Metabolic flux estimation

» So far in this course we have examined techniques that help
us understanding the cell's capabilities:
» Given genome, what kind of metabolic network (Metabolic
reconstruction)
» Given metabolic network, what kind of behaviour is possible
(Flux balance analysis, elementary flux modes)

» Now we turn to a different question: how to analyze
quantitatively the activity of metabolic pathways

» Given some measurements and the stoichiometry, estimate flux
vector v



The flux estimation problem

» In flux estimation the goal is to restrict the space of solutions
of the steady equations

Sv=0

» ldeally, a single rate vector v is left as the solution

» In practise, we will need to resort to constraining the set of
solutions in the null space N(S).



The problem with alternative routes

» In this case the null space
of Sunknown iS Non-empty,

» If there are alternative thus there is a choice of
routes to produce some flux vectors that satisfy
metabolite in the steady state

metabolic network, the
relative activity of the

Vin
routes cannot be
pinpointed. /
» In the example on the Vieit Vright
right, the fluxes vjes and \

Vright Cannot be pinpointed g
just by measuring
exchange fluxes, only their \ Vout

sum can be solved. ,
Materia balance

Vin = Vieft*Vrignt = Vout



Isotope tracing experiments

» Isotope tracing experiments are the most accurate tool for
estimating the fluxes of alternative pathways

» In isotope tracing experiments the cell culture is fed a mixture
of natural and 3C labeled substrate (e.g. 90%/10%).

> The fate of the 13C labels is followed by measuring the
intermediate metabolites by mass spectrometry or NMR

» From the enrichment of labels in the intermediates the fluxes
are inferred



13C-lsotopomers

» In isotope tracing experiments the cell culture is fed a mixture
of natural and 3C substrate (e.g. 90%/10%).

» This induces different kinds of *3C labeling patterns,
isotopomers (isotopic isomers):

000Ala OO]Ala 01QAIaL
e " e e
H ¢ CooH H —C_*c —COOH H-YctC —cootr
[ I [
H H H H H H
10,13 10%1a 1\a
P2 P2 T
H-2c-*c 2*COoH H-c*c 2COoH H -t 2coot
[ Fo [

H H H H H H



Isotopomers and alternative pathways

» The vector of relative frequencies of the isotopomers
Tan = [P{%%A/a}, P{*0%A/a}, ... P{*Ala}] € [0, 1], is called
an isotopomer distribution

» Isotopomer distributions can give information about the fluxes
of alternative pathways if the pathways manipulate the carbon
chains of the metabolites differently
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Isotopomeric balance equations

» The steady state condition
for free alanine implies: H o

[l
PYRUVATE H-C C-C OCH

Vw1 + Vpw2 = VALA

pwl
» The steady state
assumption needs to hold TS
M ALANINE (FREE) H-C —C—- C OOH
for each isotopomer v
separately [vaa
» We can write balance o
. ALANINE (BOUND) § _C —C— C OOH
equations for each I
isotopomer:
P("CALA[pw1) - vyt + PCCALAIpW2) - vy = P(PALA) - v
P(®ALA|pw1) - vt + PCUALAIpW2) - vy = P(CYALA) - vara
P(CALAIpw1) - vpu1 + P(PALAIpW2) - vpo = P(PPALA) - v
PYALAIpw1) - vput + PCHALAIpW2) - vpo = P(HALA) - v



Flux estimation from incomplete isotopomer data

In practice, we are faced with incomplete isotopomer data:

» Not all isotopomer distributions can be measured, due too
sensitivity issues of measuring equipment.

» Complete isotopomer distributions can only rerely be
measured:

» MS data groups isotopomers of the same weight:
aP(®CALA) + bP(*™ALA) = d

» NMR measurements require *3C in a specific position e.g. the
middle carbon in alanine
P(*1°ALA)

>, POVALA) —

We start by tackling the first difficulty.



Fragment equivalence

» Two fragments F C M and F’ C M’ are equivalent if the
fragment marginal distributions of the respective isotopomer
distributions of M and M’ are equal, irrespectively of the
fluxes of the metabolic network

» When does the fragment equivalence hold true?



Fragment equivalence in general

» Assume fragments produced by alternative pathways travel
intact and similarly oriented (i.e. no permutation) starting
from the common source fragment

» The isotopomer distribution of that fragment remain
equivalent to the source along the alternative pathways




Equivalence classes

» The equivalance relation for fragments induces equivalence
classes of fragments to the metabolic networks

» The isotopomer distribution is the theoretically the same for
the whole equivalence class

2] [9]




Balance equations for fragments
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Flux estimation from incomplete isotopomer data

So far we have assumed that isotopomer distributions can either be
completely measured or not at all.
In practice, we are faced with incomplete isotopomer data:

» MS data: our PIDC software generally groups some
isotopomers together so we get data like

aP(°™®ALA) + bP(*®ALA) = d

» NMR measurements require '3C in a specific position e.g. the
middle carbon in alanine
POUALA)
>y PCVALA)



Isotopomer measurements as linear constraints

Complete isotopomer distribution, NMR and mass spectrometric
data, and the absence of isotopomer information all can be
expressed as a set of linear constraints to the isotopomer
distribution.

So we model the measurements as sets of equations

a'laa= Z ax P{*?ALA} = d

Xyz
to the isotopomer distribution I 4; 4, represented as a matrix system

ATlaa=d



Vector

space interpretation

An n-carbon metabolite M is associated with a 2"-dimensional
isotopomer vector space 7y, that has a coordinate axis for
each isotopomer

An isotopomer distribution

Tam = [P{%%%/a}, P{%%/a}, ... , P{*1A/a}] € [0,1]%, is a
point in Z4, and lies in the intersection of 8 hyperplanes of
the form e)g,z]IA/a = P{?ALA}

€z is the unit vector along the coordinate axis of isotopomer
XyzA/a, i.e. €000 — (1, 0, 0, ce ,0), €001 = (0, 1, 0, ce ,0),

€111 = (0,...,0,1)



Fragment subspaces

» A n’-carbon fragment of a n-carbon metabolite defines a
2" _dimensional subspace of the 2"-dimensional isotopomer
space

» The fragment subspace is spanned by vectors that corresponds
to the fragment marginals of the isotopomer distribution, e.g.
for Alai> we have four basis vectors
uoo = [eooo + €001]/V/2, uo1 = [eo10 + €011]/V/2, u10 =
[e100 + €101]/V2 and w11 = [e110 + er11]/V2

» A fragment marginal of the isotopomer distribution is a point
in the subspace spanned by the above basis vectors, given as
the intersection of hyperplanes

-
quI[A/a = P{X}/A/alz}
which are collectively written as

.
U'Tain = Taja,



Fragment marginal as an orthogonal projection

» The set of basis vectors ugg, Up1, 10, U11 iS orthogonal: e.g.

2ugotor = (€000 + €001) " (€010 + €011) =

T T T T
= €900 €010 + €yoo€o11 + €go1€010 + €gpreo11 =0 (1)

by the orthogonality of the unit vectors e,
> The vectors have unit length ||uy, || =1
» Thus the matrix
U = [uoouo1tnouni]
is orthonormal

» The matrix equation
-
U ' Taia = Lasay,

can be seen as the orthogonal projection of the original
isotopomer distribution to the fragment subspace.



Mass spectrometric data

» In mass spectrometers, molecules with equal mass will reside
in a single peak

» Thus, mass spectrum will group isotopomers with the same
number of labels.

» Thus we will get data of the form

T T
mg Taa = eygollaa = do
TTa, = Tpp=d
my Taia = (eoo1 + €010 + €100) ' Taim = di
T T
my Taia = (€011 + €101 + e110) ' Tam = db
T
mg Las = (e111llam = d3
which is called the mass isotopomer distribution
» The vectors mg, ..., m3 are again an orthogonal set spanning
a 'measurement’ subspace of the isotopomer space
> The vector (do, d1, do, d3)” can be seen to be an orthogonal

projection of the (unknown) isotopomer distribution to the
measurement subspace



Tandem mass spectrometry

» Tandem mass spectrometers fragment the molecule to be
measured.

» Thus one can measure the mass isotopomer distribution of
fragments in addition to that of the whole molecule

1T T
my' Lalay, = tgolaiay, = do

T T
my" Lajay, = (to1 + v10) ' Tasa, = d1
T T
my' Lasay, = tnlae, = d2
» Typically, (at least some of) the vectors m’ are linearly
independent from the vectors m;. Thus they constrain the

isotopomer distribution more than the 'vanilla’ MS spectrum
would



NMR measurements

» NMR measurements require 13C in a specific position e.g. the
middle carbon in alanine

» The form of the data is normalized abundances of such
specific isotopomers

P("I0ALA)

>, POVALA) —

» The data can be represented in the isotopomer space:

P(ALA) = d Y~ P(“ALA)
xly
n"lam=(d,...,d=1,...,d) Ia,=0

» Thus, NMR data also introduced linear constraints to the
isotopomer distribution



Measurements in general

» If matrix A is orthonormal,
the interpretation is an
orthogonal projection of
the isotopomer
distribution to the
measurement subspace

a'laia =) ayP{¥"ALA} = d

Xyz

» So we can model the
measurements as sets of
equations

\ (\feasble\snopomadwanbmmns

to the isotopomer
distribution I 4; 4,
represented as a matrix
system

ATlga=d



Mapping measurement data to metabolite fragments

» Our goal is to propagate the measurement data within the
equivalance set of the fragments

» However, in general, the measurements are made for
metabolites not their fragments, so some translation is needed.

» For example, suppose we have the following measurement
from NMR:

P(OLALA) o, POUALA) .
= d1, = a2,
2 sy POVALA) 2y POVALA)

P(*10ALA) P(ITALA)
p— 3? =
21y POPALA) 21y POPALA)

ds




Mapping measurement data to metabolite fragments

» For Ala;p we get the following isotopomer constraints:

P(%%Alay,) P(°1%/2) + P(°11Ala)

= =d +d.
S POWIa) ~ S, POVAR)
P(**Alag) P(11%/a) + P(11%Ala)
1 = 1 =d3+ ds
le P(X AlalZ) ley P(X yA/a)

» What is the general approach, assuming arbitrary linear
equation set as the measurement?



Mapping measurements to fragments

> All fragment distributions
lie within a subspace of
the isotopomer space of
the metabolite

» Measurements lie in
another subspace, the
measurement space.

» What is common between
the measurement and the

4

» \ Measurement space

fragment can be expressed i e s s
in terms of the (
intersection space

Intersection space



Mapping measurements to fragments

» What is known about the
underlying isotopomer
distribution is its projection
to the measurement space

» The fragment marginal
distribution is a projection
to the fragment subspace meesrement

» The projection to the
intersection space
represented what is known
about the fragment
marginal based on the
measurement Inirsection spece

(unknown) isotopomer distribution

1sotopomer space
of fragment F



» The uncertainty about the
isotopomer distribution
translates to uncertainty
about the fragment
distributions

» The smaller the dimension
of the intersection space,
the less is known about the
fragment

Mapping measurements to fragments

(unknown) isotopomer distribution

measurement

Isptopomer space Measurement space

of fragment F

Intersection space



» The measurement
completely determines the
fragment marginal if and
only if the fragment
subspace is a subspace of
the measurement space

» Both computing the
intersection space and the
projections to it can be
written in terms of linear
algebra

Mapping measurements to fragments

(unknown) isotopomer distribution
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Isotopomers of a product metabolite

» In the complete information case, we
could compute the isotopomer distribution
of a product from the distributions of the "
fragments via

P(¥*Ms) = P(M1)P(*M>)

» In the case of incomplete information an
analogous procedure can be used,
independently for each pair of isotopomer
constraints of the reactants

Zcxyzp( yM3 (Z axy yMl)) : (Z bZP(ZM2)> )

Xyz

where ¢y, = ax b,



Generalized isotopomer balances

Via the above described PyRUVATE n;:" j‘f, PP
approach we can obtain P
isotopomer constraints for fluxes w1 < >vaz
around a junction. N o
Assume we have the follwing ALANINE (RER) 11 -E € € 0on
constraints AT]IALA|pW1 =d, o _
ATLar ajpw, = d2 and o .

ALANINE (BOUND) § _C —C— C OOH

AT]IALA =d. W
In a steady state get a
generalized isotopomer balance

dp - Vow, + do - Vpw, = d-vara



General recipe for flux estimation

» Compute equivalence sets of fragments for the metabolic
network

» Project the isotopomer measurements of the metabolites to
the fragments

» Propagate the obtained isotopomer constraints accross the
equivalence classes

» Form balance equations for fragments at the boundaries of the
equivalence classes

> Solve the resulting linear equation system



|dentifiability of the fluxes

The success of the flux estimation approach depends heavily on the
amount of isotopomer measurements taken from the metabolism.

Propagation efficiency, 1000 repeats / # of measured metabolites
T T T
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# of measured metabolites



Incompleteness of the linear approach

» The preceding approach for flux estimation works in the linear
framework

» We propagate isotopomer constraints accross the equivalence
classes in order to compute balance equations that are linear
in the fluxes

» However, given incomplete isotopomer measurements one can
find situations where a non-linear balance equation can be
written while a linear cannot.



Non-linear example

» The example contains four
elementary flux modes,
corresponding to four
different combinations of
source carbons to the
two-carbon target

» Consider situation where
we want to estimate I3
given ]111,]112,]121 and ]I22
with no measurement
from the intermediate
metabolites

» The carbons above the
junctions are not
equivalent with carbons
below the junctions, so it
is not possible to estimate
I3 independently from the
fluxes




Non-linear example

» We can draw and
equivalent example
consisting of the four
elementary flux modes

» A balance equation that is
quadratic in the fluxes can
be written:

v3lz = vi1vorlli1lo1 + virveolliillon + viovorllinllar + viovaslinloo



Isotopomer systems in general

» The above example could be tackled by switching from linear
equation solver to a quadratic solver

» However, there is no principal limit to the degree of the
balance equation, so we are faced with a non-linear systems of
arbitrary degree, if we want to utilize isotopomer information
to the fullest



lterative approach

An alternative approach to solving fluxes is based on iteratively
solving the isotopomer system as follows:

1.
2.

Start with an initial guess of the flux vector vg
Compute a predicted isotopomer distributions [ that should
result, were the guess correct

Compare the predicted isotopomer distributions to the
measured ones 1

. If the distance Hﬁ — ﬁH is small enough, stop and return the

current guess flux vector

Otherwise, generate a new flux guess v and continue from
step 2.



Properties of the iterative approach

» Given fixed flux guess, the predicted isotopomer distibutions
can be exactly computed

» For generation of flux guesses many kinds of search methods
can be used

» May be difficult to make sure what the degree of
underdetermination of the flux vector is



