
Metabolic flux estimation

I So far in this course we have examined techniques that help
us understanding the cell’s capabilities:

I Given genome, what kind of metabolic network (Metabolic
reconstruction)

I Given metabolic network, what kind of behaviour is possible
(Flux balance analysis, elementary flux modes)

I Now we turn to a different question: how to analyze
quantitatively the activity of metabolic pathways

I Given some measurements and the stoichiometry, estimate flux
vector v



Flux estimation problem

I In flux estimation the goal is to restrict the space of solutions
of the steady equations

Sv = 0

I Ideally, a single rate vector v is left as the solution

I In practise, we will need to resort to constraining the set of
solutions in the null space N (S).



Why don’t we just measure the fluxes?

There is currently no practical way to measure internal reaction
rates in vivo, in a living cell in quantitative manner

I Enzyme kinetics studies the reaction rates of individual
enzymes in vitro, in a test tube, isolated from the rest of
metabolism. These rates are in general not the same as in a
living cell.

I Microarrays and proteomics can give us estimates of
concentration of mRNA or protein. However, these do not
directly correlate with the reaction rates. These can be used
to obtain qualitative estimates of pathway activity, but exact
reaction rates v cannot be inferred.



Flux estimation strategies

I In flux estimation the goal is to restrict the space of solutions
of the steady equations

Sv = 0

I General strategies:
I Make biological assumptions (“cell is optimizing biomass

growth”,“this pathway is not active for reason XYZ”)
I Control some of the exchange fluxes via feeding cell culture

certain nutrients at certain rate (e.g. glucose)
I Measure some of the exchange fluxes (production and

consumption of some key metabolites)
I Isotope tracing experiments



The use of expression data

I Assume a reaction Rj with catalyzing genes G1, . . . ,Gk

I If none of which is expressed, we can infer that the reaction is
probably not active

I When solving our fluxes, we can set vj = 0 when estimating
the fluxes

I If any of the genes is active, the reaction might be active, but
the reaction rate and (even the reaction direction) is hard to
infer

I Hardness is due to a non-linear dependency between reaction
rate and the enzyme, substrate and product concentrations.

In conclusion, expression data is best used in deducing inactivity of
pathways



Handling known reaction rates

I Assume we know via measurement or via assumption the rates
of reactions Ri1 , . . . ,Rik , vi1 = ci1 , . . . vik = cik , given by the
vector equation vknown = cknown

I Partition S in to unknown and known part, so that Sknown

(resp. Sunknown contains the columns corresponding to
reaction rates vknown (resp. vunknown)

I The steady state equation is now given by

[
Sunknown Sknown

]
·
[
vunknown

vknown

]
= 0



Handling known reaction rates

I Substitute the known rates vknown = cknown into the steady
state equation to obtain

Sunknown · vunknown = d,

where is a constant vector given by d = −Sknownc

I By linear algebra, the complete set of solutions to the
simplified steady state equation is given by

vunknown = S+
unknownd + Kunknownb,

I Above S+ = (STS)−1ST is the pseudo-inverse of matrix S ,
obtained via command pinv() in MATLAB.



Handling known reaction rates

I By linear algebra, the complete set of solutions to the
simplified steady state equation is given by

vunknown = S+
unknownd + Kunknownb,

I Kunknown is the kernel matrix of the null space of Sunknown,
and b is an arbitrary vector.

I Ideally, we would like the kernel to be empty matrix, as then
we have fully determined the fluxes vunknown = S+

unknownd



Flux estimation and network topology

I The hardness of flux estimation depends on the metabolic
network topology (structure)

I For simple topologies, it suffices to measure rates of the
exchange reactions to fully determine fluxes

I Simple topologies include
I Linear pathway
I Tree shaped network



Flux estimation and linear pathways

I In a linear pathway, the rate of the exchange reaction
Rj :⇒ Mi determines the in-flow towards Mi ,

I The steady state requirement

dA

dt
= sijvj + sij ′vj ′ = 0

determines the rate of the sole consumer of Mi , reaction Rj ′

vj ′ =
−sijbj

sij ′

I Following the same procedure, the rates of the linear pathway
become fully determined



Flux estimation and tree-shaped topologies

I Utilizing the procedure for determining the reaction rates of a
linear pathway generalize to a tree-shaped topology

I Follow linear pathways from the exchange reactions towards
interior of the metabolic network. The fluxes will be
determined by the above procedure

I The process stops at junctions where two or more linear
pathways meet or diverge



Flux estimation and tree-shaped topologies

I We can always find a junction metabolite where we know
k − 1 of the k fluxes of the pathways around the metabolite
(Why? Left as exercise).

I Using the k − 1 known fluxes, we can determine the missing
one

I After solving the unknown rate, follow the linear pathway until
the next junction is met

I Repeating the linear pathway step and solving fluxes at
junctions will eventually determin all the fluxes



General topologies

The above described process breaks down in many interesting
cases:

I Alternative pathways between two metabolites

I Cycles

I Bi-directional reactions



The problem with alternative routes

I If there are alternative
routes to produce some
metabolite in the
metabolic network, the
relative activity of the
routes cannot be
pinpointed.

I In the example on the
right, the fluxes vleft and
vright cannot be pinpointed
just by measuring
exchange fluxes, only their
sum can be solved.

I In this case the null space
of Sunknown is non-empty,
thus there is a choice of
flux vectors that satisfy
steady state

rightvvleft

vout

vin

vleft rightv voutvin = = 

Material balance

+



Isotope tracing experiments

I Isotope tracing experiments are the most accurate tool for
estimating the fluxes of alternative pathways

I In isotope tracing experiments the cell culture is fed a mixture
of natural and 13C labeled substrate (e.g. 90%/10%).

I The fate of the 13C labels is followed by measuring the
intermediate metabolites by mass spectrometry or NMR

I From the enrichment of labels in the intermediates the fluxes
are inferred



13C -Isotopomers

I In isotope tracing experiments the cell culture is fed a mixture
of natural and 13C substrate (e.g. 90%/10%).

I This induces different kinds of 13C labeling patterns,
isotopomers (isotopic isomers):
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Isotopomers and alternative pathways

I The vector of relative frequencies of the isotopomers
IAla = [P{000Ala}, P{001Ala}, . . . , P{111Ala}] ∈ [0, 1]2

3
, is called

an isotopomer distribution

I Isotopomer distributions can give information about the fluxes
of alternative pathways if the pathways manipulate the carbon
chains of the metabolites differently
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Metabolite and reaction representation

I We treat metabolites as a set of
unique named carbon locations.

I Metabolites M are further divided
to fragments, ie. subsets of their
carbons F = M|F .

I For each reaction a carbon
mapping describing the
transitions of carbon atoms in a
reaction event is given.

M3

M1 M2

C − C − C

C − C C

ρ



Isotopomers of a product metabolite

We make two assumptions
I Uniform sampling

assumption: a reaction
draws its reactants
independently, uniformly
randomly from the reactant
pools

I No isotope effects
assumption: the reaction
does not make any
difference between different
isotopomer pools

These assumption ensure
P(xyzM3) = P(xyM1)P(zM2)

C − C − C

C − C C

ρ

M

F



Example

I Left-hand pathway keeps the
carbon chain of puryvate intact

I Right-hand pathway cleaves the
carbon chain between 2. and 3.
carbon

I We have measure the isotopomer
distributions of pyruvate and free
alanine
P{000Pyr} = 0.9, P{111Pyr} = 0.1;
P{000Ala} = 0.855, P{001Ala} =
0.045, P{110Ala} =
0.045, P{111Ala} = 0.055

I Let us determine P{xyzAla|pw1}
and P{xyzAla|pw2}



Left-hand pathway

I The left-hand pathway transfer the carbon chains of puryvate
intact to alanine

I Labeling patterns and the isotopomer distributions do not
change
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Right-hand pathway

I The right hand pathway clevaes
and recombines the carbon chain
of puryvate between 2. and 3.
carbon

I The fragments X and Y to be
recombined are assumed to
sampled independently, randomly
according to their isotopomer
distributions

I The isotopomer frequencies are
obtained by multiplying the
isotopomer frequencies of the
fragments
P{xyzALA} = P{xyX}P{zY }



Right-hand pathway
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Isotopomer distributions & alternative pathways



Isotopomeric balance equations

I The steady state condition
for free alanine implies:

vpw1 + vpw2 = vALA

I The steady state
assumption needs to hold
for each isotopomer
separately

I We can write balance
equations for each
isotopomer:

P(000ALA|pw1) · vpw1 + P(000ALA|pw2) · vpw2 = P(000ALA) · vALA

P(001ALA|pw1) · vpw1 + P(001ALA|pw2) · vpw2 = P(001ALA) · vALA

P(110ALA|pw1) · vpw1 + P(110ALA|pw2) · vpw2 = P(110ALA) · vALA

P(111ALA|pw1) · vpw1 + P(111ALA|pw2) · vpw2 = P(111ALA) · vALA



Flux estimation from incomplete isotopomer data

In practice, we are faced with incomplete isotopomer data:

I Not all isotopomer distributions can be measured, due too
sensitivity issues of measuring equipment.

I Complete isotopomer distributions can only rerely be
measured:

I MS data groups isotopomers of the same weight:

aP(010ALA) + bP(100ALA) = d

I NMR measurements require 13C in a specific position e.g. the
middle carbon in alanine

P(010ALA)∑
x1y P(x1yALA)

= d .

We start by tackling the first difficulty.



Fragment marginals of isotopomer distibutions

Each fragment F ⊆ M
corresponds to a marginal
distribution to the isotopomer
distribution:

C − C − CM

F

P(00F ) = P(000M3) + P(001M3)

P(01F ) = P(010M3) + P(011M3)

P(10F ) = P(100M3) + P(101M3)

P(11F ) = P(110M3) + P(111M3)



Fragment equivalence

I Two fragments F ⊆ M and F ′ ⊆ M ′ are equivalent if the
fragment marginal distributions of the respective isotopomer
distributions of M and M ′ are equal, irrespectively of the
fluxes of the metabolic network

I When does the fragment equivalence hold true?
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C − CCM

M’

F’

F



Fragment equivalence for a single reaction

In a single reaction, the reactant and product fragments are
equivalent: P(xyF ) = P(xyM1), x , y = 0, 1

C − C − C

C − C C

ρ

M

F



Fragment equivalance for unbranched pathways

I Transitively, an unbranched pathway defines a one-to-one
mapping between carbon atom locations

ρ
1

2
ρ

C − C − C − C C − C − CC − C − C

I Given a reactant M and product M ′ of the pathway, and two
fragments F ⊆ M and F ′ ⊆ M ′, assume that F ′ = Λ(F ) is the
image of the fragment F under the atom mapping Λ of the
pathway.

I Then F and F ′ are equivalent



Fragment equivalence in general

I Assume fragments produced by alternative pathways travel
intact and similarly oriented (i.e. no permutation) starting
from the common source fragment

I The isotopomer distribution of that fragment remain
equivalent to the source along the alternative pathways
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Equivalence classes

I The equivalance relation for fragments induces equivalence
classes of fragments to the metabolic networks

I The isotopomer distribution is the theoretically the same for
the whole equivalence class
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Balance equations for fragments

I Assume we have deduced
fragment marginals of
ALA12 for both pathways

I Balance equations for the
fragment ALA12:

P(00ALA12|pw1) · vpw1 + P(00ALA12|pw2) · vpw2 = P(00ALA12) · vALA12

P(01ALA12|pw1) · vpw1 + P(01ALA12|pw2) · vpw2 = P(01ALA12) · vALA12

P(10ALA12|pw1) · vpw1 + P(10ALA12|pw2) · vpw2 = P(10ALA12) · vALA12

P(11ALA12|pw1) · vpw1 + P(11ALA12|pw2) · vpw2 = P(11ALA12) · vALA12



Balance equations for fragments

I In order the balance
equations to be useful, it
is required that ALA12 is
not equivalent with the
fragments ALA12|pw1 or
ALA12|pw2 produced by
the two pathways

I What will happen if this
assumption is not
satisfied? Left as exercise.

P(00ALA12|pw1) · vpw1 + P(00ALA12|pw2) · vpw2 = P(00ALA12) · vALA12

P(01ALA12|pw1) · vpw1 + P(01ALA12|pw2) · vpw2 = P(01ALA12) · vALA12

P(10ALA12|pw1) · vpw1 + P(10ALA12|pw2) · vpw2 = P(10ALA12) · vALA12

P(11ALA12|pw1) · vpw1 + P(11ALA12|pw2) · vpw2 = P(11ALA12) · vALA12


