graphs and substrate graph
can all be analysed in similar graph concepts and algorithms
We can compute basic statistics of the graphs:

I Connectivity of nodes: degree k(v) of node v ; how many
edges are attached to each node.

I Path length between pairs of nodes

I Clustering coeefficient: how tightly connected the graph is



Clustering coefficient

I Clustering coefficient measures the
connectivity of graph around single nodes

I Informally: How close to a fully connected
graph are the neighbors of given node v , if
we remove the node v and all edges
adjacent to it

I In the example on the right, the clustering
coefficient of the blue node is given for
three different neighborhoods



Clustering coefficient formally

Clustering coefficient C (v) for node v measures to what extent v
is within a tight cluster

I Let G = (V ,E ) be a graph with nodes V and edges E

I Let N (v) be the set of nodes adjacent to v

I The clustering coefficient is the relative number of edges
between the nodes in N (v):

C (v) =
|{(v ′, v ′′) ∈ E |v ′, v ′′ ∈ N (v)}|

Nmax
,

where Nmax = max{|N (v)|(|N (v)| − 1)/2, 1}
I Maximum C (v) = 1 occurs when N (v) is a fully connected

graph

I Clustering coefficient of the whole graph is the node average:
C (G ) = 1/n

∑
v (C (v)))



Clustering coefficient in our enzyme network

I N (gpi) = {zwf },
C (gpi) = 0

I N (zwf ) = {gpi , pgl , gnd},
C (zwf ) = |{(pgl ,gnd)}|

3 =
1/3

I N (pgl) = {zwf , gnd},
C (pgl) = |{(zwf ,gnd)}|

1 =
1/1

I N (gnd) = {rpe, zwf , gnd},
C (gnd) = |{(zwf ,pgl)}|

3 =
1/3

I N (rpe) = {gnd},
C (rpe) = 0

I C (G ) = 1/3

rpe gnd

pgl

gpi

zwf



Comparison to graphs with known generating mechanism

One way to analyse our graphs is to compare the above statistics
to graphs that we have generated ourself and thus know the
generating mechanism.
We will use the following comparison:

I Erdös-Renyi (ER) random graph

I Small-world graphs with preferential attachment



Erdös-Renyi random graph

I Well studied model for
random graphs proposed by
Paul Erdös and Alfred
Renyi in 1959

I Generation of ER graph:

I Start with a network
with n nodes and no
edges.

I Draw an edge between
each pair of nodes is
with probability p.



Properties of ER graph

I ER graph of size n has on average
(n
2

)
p edges.

I Node degree distribution of is binomial

P(deg(v) = k) =

(
n − 1

k

)
pk(1− p)n−1−k

I The connectivity of ER graph follows directly from the
quantities n and p:

I p < (1−ε) ln n
n : graph will almost surely be non-connected

I p > (1+ε) ln n
n : graph will almost surely be connected

I np < 1: graph will almost surely have no large connected
components, otherwise almost surely will have one

I Due to its mathematical elegance, ER model has been very
popular subject of study in graph theory



ER networks and biology

I It has been observed that the ER graph is not a good
explanation for the generating mechanism of many biological
networks

I Prime symptom is that the node degree distribution of
biological networks does not fit to binomial distribution

I In particular, biological networks often have so called hubs,
nodes with very high connectivity



Preferential attachment

Preferential attachment (PA) is a mechanism that is proposed to
generate many networks occurring in nature.

I Start with a small number n0 of nodes and no edges.
I Iterate the following:

I insert a new node v ,
I draw m ≤ n0 edges from v to existing nodes vi with probability

p ∼ ki+1P
j (kj+1)

When drawing new edges, nodes with many edges already are
preferred over nodes with few or no edges.

I Hubs, i.e. highly connected nodes, will emerge from the
generating process



Degree distributions of ER and PA graphs

I P(k) - The probability of
encountering a node with
degree k:

I Erdös-Renyi random graph:
P(k) ≈

(n
k

)
pk(1− p)n−k .

I Distribution tightly peaked
around the average degree:
low variance.

I Frequency of nodes with
very high degree is low.



Degree distributions of ER and PA graphs

I P(k) - The probability of
encountering a node with
degree k:

I Preferential attachment:
P(k) ≈ k−γ .

I Frequency distribution is
scale-free: log P(k) and
log k are linearly
correlated.

I Distribution has a fat tail:
high variance and high
number of nodes with high
degree.



Degree distributions in metabolism (Wagner & Fell, 2000)

Degree distributions of substrate and reaction graphs



Degree distributions in metabolism (Wagner & Fell, 2000)

I Substrate graph
shows a fat-tailed
distribution

I consistent with a
network generated
via preferential
attachment.



Small-world graphs

Graphs fulfilling the following two criteria are called small-world
graphs

I Small average shortest path length between two nodes
I The same level as ER graphs, lower than many regular graphs:
I Shortcuts accross the graphs go via hubs

I High clustering coefficient compared to ER graph: the
neighbors of nodes are more often linked than in ER graphs.

Graphs generated with preferential attachment are small-world
graphs.

However, small-world graphs can be generated with other
mechanisms as well...



Small-world graphs

Graphs fulfilling the following two criteria are called small-world
graphs

I Small average shortest path length between two nodes
I The same level as ER graphs, lower than many regular graphs:
I Shortcuts accross the graphs go via hubs

I High clustering coefficient compared to ER graph: the
neighbors of nodes are more often linked than in ER graphs.

Graphs generated with preferential attachment are small-world
graphs.
However, small-world graphs can be generated with other
mechanisms as well...



Metabolic graphs as small worlds

I Path lengths in
reaction and substrate
graphs are about the
same as Erdös-Renyi
random graph with the
same average
connectivity

I Clustering coefficients
are much larger than in
ER graphs

I The graphs resemble
small-world graphs



Pitfalls in substrate graph analysis: co-factors

I Path length in substrate graphs may not be biologically
relevant

I Shortest paths between metabolites in otherwise distant parts
of metabolism tend to go through co-factor metabolites
(NADP, NAPH, ATP, ADP).

I However, transfer of atoms occurs only between the co-factors



Pitfalls in substrate graph analysis: co-factors

Quick remedy used in most studies:

I Remove co-factors from the graph

I But sometimes it is difficult to decide which ones should be
removed and which ones to leave.



Atom-level representation

I Better solution is to trace the atoms accross pathways

I An acceptable path needs to involve transfer of atoms from
source to target.

I Spurious pathways caused by the co-factor problem are
filtered out

I This paradigm is used by Arita in his ARM software
(www.metabolome.jp)



Pitfalls in substrate graph analysis: self-suffiency

I The shortest path may not correlate well with the effort that
the cell needs to make the conversion

I The conversions require other metabolites to be produced
than the ones along the direct path.

I Arguably a feasible pathway should be self-sufficiently capable
of performing the conversion from sources to target
metabolites



Feasible pathway vs. shortest simple path

I Feasible pathway contains the yellow reactions r2, r3, r6 and
r7

I Shortest simple path has length 2, corresponding to the simple
path through r3 and r7



Feasible pathway vs. shortest simple path

I Simple path length
distribution shows the
small-world property: most
paths are short

I Feasible pathway size (in
the figure: green) shows no
small world property

I Many conversions between
two metabolites that
involve a large number of

enzymes
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Robustness & small world property

I It has been claimed that
the small-world property
gives metabolic networks
robustness towards random
mutations.

I As evidence the
conservation of short
pathways under random
gene deletions has been
offered

I However, the smallest
feasible pathways are not
as robust, showing that

even random mutations can
quickly damage the cells
capability to make
conversions between
metabolites (as easily).
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