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1. Building the stoichiometric matrix.

S =

−1 0 0 0 −1 0 0 0
1 −1 0 0 0 0 0 0
0 1 −1 0 0 0 0 0
0 0 1 −1 0 1 0 0
0 0 0 1 0 1 0 1
0 0 0 0 1 0 −1 −1
0 0 0 0 0 −1 1 0
0 0 0 0 0 −1 1 −1
0 0 0 0 0 0 −1 1
1 0 1 0 0 0 0 0

−1 0 −1 0 0 0 0 0
−1 0 0 0 0 0 0 0

>> v = [1 1 0 −1 −1 0 1 1 ] ’ ;
>> S∗v

ans =

0
0
1
1
0

−3
1
0
0
1

−1
−1

Thus, metabolites 1, 2, 5, 8 and 9 are staying in constant concentration,
while 3, 4, 7 and 10 are accumulating. Metabolites 6, 11 and 12 are
diminishing.
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2. Obtaining the adjacency matrix of the reaction and substrate graph. By
definition, reaction graph contains as nodes the reactions, and an edge
exists between two nodes if they share a common metabolite anywhere in
their reactions. Substrate graph is the dual of this.

Listing 1: adjreactiongraph.m

function R = adj r eac t i ongraph (S)
%ADJREACTIONGRAPH

Sabs = abs (S ) ;
Q = Sabs ’ ∗ Sabs ;
R = Q > 0 ;

Listing 2: adjsubstrategraph.m

function R = adj subs t ra teg raph (S)
%ADJREACTIONGRAPH

Sabs = abs (S ) ;
Q = Sabs ∗ Sabs ’ ;
R = Q > 0 ;

This works because the Sabs’ * Sabs takes the inner product of two
columns, instead of the usual “row times column” multiplication. Thus,
it counts the number of ones occurring on the same row, which means
sharing a metabolite.

3. Graph statistics.

Listing 3: degreedist.m

function H = deg r e ed i s t (R)
%DEGREEDIST

% take s the sum of each row of adjacency matrix (= number o f ne ighbours )
% take s the his togram of those
H = h i s t c (sum(R) , 1 :max(sum(R) ) ) ;

Listing 4: pathdist.m

function H = pathd i s t (R)
%PATHDIST

% sho r t e s t paths between a l l nodes
P = grapha l l s ho r t e s t pa th s ( sparse (R) ) ;

% sum the his togram matrix
H = sum( h i s t c (P, 0 :max(max(P) ) ) , 2 ) ’ ;

4. Styer generic model.
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You can load the file using load() (only if extra stuff has been edited
out), or using the Import Data menu item. The degree distribution or
path length distributions are not logarithmic.

>> Rrg = ad j r eac t i ongraph (S ) ;
>> Rsg = adj subs t ra teg raph (S ) ;
>> Hrg = deg r e ed i s t (Rrg ) ;
>> Hsg = deg r e ed i s t (Rsg ) ;

%% pad ex t ra ze ros to ge t compat i b l e v e c t o r s i z e s
>> Hcombined = [ Hrg ; Hsg , zeros (1 , length (Hrg)−length (Hsg ) ) ] ’ ;
>> bar (Hcombined )

>> Hrg = pathd i s t (Rrg ) ;
>> Hsg = pathd i s t (Rsg ) ;

%% pad ex t ra ze ros to ge t compat i b l e v e c t o r s i z e s
>> plot ( 1 : 8 , [ Hrg , 0 ] , 1 : 8 , Hsg )
>> loglog ( 1 : 8 , [ Hrg , 0 ] , 1 : 8 , Hsg )

5. Scale free model fitting to P (k) ≈ k−gamma.

First you need to make a modelerror function, which computes the sum
of squared errors between your data and the power law distribution with
parameter γ. Then you can use fminsearch to find the minimum of this
function, i.e. get the γ, which gets closest fit to the data.

Listing 5: modelerror.m

function s s e = modelerror (gamma, k , y )
%MODELERROR
%
% gamma = the parameter to be l earned
% k = node degree numbers (1 2 3 4 5 . . . kmax)
% y = observed degrees e t c . (9 5 9 2 7 2 2 1 . . . )
%
% sse = sum of squared e r ro r s

% normal ize observed degrees to a d i s t r i b u t i o n
ycurve = y / sum( y ) ;

% compute the curve by gamma−parameter
curve = k . ˆ −gamma;
% compute the error between s c a l e f r e e model and ob s e r va t i on s
error = curve − ycurve ;
% take the squared sum of the error
s s e = sum( error . ˆ 2 ) ;

Listing 6: fitcurve.m

function [ opt , s s e ] = f i t c u r v e (H)
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degs = 1 : length (H)
model = @modelerror ;
s t a r t p o i n t = rand ( 1 , 1 ) ;

[ opt , s s e ] = fminsearch (model , s t a r t po i n t , [ ] , degs , H) ;

ycurve = H / sum(H) ;
gammacurve = degs . ˆ −opt ;
gammacurve = gammacurve / sum( gammacurve ) ;

plot ( degs , gammacurve , degs , ycurve ) ;
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